Wir erforschen die Wechselwirkungen und Rückkopplungen zwischen biologischer Vielfalt und Klima auf der Ebene von Arten, Lebensgemeinschaften und ganzen Ökosystemen im Raum und auf verschiedenen Zeitskalen, einschließlich der geologischen Vergangenheit über Millionen von Jahren, der Gegenwart und sowie deren mittel- und langfristige Trends.
Wir rekonstruieren vergangene Klimaveränderungen, analysieren vergangene und aktuelle Veränderungen in ökologischen Gemeinschaften, einschließlich der taxonomischen und funktionalen Vielfalt, untersuchen die langfristige Dynamik des Verlusts der biologischen Vielfalt und erstellen Prognosemodelle für die künftige biologische Vielfalt. Wir integrieren Biowissenschaften und Geowissenschaften, nutzen Daten zu Organismenmerkmalen aus Feldbeobachtungen, globalen Datenbanken und naturkundlichen Sammlungen und verknüpfen empirische Forschung und Modellierung. Unsere Forschung trägt dazu bei, die Folgen der doppelten Krise von Biodiversitätsverlust und Klimawandel auf der Ebene der Ökosysteme zu verstehen.
Zentrale Fragen
Wie interagieren Biodiversität, Klima und Erdoberflächenprozesse auf verschiedenen Zeitskalen?
Wie beeinflusst das Klima im Zusammenspiel mit anderen anthropogenen Faktoren die ökologische Dynamik von Arten und Gemeinschaften auf allen Ebenen der biologischen Vielfalt?
Wie beeinflusst der Klimawandel in Wechselwirkung mit anderen anthropogenen Faktoren die Prozesse und Funktionen von Ökosystemen?
Sprecher*innen
PD Dr. Eike Lena Neuschulz
Senior Scientist, Member of Senior Scientist Group 'Functional Ecology and Global Change'
My research focusses on the interplay between plants and animals and their interactions with the abiotic and biotic environment. In particular, I study the dynamics of temperate and tropical forest ecosystems across elevational and land use gradients. In one of my research themes, I study the dispersal of seeds by animals, which is one of the key ecosystem services for natural forest restoration. I combine a diverse set of methods, ranging from field observations and experiments to molecular and meta-analytic approaches and advanced statistical modelling to project the response capacity of plants to land use and climate change.
In one of my projects, we examine seed dispersal pattern by nutcrackers (Nucifraga caryocatactes) along environmental gradients in alpine pine forests. We investigate, how seed deposition by nutcrackers and other biotic and abiotic drivers relate to the potential of Swiss stone pine seedlings (Pinus cembra) to establish.
DFG project NE 1863 2-2 “The role of intraspecific variation in seed dispersal, traits, and genetic diversity for the response capacity of plants to climate change”; PhD student Valentin Graf
In other projects in the tropical Andes, we study how abiotic and biotic filters affect the regeneration of plants of various life history traits across an elevational and disturbance gradient in Southern Ecuador. In Northern Ecuador, we study how seed dispersal networks (birds and rodents) reassemble across a forest disturbance gradient in the Chocó region.
DFG projects NE 1863 3-1 “Trait-dependent effects of biotic and abiotic filters on plant regeneration”, NE 1863 3-2 “Trait-dependent effects of abiotic and biotic filters on plant regeneration in mountain dry forest and mountain rain forest”; PhD students Maciej Barczyk, Lea Kerwer
DFG project NE 1863/4-1 “Seed dispersal by frugivorous birds, bats and rodents” PhD student Anna Rebello Landim
My primary research interest is to understand the interactions between vegetation, atmosphere and humans. Therefore, I develop and apply different modelling approaches, particularly process-based dynamic vegetation models (DGVMs), to simulate ecosystem dynamics, biogeochemical cycles, and diversity. Vegetation models are coupled with land use models to help us understand how climate change and land-use influence ecosystems, diversity and ecosystem services, and to help develop strategies for the sustainable use of natural resources.
Pfeiffer M, Hoffmann M, Scheiter S, Nelson W, Isselstein J, Ayisi K, Odhiambo J, Rötter R (2022) Modeling the effects of alternative crop-livestock management scenarios on important ecosystem services in smallholder farming from a landscape perspective. Biogeosciences, 19, 3935—3958. https://doi.org/10.5194/bg-19-3935-2022
Martens C, Hickler T, Davis-Reddy C, Engelbrecht F, Higgins SI, von Maltitz GP, Midgley GF, Pfeiffer M, Scheiter S (2021) Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Global Change Biology, 27, 340-358. https://doi.org/10.1111/gcb.15390
Scheiter S, Kumar D, Corlett RT, Gaillard C, Langan L, Lapuz RS, Martens C, Pfeiffer M, Tomlinson KW (2020) Climate change promotes transitions to tall evergreen vegetation in tropical Asia. Global Change Biology, 26, 5106-5124. https://doi.org/10.1111/gcb.15217
Kumar D; Pfeiffer M; Gaillard C; Langan L; Martens C; Scheiter S (2020) Misinterpretation of Asian savannas as degraded forest can mislead management and conservation policy under climate change. Biological Conservation, 241, 108293. https://doi.org/10.1016/j.biocon.2019.108293
Scheiter S; Moncrieff GR; Pfeiffer M; Higgins SI (2020) African biomes are most sensitive to changes in CO2 under recent and near-future CO2 conditions. Biogeosciences, 17, 1147-1167. https://doi.org/10.5194/bg-17-1147-2020
Scheiter S; Schulte J; Pfeiffer M; Martens C; Erasmus BFN; Twine WC (2019) How does climate change influence the economic value of ecosystem services in savanna rangelands?. Ecological Economics, 157, 342-356.https://doi.org/10.1016/j.ecolecon.2018.11.015
Pfeiffer, Mirjam; Langan, Liam; Linstädter, Anja; Martens, Carola; Gaillard, Camille; Ruppert, Jan; Higgins, Steven; Mudongo, Edwin; Scheiter, Simon (2019) Grazing and aridity reduce perennial grass abundance in semi-arid rangelands – insights from a trait-based dynamic vegetation model. Ecological Modelling, 395, 11-22.https://doi.org/10.1016/j.ecolmodel.2018.12.013
Gaillard C; Langan L; Pfeiffer M; Kumar D; Martens C; Higgins SI; Scheiter S. (2018) African shrub distribution emerges via height – sapwood conductivity trade-off. Journal of Biogeography, 45, 2815-2826.https://doi.org/10.1111/jbi.13447
Langan, L., Higgins, S.I., Scheiter, S. (2017): Climate-biomes, pedo-biomes or pyro-biomes: which world view explains the tropical forest – savanna boundary in South America? Journal of Biogeography, 44, 2319-2330. https://doi.org/10.1111/jbi.13018
Scheiter S, Higgins SI, Beringer J, Hutley LB (2015) Climate change and long-term fire management impacts on Australian savannas. New Phytologist, 205, 1211-1226. https://doi.org/10.1111/nph.13130
Scheiter, S., Langan, L., Higgins S.I. (2013): Next generation dynamic global vegetation models: learning from community ecology. New Phytologist, 198, 957-969. https://doi.org/10.1111/nph.12210
Higgins S.I., Scheiter, S. (2012): Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature, 488, 209-212. https://doi.org/10.1038/nature11238