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Latitudinal and bathymetrical 
species richness patterns in the NW 
Pacific and adjacent Arctic Ocean
Hanieh saeedi1,2,3, Mark J. Costello  4, Dan Warren  5 & Angelika Brandt1,2

Global scale analyses have recently revealed that the latitudinal gradient in marine species richness is 
bimodal, peaking at low-mid latitudes but with a dip at the equator; and that marine species richness 
decreases with depth in many taxa. However, these overall and independently studied patterns 
may conceal regional differences that help support or qualify the causes in these gradients. Here, we 
analysed both latitudinal and depth gradients of species richness in the NW Pacific and its adjacent 
Arctic Ocean. We analysed 324,916 distribution records of 17,414 species from 0 to 10,900 m depth, 
latitude 0 to 90°N, and longitude 100 to 180°N. Species richness per c. 50 000 km2 hexagonal cells was 
calculated as alpha (local average), gamma (regional total) and ES50 (estimated species for 50 records) 
per latitudinal band and depth interval. We found that average ES50 and gamma species richness 
decreased per 5° latitudinal bands and 100 m depth intervals. However, average ES50 per hexagon 
showed that the highest species richness peaked around depth 2,000 m where the highest total number 
of species recorded. Most (83%) species occurred in shallow depths (0 to 500 m). The area around Bohol 
Island in the Philippines had the highest alpha species richness (more than 8,000 species per 50,000 
km2). Both alpha and gamma diversity trends increased from the equator to latitude 10°N, then further 
decreased, but reached another peak at higher latitudes. The latitudes 60–70°N had the lowest gamma 
and alpha diversity where there is almost no ocean in our study area. Model selection on Generalized 
Additive Models (GAMs) showed that the combined effects of all environmental predictors produced 
the best model driving species richness in both shallow and deep sea. The results thus support recent 
hypotheses that biodiversity, while highest in the tropics and coastal depths, is decreasing at the 
equator and decreases with depth below ~2000 m. While we do find the declines of species richness with 
latitude and depth that reflect temperature gradients, local scale richness proved poorly correlated with 
many environmental variables. This demonstrates that while regional scale patterns in species richness 
may be related to temperature, that local scale richness depends on a greater variety of variables.

The latitudinal and bathymetrical gradients of marine species richness have been widely studied at both 
regional1–5 and global scales6–10. Recent studies showed that the global latitudinal richness gradient in most 
marine species follows a bimodal pattern correlated with sea surface temperature6,8,11–14. That is, richness was 
highest in the tropics but it dips at the equator. In general, present marine species richness gradients decline from 
mid to high latitudes and from shallow to deep sea in many taxa1,7,11,15–17. However, diversity in some deep-sea 
taxa such as gastropods and nematodes increases from the continental shelf to the bathyal and abyssal zones due 
to increased environmental stability18–20. The deep sea is almost two-thirds of the Earth, and over 84% of the 
ocean area is deeper than 2,000 m7,21,22. In contrast to shallow waters, in the deep sea chemical energy and carbon 
flux mostly control the species diversity, and temperature does not predict variation in rarified diversity in many 
taxa (e.g., Bivalvia and Gastropoda)22,23. Climate change can alter deep-sea latitudinal diversity gradients, even 
at tropical latitudes24. The latitudinal gradients in species richness in the deep sea were generally present for the 
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last 36 million years, but were weakened or absent during glacial periods24. Thus, considering both latitude and 
deep-sea gradients of marine species richness together in the same geographic region seems overdue.

Long-term global and more recent regional processes are likely to drive the marine species richness. For exam-
ple, major historic events (e.g. glaciation and plate tectonics) and evolutionary processes such as origination, dis-
persal (range expansion), and extinction, are considered important driving factors shaping the current latitudinal 
patterns of richness of marine species16,25–29. Global climatic constraints resulting from plate tectonics modulate 
ocean circulation, resulting in changes in surface water characteristics as well as altering connectivity between 
populations30. In addition to continental drift and sea level change, recent latitudinal marine species richness 
analyses have considered light (as photosynthetically active radiation (PAR)), sea surface temperature, and habitat 
(e.g., continental shelf) in shaping the latitudinal gradients for shallow water marine species (e.g., bivalves and 
gastropods less than 200 m; recent and fossil marine zooplankton)8,11,16,17,31–34. Because light and temperature 
directly influence biomass and/or abundance, diversity may then increase as a result of secondary population 
dynamics and/or evolutionary processes29,35,36. Temperature, as a proxy for thermal energy, also enhances the 
utilization rate of chemical energy by organisms. Temperature may also influence diversity by allowing a greater 
range of energetic lifestyles at warmer temperatures (the metabolic niche hypothesis)35,36. Tropical warmer cli-
mates have thus increased metabolic scope and biodiversity by fostering greater population size and extinction 
resistance29. This allows more species to inhabit specialized niches as a result of greater available energy, and 
generates faster speciation and/or lower extinction rates29,35.

The tropical and subtropical areas of the west Pacific host the highest number of marine species world-
wide37–41. They also have high topographic complexity, including large semi-enclosed seas, many islands, and 
deep-sea trenches. The regions high species richness may thus be due to high rates of speciation due to warm 
temperatures and repeated separations and reconnections of populations due to changing sea levels and continen-
tal drift. However, despite the high species richness and uniqueness of the NW Pacific, its latitudinal and depth 
gradients of marine species richness and their potential causes have not been studied. Here we show how species 
richness changes with latitude and depth, and consider potential explanatory factors including temperature, oxy-
gen (dissolved and saturated), primary productivity, chlorophyll, current velocity, salinity, nitrate, ocean area, and 
sampling effort. We also considered the adjacent Arctic Ocean of the NW Pacific to discover how these patterns 
change towards the highest latitudes. If these latitudinal and depth gradients are largely temperature correlated it 
would suggest that other variables, including topographic complexity, had negligible influence on the evolution 
of the fauna.

Methods
Our study area included the NW Pacific and its adjacent Arctic Ocean from latitude 0 to 90°N, and longitude 
100 to 180°N including 14 sea basins (Fig. 1). All geographic distribution records were extracted from Ocean 
Biogeography Information System (OBIS) (www.iobis.org) and Global Biodiversity Information Facility (GBIF) 
(https://www.gbif.org) (for citations of the datasets used, please see SI, Table S1). The extracted data were merged 
and duplicates excluded. All species names were matched against the World Register of Marine Species42 and 
synonyms reconciled. Distribution records were manually checked for suitability, and dubious records were 
either corrected (e.g., reversing latitude and longitude fields, duplicate records) or removed (e.g., fossil records). 
The final dataset consisted of 324,916 distribution records of 17,414 marine species (1,792 families) from 0 to 
10,900 m depth (SI, Fig. S1). Moreover, all the species were categorized to shallow-water and deep-sea benthic 
and pelagic groups (SI, Fig. S2). The statistical software R 3.4.4 and ArcMap 10.5.1 were used to analyse the data 
and plot the graphs.

Figure 1. Study area located in the NW Pacific and adjacent Arctic Ocean (latitude: 0 to 90°N in latitude and 
longitude: 100 to 180°N) showing 14 Sea Basins with different colours. ArcMap 10.5.1 was used to create this 
figure (https://support.esri.com/en/products/desktop/arcgis-desktop/arcmap/10-5).
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We used three measures of species richness for each c. 50 000 km2 hexagonal cell, latitudinal band, and depth 
interval: (1) the total number of species per hexagon (alpha diversity); (2) the total number of species per latitu-
dinal band (gamma diversity); and (3) the estimated richness per sampled hexagon using rarefaction (ES50). The 
rarefaction method was used to reduce the effect of sampling effort on species richness patterns by counting the 
number of species in a constant number of random samples. We considered each sample as a unique combination 
of date and location where one or more species were recorded. We used ES50 in the ‘vegan’ R package to estimate 
the species richness in 50 samples per hexagon43. Analyses considered samples at spatial scales of hexagons and 
5° latitudinal bands. The former capture the heterogeneity in the underlying data best, but contain data collected 
by a variety of methods and sample sizes which are not necessarily comparable (e.g., plankton, whales, turtles, 
sharks, tracked animals, sediment cores, trawls, SI, Table S1). Hexagonal species richness analysis introduces con-
siderable variability and bias between hexagons. The aggregation of samples into latitudinal bands aims to smooth 
out these effects because the number of species in a 5° band would tend to reach an asymptote.

We extracted environmental factors including average temperature (°C), dissolved oxygen (mol.m−3), primary 
productivity (g.m−3.d−1), chlorophyll (mg.m−3), current velocity (m−1), saturated oxygen (%), salinity (PSS), and 
nitrate (mol.m−3) for shallow water records (0–500 m); and average temperature, dissolved oxygen, chlorophyll, 
current velocity, salinity, and nitrate for deep-sea records (>500 m) from Bio-ORACLE (http://www.bio-oracle.
org/)44,45 and Global Marine Environment Datasets (GMED) (only saturated oxygen) (http://gmed.auckland.
ac.nz/)46. All the extracted environmental layers were at a 5 arcmin (c. 9.2 km) spatial resolution

We used generalized additive models (GAMs) to examine the impact of environmental predictors on num-
ber of species and ES50 on a per-hexagon basis. The mid-point of each c. 50 000 km2 hexagonal cell was calcu-
lated and collated with the spatial resolution of the environmental variables. Due to the high incidence of zeros 
in our species count data, models were built using the negative binomial error distribution. We fitted models 
via restricted maximum likelihood, using the automatic predictor selection implemented in the mgcv package47 
to control the complexity of smooth terms. For each analysis we fitted an intercept-only model, which repre-
sented the null hypothesis that response variables were not explained by environment, spatial sampling bias, 
or spatial autocorrelation. For models built using number of species as the response variable, we used the total 
number of records for each locality as an estimate of sampling effort. Models using ES50 as a response variable 
excluded number of records as an explanatory variable, as ES50 calculations are themselves intended to control 
for sampling effort. To model the effects of spatial autocorrelation on predictor and response variables, we used a 
two-dimensional spherical spline on latitude and longitude of sampling sites47.

For models using number of species as a response variable, we fitted one model using only spatial sampling 
bias, one using only spatial autocorrelation, and one using both sampling bias and spatial autocorrelation. We 
also fitted a model for each environmental predictor separately, and one that represented the combined impacts 
of all environmental predictors. Models built using environmental predictors also included sampling effort and 
the effects of spatial autocorrelation. Candidate sets of models using ES50 as a response variable were the same as 
for number of species, except for the exclusion of sampling effort. The GAMs relating species richness and ES50 
to environmental predictors on a per-hexagon basis, as well as tables presenting detailed model selection results, 
are in SI, S1 (Species Counts and Environment Based on Hexagonal Cells).

Figure 2. Total number of records, species, and ES50 calculated per c. 50 000 km2 hexagonal cells in depths 
above and below 500 m. ArcMap 10.5.1 was used to create this figure (https://support.esri.com/en/products/
desktop/arcgis-desktop/arcmap/10-5).
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Generalizing per-hexagon data to 5° latitudinal bands substantially reduced sample size, which limited our 
ability to fit complex functional responses. Therefore, for this data, we fitted generalized linear models (GLMs) 
using a Poisson error distribution, and used number of records per band to control for differences in sampling 
effort. Per-hexagon and 5° models were evaluated using the small sample size corrected Akaike Information 
Criterion (AIC48), a statistical method used to choose models with optimal fit to the data while controlling for 
over-parameterization49,50. The models with lower AIC scores are those that demonstrated a better compromise 
between model fit and model complexity. A difference in AIC value (deltaAIC) of less than two is considered to 
be inconclusive when comparing models. GLMs relating species richness and ES50 values to environmental pre-
dictors are given in SI, S2 (Species Counts and Environment Based on 5° Latitudinal Bands) and Fig. S4.

Results
Species richness. Most records in the study area were in shallow depths, and only 8% of the hexagons had no 
reported samples (Figs 2 and S2). Of these, almost all (7% of hexagons) were in the tropical and subtropical NW 
Pacific (between 0 to 30°N). In contrast, for the deep sea, 62% of the hexagons had no data. The highest sampling 
effort in both shallow (11,000 records) and deep sea (1,000 records below 500 m) in the study area was in the 
Philippines around Bohol Island (10.05°N, 124°E; ocean area: 3,000 km2) (Fig. 2).

The highest alpha species richness (shallow water: 8,800 species; deep sea: 800 species) was in the Philippines 
around Bohol Island (Fig. 2). The ES50 species richness index ranges from 0 to 50 and accounts for the effect of 
the number of samples. The highest ES50 (49) was also observed in Bohol Island in shallow water. However, the 
highest ES50 (48) in the deep sea was recorded around Luzon Island (16.14°N, 122.40°E; ocean area: ~1,250 km2) 
in the Philippines. In general, the Bering, Japan, Philippine, Sulu and Celebes Seas, including some areas of sub-
tropical NW Pacific Ocean, had the highest alpha species richness in the shallow and deep NW Pacific. The Arctic 
Ocean also had high alpha species richness, with some values of ES50 > 40.

Figure 3. The number of sampling records, alpha species richness (number of species per hexagon), and 
ES50 ± SE calculated per hexagon against latitude for both shallow water (0–500 m) and deep sea (>500 m) 
species. Solid lines shows order 6 polynomial trend lines regression trends over the latitude.
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Latitudinal gradients in number of records, alpha species richness, gamma richness, and ES50, increased from 
the equator to latitudes 5 or 10°N, then decreased, and further reached another peak at the highest latitudes (75 to 
90°N) (Figs 3 and 4). Latitudes 5 to 10°N hosted the highest species richness and ES50 which was mostly belonged to 
the Philippine Sea (average sea surface temperature = 28 °C and bottom temperature = 15 to 18 °C) (Figs 3 and 4).  
That further peaks in alpha and gamma richness were not seen in average ES50 which indicates that those peaks 
were due to the number of samples (Fig. 4). The latitude 60 to 70°N had the lowest species richness and ES50, as 
this is the smallest ocean area in this region (about 500,000 km2). Apart from this decrease related to ocean area, 
ES50 was very similar across latitudes (Fig. 4).

Both shallow-water and deep-sea Anthozoa and Chordata had their highest gamma species richness in the 
subtropical areas from 5 to 10°N (Fig. 5). For Mollusca, highest shallow-water species richness was around 5°N 
and from 30 to 40°N in deep sea. Surprisingly, both shallow-water and deep-sea Polychaeta had their highest 
gamma species richness in the Arctic from 70 to 80°N, but not the NW Pacific Ocean. Most of the distribution 
records for higher taxa were observed between latitude 20 to 40°N (SI, Fig. S3). Mollusca, Porifera, and Bryozoa 
were mostly distributed around 10° latitude. Cnidarians, Pisces, and crustaceans had their higher distributions 
from latitude 20 to 30°N.

Environmental variables. For shallow waters, the model using salinity as the sole environmental predictor 
for number of species had the lowest AIC value, followed closely by the model with all environmental predictors 
(deltaAIC of 0.32) (SI, S1). Model selection tables for the response variables are included in SI, S1. Several other 
models were within deltaAIC < 2 from the best model, including models using temperature, productivity, chlo-
rophyll, current, and oxygen saturation. However, with a deltaAIC of only 1.8 between the top model and the one 
containing only spatial autocorrelation, none of these results is particularly strong. Considering ES50 for shallow 
communities yields stronger results; the model with all environmental predictors had the lowest AIC value, with 
a deltaAIC > 25 between it and the model containing only spatial autocorrelation. A model for ES50 in shallow 
waters that contained only the effects of productivity had a deltaAIC of 0.06 when compared to the one with all 
environmental predictors, indicating that much of the predictive power of the environment for determining ES50 
in shallow waters likely comes from the effects of productivity. No other model for ES50 in shallow waters had a 
deltaAIC < 2 when compared to the top model.

In deep waters, both species richness and ES50 per hexagon were correlated with the environmental predic-
tors. For both response variables, the model with the lowest AIC was the one containing all environmental predic-
tors, comparing those models to models with only spatial autocorrelation results in a deltaAIC of 10.0 for number 
of species and 6.7 for ES50. Much of the explanatory power in these models seems to come from a combination of 
salinity, temperature, and dissolved oxygen; additional models with deltaAIC < 2 included salinity and tempera-
ture as predictors for number of species and oxygen as a predictor of ES50. The difference in deviance explained 
by all models containing environmental predictors compared to models containing only spatial autocorrelation 
is not large. However, this does not indicate that these predictors are not important; many of the predictors show 
substantial spatial autocorrelation, and as such the effects of the two-dimensional smoother fit to latitude and 
longitude may tend to assume some of the predictive power of the environmental predictors.

Figure 4. Gamma species richness (number of species per 5° latitudinal band), average ES50 ± SE, average sea 
surface (SST) and bottom (BT) temperatures (104 ± SE), and ocean area against 5° latitudinal bands.
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Much of the deviance in ES50 and species richness across 5° latitudinal bands was explained by sampling 
effort (number of records), but model selection nevertheless shows significant effects of the environmental pre-
dictors in some cases (SI, S2 and Fig. S4). Model selection tables for the response variables are included in SI, S2. 
Salinity was the best predictor of number of species in shallow water, but the intercept-only model was within 0.42 
deltaAIC of the top model for ES50 in shallow water, indicating little explanatory power of the environment. In 
deep-water communities the story is similarly ambiguous when looking over 5° latitudinal bands; current was the 
top predictor of species counts in deep waters, while nitrate was the top predictor of ES50. We do caution that the 
severely reduced sample size and lack of explicit spatial autocorrelation terms in these models likely makes these 
results less reliable than those for individual hexagons.

Depth. From a total number of 324,916 species distribution records, 83% were from shallower than 500 m: 
0–50 m = 48,809; 50–100 m = 10,869; 100–200 m = 10,670; 200–500 m = 23,538; and for > 500 m there were 
22,104 records (7%). All the species were divided into four groups including shallow water and deep-sea pelagic 

Figure 5. Total number of species (Gamma species richness) against latitude for five selected taxa.
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and shallow water and deep-sea benthic species. A total number of 352,969 distribution records (the number 
of records here are higher than stated before because some species were grouped in both pelagic and benthic, 
or/and shallow water and deep sea categories) of four groups were mapped (SI, Fig. S1). About half of all the 
records (174,182 records) belonged to shallow-water pelagic species and only ~3% (12,176 records) were classi-
fied as deep-sea pelagic species. About 21% (73,282 records) and 26% of (93,329 records) the records belonged 
to shallow-water and deep-sea benthic species, respectively. The total number of records per hexagon per 100 m 
depth intervals was highest from 0 to 500 m among all depths, and then decreased sharply with depth (Fig. 6).

In the deep sea, sampling effort generally decreased with depth in 100 m depth intervals with the exception of 
two peaks around 2,000 and 4,000 m. Average ES50, alpha, and gamma species richness per hexagon decreased 
with depth (100 m depth intervals) and had the highest values from 0 to 2,000 m (Fig. 6).

Discussion
There were eight times less data available for the deep sea than coastal depths in our study area. Nevertheless, the 
data still showed a decline in species richness with depth when adjusted for sampling effort (ES50). Similarly, near 
coast areas had greater richness as ES50 than offshore areas (Fig. 2).

The most species rich area in the world ocean is the Coral Triangle, which includes the Philippine Sea (lati-
tudes from ~5 to 35°N)7,30,51,52. This is the most species-rich region for bivalves8,37,38,40,53, bony fish54,55, sharks56, 
crustaceans57, ascidians58, anemones and corals52,59, benthic marine algae60, endemic fish61 and other marine 
organisms62. Our data support these findings. We found that the Philippine Sea around Bohol Island (10.05°N, 
124°E) had the highest alpha species richness of both the shallow and deep NW Pacific. This area is where the 
Philippine Sea has its highest number of islands and is a meeting point for the species rich Sulu, South China, 
and Celebes Seas. Even when corrected for sampling effort, this area and Luzon Island (16.14°N, 122.40°E) had 
the highest expected species richness in shallow water and deep sea, respectively. However, specific taxa might 
show different diversity patterns. For example, Ophiuroidea species richness in continental shelf to upper-slope 
areas peaks at tropical Indo-west Pacific and Caribbean (0–30°) latitudes, following the water temperature22. In 
contrast, deep-sea ophiuroid species show maximum richness at higher latitudes (30–50°), in regions close to 
continental margins where carbon export flux is high22.

Many coral reef groups reach their greatest diversity in the Coral Triangle. In addition to higher coral reef 
diversity in this area30,63, there are more reasons why the Coral Triangle is so species rich. Being tropical it has 
not suffered from glaciation driven extinctions. The tropics have higher rates of potential speciation due to warm 
temperatures increasing mutation rates and decreasing generation times (see Costello and Chaudhary 2017 for a 
recent review). Warmer sea surface temperatures, high productivity, and habitat availability and heterogeneity are 
likely important factors responsible for high tropical shallow species richness6,8,39,64. Our richest spots for species 
were in the Philippine Sea with a mean SST from 24 to 28 °C and ~20 °C in winter6,8,64. The NW Pacific is relatively 
rich in nutrients from land and rainfall, enabling high productivity, large population sizes, and intra-specific 
competition that can drive speciation. The many islands and deep-sea areas create a diversity of bathymetric and 

Figure 6. The relationship of sampling effort (total number of records), alpha species richness (average number 
of species), gamma species richness (total number of species), and average ES50 per hexagon per 100 depth 
intervals. The solid lines show the logarithmic trends.
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oceanographic conditions to which species can evolve to adapt, and past fluctuations in sea level will have isolated 
populations in coastal areas that have subsequently become reconnected. In addition to present and past environ-
mental conditions, this region serves as a meeting point for the biota of Asia and Australia, and the Indian and 
Pacific Oceans, including species that may have evolved in Australia as part of Gondwanaland30,65. Although the 
area has never been glaciated, it was definitely affected by Quaternary sea level cycles which could create a diver-
sity pump mechanism, as a result of the relationship between Pleistocene sea level changes and the complex geog-
raphy of the area, or as a result of accumulation, reflecting the exceptional environmental features of the region30.

While looking at our data set in isolation, one may consider that the lower richness at the equator (0 to 5°N) 
was an artefact of sampling bias. However, a recent review has shown that marine species richness does decrease 
at the equator, where the highest sea temperatures occur, across almost all taxa11. Thus the dip in richness may 
be due to thermal stress above an annual average SST of 28 °C. For example, bivalve larvae (e.g., Mytilopsis leu-
cophaeata) have higher embryo and larval mortality in temperatures above 28 °C8,66,67, and annual average sea 
surface temperature was above 28 °C (29 to 30 °C) at the equatorial western Pacific from 1870 to 200568.

Considering the best model fit, both hexagon-based and 5° latitudinal band models showed that ES50 was the 
better estimate of species richness in both shallow and deep sea. We also concluded that the best model explaining 
species richness in the shallow and deep sea was when all the environmental factors were considered rather than 
single variables. In other words, no single variable explained the pattern in species richness for either hexagons 
or latitudinal bands. Alpha diversity (species richness per hexagon), and gamma diversity (species richness per 
5° latitudinal band), showed different regression levels and outcomes in the model outputs. However, the high 
spatial heterogeneity (hexagons) resulted in poor correlations between species richness and environmental con-
ditions. While clearer correlation trend lines were found when data were aggregated into 5° latitudinal bands, the 
reduced sample size limited the statistical outcome of the results.

Sampling effort and bias are important factors to consider in interpreting species richness patterns. Indeed, 
studies on global latitudinal species richness gradients showed that alpha, and to a lesser extent gamma, species 
richness patterns were affected by sampling effort8,11. Our comparison of alpha, gamma, and ES50 (to account 
for sampling bias) showed that all measures still peaked between 5 to 10°N in both shallow and deep sea (Fig. 3). 
However, ES50 also showed high values in the Arctic Ocean, not indicated by alpha and gamma species richness. 
Average ES50, alpha, and gamma species richness decreased with depth below the lower continental slope in the 
study area, but ES50 richness trend was not decreased as sharp as alpha and gamma species richness (Fig. 6). 
Some bathymetrical peaks of species richness in the Arctic and lower-slope have been well documented by other 
studies20,69,70.

We found that the NW Pacific conforms to the recent global findings of species declining with latitude and 
depth, such that most species occur in tropical coastal depths7. Furthermore, the dip in richness observed by 
Chaudhary et al. (2016, 2017) is also present from 0–5° latitude. By calculating alpha, gamma, and ES50 against 
latitude and depth, we showed that using different diversity indices may influence perceived patterns of species 
richness over large spatial scales.

Data Availability
The dataset will be available upon the request.
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