Species delimitation is a central issue in all fields of biology, and it is closely tied to the species concept employed. Thousands of pages have been filled with debates about competing species concepts; for instance, Coyne & Orr (2004) counted no less than 25 distinct species concepts. Among these are several phylogenetic species concepts. The paper by Martin et al. (2013) on box turtles is one of many recent publications that raise formerly recognized subspecies to the species level, based on molecular genetic evidence and favouring implicitly or explicitly a phylogenetic species concept as the theoretical foundation. We wish to underline that there is growing concern with respect to this approach (see Zachos et al. 2013 for mammals), and this concern guided our recent taxonomic update for turtles (Fritz & Haváš 2013). Without intending to enter the debate on species concepts, we will briefly explain why we are not convinced by the conclusions of Martin et al. (2013).

Using sequence data of two mitochondrial genes (cyt b, COI) and one nuclear locus (GAPD), Martin et al. (2013) studied the relationships of box turtles (Terrapene) and recognized, like previous authors, the species Terrapene coahuila, T. nelsoni and T. ornata. However, with respect to the fourth generally accepted species, T. carolina, they proposed that this taxon should be split into two distinct polytypic species, T. carolina (containing the subspecies T. c. carolina, T. c. bauri and T. c. major) and T. mexicana (containing the subspecies T. m. mexicana, T. m. triunguis and T. m. yucatana). The three taxa referred to T. mexicana are fully allopatric, with the two subspecies from Mexico (mexicana and yucatana) occurring in completely isolated distribution ranges (Smith & Smith 1980; Ernst & Lovich 2009). However, in the southern USA, triunguis intergrades widely with other subspecies of T. carolina (Carr 1952; Ernst & Lovich 2009), a fact recently corroborated by microsatellite data together with evidence from morphology and mtDNA sequences (Butler et al. 2011). Based on microsatellite loci, Butler et al. (2011) found no population structuring in the contact zone, suggestive of a panmictic population with complete genetic admixture of the involved taxa. Furthermore, using extensive additional analyses of morphology and the rapidly evolving mitochondrial D-loop, Butler et al. (2011) concluded that “T. c. major is not a distinct evolutionary lineage but, instead, a mixture of extant taxa plus the extinct [subspecies] T. c. putnami.” In contrast, Martin et al. (2013) treated T. c. major as a valid subspecies, without discussing these obviously contradictory results.

Martin et al. (2013) used their cyt b and GAPD data for phylogenetic inference. The COI sequences were used for a barcoding approach, which was inconclusive. It showed that several subspecies of T. carolina, including subspecies which are accepted as conspecific by Martin et al. (2013), differ by divergence values which exceed the universal barcoding threshold for distinct species (2%). This is in line with a recent review article on DNA barcoding using turtles as a case study, which pointed out that “no particular level of divergence can serve to identify species” (Shen et al. 2013), or in other words, whenever possible additional evidence is needed, and barcoding thresholds to be used as critical values for species delimitation need to be adjusted individually for smaller taxonomic groups (e.g., Fritz et al. 2012; Vargas-Ramirez et al. 2012).

Based on cyt b and GAPD sequences, Martin et al. (2013) discovered within T. carolina sensu lato two major clades. In the mitochondrial tree (Fig. 1: top left), one well-supported major clade was comprised of sequences of T. c. mexicana, T. c. triunguis and T. c. yucatana; and the other major clade contained the sequences of T. c. carolina, T. c. bauri and of what Martin et al. (2013) called T. c. major. However, mitochondrial sequences of “T. c. major” were paraphyletic with respect to the allopatrically distributed T. coahuila, a taxon which is accepted as a species distinct from T. carolina since its description in 1944 (Schmidt & Owens 1944; Smith & Smith 1980; Ernst et al. 2000; Dodd 2001; Butler et al. 2011; Martin et al. 2013), and support values for monophyly of the second major clade were low. Support for the two major nuclear clades was also weak (Fig. 1: top right). Moreover, these two nuclear clades conflicted with the species
delimitation proposed by Martin et al. (2013) in that sequences of *T. c. carolina*, *T. c. bauri*, *T. c. major* and *T. c. triunguis* occurred in both clades. Consequently, we see no convincing phylogenetic evidence for splitting *T. carolina* sensu lato into two distinct species, regardless of the species concept applied.

Our conclusion is supported by the alternate phylogeny reported by Spinks et al. (2009), a study not mentioned by Martin et al. (2013, 2014). Using sequences of the cyt b gene and seven nuclear loci, Spinks et al. (2009) found *T. c. bauri* clustering with *T. c. triunguis* (Fig. 1: bottom).

Like Martin et al. (2013), Spinks et al. (2009) found *T. carolina* to be paraphyletic with respect to *T. coahuila*. However, for the rapidly evolving D-loop Butler et al. (2011) found *T. carolina* not to be paraphyletic with respect to *T. coahuila*. Yet, they reported nearly identical haplotypes of a *T. carolina* from Escambia County (Florida) and *T. coahuila*, but these haplotypes were highly distinct from all other haplotypes of *T. carolina*. This confusing situation demands further research, and this issue is beyond the current discussion.

FIGURE 1. Phylogenetic trees for *Terrapene carolina* and *T. coahuila*. Top: Trees based on Maximum Likelihood and Bayesian analyses, redrawn from Martin et al. (2013). Shown are all support values provided in the original publication (bootstrap values and posterior probabilities). Note the weak support values (red) for the clades within *T. carolina*, the paraphyly of *T. carolina* with respect to *T. coahuila* (red) and the shared taxa in the nuclear tree (blue). The missing support values on the basal nodes of the nuclear tree suggest weak support. Bottom: Maximum Likelihood trees redrawn from Spinks et al. (2009). Support values are Bayesian posterior probabilities, ML and MP bootstrap values. Asterisks indicate support values ≥ 0.95/90/90. Note the placement of *T. c. bauri* (red arrow) conflicting with the results of Martin et al. (2013).
To justify their species delimitation, Martin et al. (2014) now argue that many species of animals may hybridize, and hence that intergradation among T. carolina subspecies does not invalidate their splitting of T. carolina in two distinct species. Martin et al. (2014) cite, among others, a paper reporting that up to 14% of box turtles from eastern Texas are hybrids between T. carolina and T. ornata. However, if 14% are hybrids, 86% of the concerned populations must be pure, and this is evidence for the maintenance of largely distinct gene pools in sympatry. By contrast, T. carolina forms panmictic populations whenever different subspecies meet (Butler et al. 2011), and this is fundamentally different from the situation in T. carolina and T. ornata. Consequently, the recognition of T. mexicana as a species distinct from T. carolina, as proposed by Martin et al. (2013, 2014), is unwarranted.

We are not disputing that distinct species may hybridize, and there are many cases known, especially in turtles and tortoises, as well as in other taxa (e.g., Kraus et al. 2012). However, interspecific hybridization is different from intergradation among subspecies. The example of T. carolina and T. ornata shows that distinct species are capable of maintaining largely discrete gene pools, allowing them to occur together in widely overlapping distribution ranges. The region of sympathy for T. carolina and T. ornata corresponds to a vast area including the eastern parts of Texas, Oklahoma and Kansas, most of Missouri, western Arkansas, western Louisiana, and parts of Illinois and Indiana (Ernst & Lovich 2009). In contrast, the genetic and morphological distinctness of the subspecies of T. carolina, including T. c. triunguis, dissolves in their contact zone (Butler et al. 2011), which constitutes a true genetic melting pot. As a legacy of the distinct subspecies, only the deeply divergent mtDNA lineages remain, which are inherited through the maternal line (without recombination). A similar case of genetic admixture is known for subspecies of spur-thighed tortoises (Testudo graeca) in the Caucasus region (Mashkaryan et al. 2013).

We respect the conservation-oriented motives of Martin and coauthors for their proposal to revise the taxonomy of Terrapene carolina. Martin et al. (2014) argue “because the Terrapene are of conservation concern throughout their range […], and because many conservation efforts are species-based and tend to ignore subspecies, it is imperative that their classification be correctly resolved”. However, we are also convinced that only well-founded taxonomic decisions serve conservation and science (see also Karl & Bowen 1999; Zachos et al. 2013), and will therefore continue to treat T. c. mexicana, T. c. triunguis and T. c. yucatanana as subspecies of Terrapene carolina.

References


http://dx.doi.org/10.1016/j.mambio.2012.07.083