Spatial relationship between three dominant spider species and Collembola prey in an environmentally heterogeneous forest floor habitat

Elvira Melnichnova,1 Theo Blick,2 W H.O. Dorow,2 V. Wolters,1 Klaus Birkhofer3

1Department of Animal Ecology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; 2Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberanlage 25, 60325 Frankfurt am Main, Germany; 3Department of Ecology, Biodiversity and Conservation Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden

Disentangling the biotic and abiotic processes that are responsible for pattern formation between predators and their prey is crucial for improving our knowledge about food-web interactions. We studied the spatial patterns and relationships between three abundant spider species and Collembola prey in a forest floor food-web while accounting for environmental heterogeneity at the local scale. Spiders and epedaphic Collembola were sampled throughout the year in a spatially explicit design based on a regular grid of pitfall traps. Environmental heterogeneity at the forest floor was determined based on moss and litter cover and the number of dead wood items at each trap location. Techniques for point pattern analysis (L-function) were used to describe spatial relationships between individuals of the three most abundant spider species and Collembola under homogeneous and heterogeneous null models. Assuming habitat homogeneity two spider species Inermocoelotes inermis and Walckenaeria cuspidata were aggregated, whereas Tapinocyba insecta showed a random distribution. After accounting for habitat heterogeneity the L-function indicated that individuals of I. inermis were aggregated in areas with denser moss coverage. In contrast, W. cuspidata and T. insecta preferred litter and dead wood rich microhabitats. The analysis of predator-predator relationships suggested an independent spatial relationship between spider species if habitat heterogeneity was ignored, but association between species if models accounted for environmental heterogeneity. The distribution of Collembola was not related to environmental parameters and spider species and Collembola were independently distributed. Our study suggests weak competitive interactions between the analyzed spider species at the scale of 100 m and demonstrates the importance to account for environmental heterogeneity to avoid erroneous descriptions of patterns.
PROGRAM & ABSTRACTS

4-8 SEPTEMBER 2011

BEN-GURION UNIVERSITY OF THE NEGEV
BLAUSTEIN INSTITUTES FOR DESERT RESEARCH
SEDE BOQER CAMPUS, ISRAEL
Welcome to the 26th European Congress of Arachnology. The Congress is hosted by the Jacob Blaustein Institutes for Desert Research, on the Sede Boqer Campus of Ben-Gurion University of the Negev at Midreshet Ben-Gurion.

We hope you enjoy the Congress!

The organizers

Organizing Committee
Dorit Korine – Congress Manager

Scientific Committee
Yael Lubin – Chair
Trine Bilde, Ariel Chipman, Jason Dunlop, Efrat Gavish-Regev, Eran Gefen, Ally Harari, Yuri Marusik, Stano Pekár, Mor Salomon-Botner, Ferenc Samu, Michael Warburg, Phyllis Weintraub, Sergei Zonstein