Geobiodiversity, Ecosystem Dynamics and Climate

Speakers

PD Dr. Eike Lena Neuschulz
Senior Scientist, Member of Senior Scientist Group 'Functional Ecology and Global Change'

Research interests

My research focusses on the interplay between plants and animals and their interactions with the abiotic and biotic environment. In particular, I study the dynamics of temperate and tropical forest ecosystems across elevational and land use gradients. In one of my research themes, I study the dispersal of seeds by animals, which is one of the key ecosystem services for natural forest restoration. I combine a diverse set of methods, ranging from field observations and experiments to molecular and meta-analytic approaches and advanced statistical modelling to project the response capacity of plants to land use and climate change.

In one of my projects, we examine seed dispersal pattern by nutcrackers (Nucifraga caryocatactes) along environmental gradients in alpine pine forests. We investigate, how seed deposition by nutcrackers and other biotic and abiotic drivers relate to the potential of Swiss stone pine seedlings (Pinus cembra) to establish.

DFG project NE 1863 2-2 “The role of intraspecific variation in seed dispersal, traits, and genetic diversity for the response capacity of plants to climate change”; PhD student Valentin Graf

In other projects in the tropical Andes, we study how abiotic and biotic filters affect the regeneration of plants of various life history traits across an elevational and disturbance gradient in Southern Ecuador. In Northern Ecuador, we study how seed dispersal networks (birds and rodents) reassemble across a forest disturbance gradient in the Chocó region.

DFG projects NE 1863 3-1 “Trait-dependent effects of biotic and abiotic filters on plant regeneration”, NE 1863 3-2 “Trait-dependent effects of abiotic and biotic filters on plant regeneration in mountain dry forest and mountain rain forest”; PhD students Maciej Barczyk, Lea Kerwer

DFG project NE 1863/4-1 “Seed dispersal by frugivorous birds, bats and rodents” PhD student Anna Rebello Landim

CV

List of publications

Mitarbeiterfoto
Dr. Simon Scheiter
Senior scientist, Head of Emmy Noether Research Group 'Biodiversity and Ecosystem Services in the Earth System'

RESEARCH INTERESTS

My primary research interest is to understand the interactions between vegetation, atmosphere and humans. Therefore, I develop and apply different modelling approaches, particularly process-based dynamic vegetation models (DGVMs), to simulate ecosystem dynamics, biogeochemical cycles, and diversity. Vegetation models are coupled with land use models to help us understand how climate change and land-use influence ecosystems, diversity and ecosystem services, and to help develop strategies for the sustainable use of natural resources.

CURRENT PROJECTS 

South African Limpopo Landscapes network

South African Limpopo Landscapes Network (SALLnet)

Ecosystem Management Support for Climate Change in Southern Africa (EMSAfrica

Extenal Links

Researchgate Profile of Simon Scheiter
ResearcherID Profile of Simon Scheiter
aDGVM website

PUBLICATIONS 

Selected publications (link to full publication list):

Pfeiffer M, Hoffmann M, Scheiter S, Nelson W, Isselstein J, Ayisi K, Odhiambo J, Rötter R (2022) Modeling the effects of alternative crop-livestock management scenarios on important ecosystem services in smallholder farming from a landscape perspective. Biogeosciences, 19, 3935—3958. https://doi.org/10.5194/bg-19-3935-2022

Martens C, Hickler T, Davis-Reddy C, Engelbrecht F, Higgins SI, von Maltitz GP, Midgley GF, Pfeiffer M, Scheiter S (2021) Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Global Change Biology, 27, 340-358. https://doi.org/10.1111/gcb.15390

Scheiter S, Kumar D, Corlett RT, Gaillard C, Langan L, Lapuz RS, Martens C, Pfeiffer M, Tomlinson KW (2020) Climate change promotes transitions to tall evergreen vegetation in tropical Asia. Global Change Biology, 26, 5106-5124. https://doi.org/10.1111/gcb.15217

Kumar D; Pfeiffer M; Gaillard C; Langan L; Martens C; Scheiter S (2020) Misinterpretation of Asian savannas as degraded forest can mislead management and conservation policy under climate change. Biological Conservation241, 108293. https://doi.org/10.1016/j.biocon.2019.108293

Scheiter S; Moncrieff GR; Pfeiffer M; Higgins SI (2020) African biomes are most sensitive to changes in CO2 under recent and near-future CO2 conditions. Biogeosciences17, 1147-1167. https://doi.org/10.5194/bg-17-1147-2020

Scheiter S; Schulte J; Pfeiffer M; Martens C; Erasmus BFN; Twine WC (2019) How does climate change influence the economic value of ecosystem services in savanna rangelands?. Ecological Economics157, 342-356.https://doi.org/10.1016/j.ecolecon.2018.11.015

Pfeiffer, Mirjam; Langan, Liam; Linstädter, Anja; Martens, Carola; Gaillard, Camille; Ruppert, Jan; Higgins, Steven; Mudongo, Edwin; Scheiter, Simon (2019) Grazing and aridity reduce perennial grass abundance in semi-arid rangelands – insights from a trait-based dynamic vegetation model. Ecological Modelling395, 11-22.https://doi.org/10.1016/j.ecolmodel.2018.12.013

Gaillard C; Langan L; Pfeiffer M; Kumar D; Martens C; Higgins SI; Scheiter S. (2018) African shrub distribution emerges via height – sapwood conductivity trade-off. Journal of Biogeography45, 2815-2826.https://doi.org/10.1111/jbi.13447

Langan, L., Higgins, S.I., Scheiter, S. (2017): Climate-biomes, pedo-biomes or pyro-biomes: which world view explains the tropical forest – savanna boundary in South America? Journal of Biogeography, 44, 2319-2330. https://doi.org/10.1111/jbi.13018

Scheiter S, Higgins SI, Beringer J, Hutley LB (2015) Climate change and long-term fire management impacts on Australian savannas. New Phytologist205, 1211-1226. https://doi.org/10.1111/nph.13130

Scheiter, S., Langan, L., Higgins S.I. (2013): Next generation dynamic global vegetation models: learning from community ecology. New Phytologist198, 957-969. https://doi.org/10.1111/nph.12210

Higgins S.I., Scheiter, S. (2012): Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature488, 209-212. https://doi.org/10.1038/nature11238