In Germany, over 160 million objects are housed in natural and cultural history research collections, the scientific and societal potential of which remains largely untapped.
These collections, as repositories of nature, culture, and technology, are invaluable for advancing our understanding of the relationships and interactions between humans and the environment, as well as the development of socio-ecological systems on a global scale. They are fundamental to both basic and applied research and crucial for education and training within Germany. A national, integrated, and interdisciplinary infrastructure for collections—and consequently for research and information—has the potential to unlock vast knowledge, action, and transformative capabilities. OSIRIS is laying the foundations for the world’s first integrated interdisciplinary infrastructure, facilitating a groundbreaking approach to these challenges.
Data Manager Ocean Biogeographic Information System (OBIS), Deep Sea Node, UNESCO
Chair Data Quality Control Task Team, OBIS
Research interests
I am interested in understanding the driving factors (ecological and evolutionary process) which shape the biodiversity patterns and biogeography in marine species (shallow and deep sea) using big data. In addition, I am interested in predicting how these biodiversity patterns and species distribution ranges will shift under future climate change. I am also the OBIS (Ocean Biogeographic Information System) deep-sea node data manager in UNESCO, specialised in managing big datasets, biodiversity data standards, and quality control tasks. To carry out my research, I use different skillsets and apply different methods and techniques such as taxonomy (morphology and molecular), phylogeny, biogeography, big-data management, biodiversity informatics, macroecology, and species distribution modeling and ecological modeling.
At the moment, I am leading projects in digitisation of museum collections, biogeography, biodiversity informatics using big-data at the regional (e.g. NW Pacific) and global scales. I also work for science-policy intergovernmental bodies such as IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) to provide fundamental information for biodiversity assessment reports in a response to policy makers to better understand the global status of biodiversity in the World Oceans and consequently to establish more efficient strategic management plans to maintain the Ocean Biodiversity.
Current research projects
Biogeography of the NW Pacific deep-sea fauna and their possible future invasions into the Arctic Ocean (Beneficial Project)
Estimating the global future shift patterns of shallow-water and deep-sea Crustacea
Biodiversity and biogeography of molluscs along the NW Pacific and the Arctic Ocean
Biodiversity and future distributions of corals along the NW Pacific and the Arctic Ocean
Biogeography of marine species richness and impact of climate change
IPBES thematic assessment of invasive alien species and their control
Student opportunities
Various research projects for postdocs, PhDs, MSc and BSc students as well as for short internships are available this year and all year round. These opportunities are mostly in the field of biogeography, ecology, biodiversity informatics, and ecological modeling. Further Postdoc and PhD projects can also be discussed and jointly developed. Please contact me for more details.
Teaching
I have more than 15 years of international experience in teaching and supervising students from high school to MSc. Programs.
Saeedi, H., Simoes, M., Brandt, A. (2020). Biodiversity and distribution patterns of deep-sea fauna along the temperate NW Pacific. Progress in Oceanography, 183: 102296. https://doi.org/10.1016/j.pocean.2020.102296.
Saeedi, H., Simoes, M., Brandt, A. (2019). Endemicity and community composition of marine species along the NW Pacific and the adjacent Arctic Ocean. Progress in Oceanography. Progress in Oceanography, 178: 102199. https://doi.org/10.1016/j.pocean.2019.102199.
Saeedi, H., Costello, M. J., Warren, D., Brandt, A. (2019). Latitudinal and bathymetrical species richness patterns in the NW Pacific and adjacent Arctic Ocean. Scientific Reports, 9:9303. https://doi.org/10.1038/s41598-019-45813-9.
Saeedi, H., Reimer, D. J., Brandt, J. M., Dumais, P. O., Jażdżewska, M. A., Jeffery, W. N., Thielen, M. P. (2019). Global marine biodiversity and prediction in the context of achieving the Aichi Targets: ways forward and addressing data gaps. Peerj, 7: e7221. https://doi.org/10.7717/peerj.7221.
Saeedi, H., Bernardino A. F., Shimabukuro M., Falchetto G., & Sumida P. Y. G (2019). Macrofaunal community structure and biodiversity patterns based on a wood-fall experiment in the deep South-west Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 145:73-82.
Saeedi, H. & Costello M. J. (2019). A world dataset on the geographic distributions of Solenidae razor clams (Mollusca: Bivalvia). Biodiversity Data Journal, 7:e31375. https://doi.org/10.3897/BDJ.7.e31375.
Saeedi, H., Kamrani, E., Shayesteh, F., Nordhaus, I., Diele, K., Raeisi, H. (2018). Sediment Temperature Impact on Population Structure and Dynamics of the Crab Austruca iranica Pretzmann, 1971 (Crustacea: Ocypodidae) in Subtropical Mangroves of the Persian Gulf. Wetlands, 38(3): 539–549.
Saeedi, H., Costello, M. J. and Dennis, T. (2017). Modelling present and future global distributions of razor clams (Bivalvia: Solenidae). Helgoland Marine Research, 70: 23.
Chaudhary, C., Saeedi, H., & Costello, M. J. (2017). Marine species richness is bimodal with latitude. Trends in Ecology and Evolution. 32(4): P234-237.
Saeedi, H., Costello, M. J. and Dennis, T. (2016). Bimodal latitudinal species richness and high endemicity in razor clams (Mollusca: Bivalvia). Journal of Biogeography. 44(3): 592–604.
Chaudhary, C., Saeedi, H., & Costello, M. J. (2016). Bimodality of latitudinal gradients in marine species richness. Trends in Ecology and Evolution, 3(9): 670-676.
With your donation, you help the Senckenberg Society to conduct natural scientific research and make our results accessible to the public through publications, exhibitions, educational projects, and many other initiatives.