PECKIANA

14 · 2021

Die Edaphobase-Länderstudien

Synökologische Untersuchungen von Bodenorganismen in einem Biotop- und Standortgradienten in Deutschland 2014–2018

Andreas Toschki, Ulrich Burkhardt, Henning Haase, Hubert Höfer, Stephan Jänsch, Johanna Oellers, Jörg Römbke, Martina Roß-Nickoll, Jörg-Alfred Salamon, Rüdiger M. Schmelz, Björn Scholz-Starke und David Russell

PECKIANA

Herausgeber/Publisher

Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany Institute: Senckenberg Museum für Naturkunde Görlitz, Germany

Chefredakteur/Editor-in-Chief

Willi Xylandeı

Senckenberg Museum für Naturkunde Görlitz — PF 300 154, 02806 Görlitz, Germany

Email: Willi.Xylander@senckenberg.de

Verantwortlicher Redakteur des Bandes/Editor of this volume

Andreas Toschki, gaiac - Forschungsinstitut für Ökosystemanalyse und -bewertung, Germany

Titelbild/Frontcover

Fotocollage aus Bildquellen des gaiac - Forschungsinstitut für Ökosystemanalyse und -bewertung

Layout

Jacqueline Gitschmann, Senckenberg Museum für Naturkunde Görlitz, Germany

Herstellung/Production

Eigenverlag Senckenberg Museum für Naturkunde Görlitz

Druck/Print

Printed by Gustav Winter Druckerei und Verlagsgesellschaft mbH, Herrnhut, Germany. Printed on environmentally friendly paper.

Vertrieb/Distribution

Senckenberg Museum für Naturkunde Görlitz — Library, PF 300 154, 02806 Görlitz, Germany Email: library-gr@senckenberg.de

Bestellhinweise/Subscription Information

Die 'Peckiana' ist zu beziehen über ein Bestellformular (www.senckenberg.de/peckiana), bitte ausgefüllt per E-mail oder Post an die Bibliothek zurück senden. Für weitere Informationen über Zahlung und Versand wenden Sie sich bitte direkt an die Bibliothek oder nutzen Sie unsere Website.

To buy PECKIANA please fill out the orderform (www.senckenberg.de/peckiana) and send it back to us either per e-mail or by post (printed and signed) to our library. For information concerning purchase and payment, please contact the responsible librarian in Görlitz or see the website.

Website

www.senckenberg.de/peckiana

© Senckenberg Museum of Natural History Görlitz · 2021

Alle Rechte vorbehalten. Die Verfasser sind für den Inhalt ihrer Abhandlungen allein verantwortlich.

All rights reserved. The scientific content of a paper is the sole responsibility of the author(s).

Editum

07.10.2021

ISSN

1618-1735 (Print) 2511-1000 (Online)

Member of the Leibniz Association

PECKIANA

14 · 2021

Die Edaphobase-Länderstudien

Synökologische Untersuchungen von Bodenorganismen in einem Biotop- und Standortgradienten in Deutschland 2014–2018

Andreas Toschki, Ulrich Burkhardt, Henning Haase, Hubert Höfer, Stephan Jänsch, Johanna Oellers, Jörg Römbke, Martina Roß-Nickoll, Jörg-Alfred Salamon, Rüdiger M. Schmelz, Björn Scholz-Starke und David Russell

Inhalt

Inhalt

2	Einl	eitung
3	Kon	zeption und Ziele der Länderstudien
	3.1	Theoretischer Hintergrund
		3.1.1 Grundlagen der Bewertung der biologischen Bodenqualität
		3.1.2 Klassifikation von Standorten
		3.1.3 Ableitung von Referenzwerten für Bodenlebensgemeinschaften
		3.1.4 Die Edaphobase-Länderstudien
	3.2	Auswahl und Vorstellung der Bodenorganismengruppen
		3.2.1 Kriterien der Auswahl
		3.2.2 Oribatida (Hornmilben)
		3.2.3 Collembola (Springschwänze)
		3.2.4 Diplopoda (Doppelfüßer) und Chilopoda (Hundertfüßer)
		3.2.5 Lumbricidae (Regenwürmer)
		3.2.6 Enchytraeidae (Kleinringelwürmer)
		3.2.7 Artenzahlen der ausgewählten Tiergruppen
4	Mat	erial und Methoden
	4.1	Probenahme-Design und generelle Durchführung
	4.2	Habitatparameter
		4.2.1 Trockenrückstand und Wassergehalt
		4.2.2 Trennung in die Grob- und Feinfraktion des Bodens
		4.2.3 Messung des pH-Werts
		4.2.4 Gesamt-Kohlenstoff, Gesamt-Stickstoff und C/N-Verhältnis
		4.2.5 Anorganisches Karbonat
		4.2.6 Bodentextur
		4.2.7 Ellenbergzahlen
	4.3	Vegetationsaufnahmen
	4.4	Erfassung und Determination der Bodenorganismen
		4.4.1 Oribatida und Collembola
		4.4.2 Myriapoda
		4.4.3 Lumbricidae
		4.4.4 Enchytraeidae
		Auswertungsmethodik

ii Inhalt

5		Landerstudie im Nationalpark Eifel: "Bodenokologische Untersuchung vor htenforsten, Buchen- und Eichenwaldbeständen"	n 21
		Problemstellung und Zielsetzung der Länderstudie im Nationalpark Eifel	21
		Untersuchungsgebiet	21
		5.2.1 Geografische Lage	21
		5.2.2 Klima	21
		5.2.3 Untersuchungsflächen	25
	5.3	Ergebnisse zur Standortcharakterisierung	25
		5.3.1 Bodenkundliche Angaben	25
		5.3.2 Vegetationskundliche Aufnahmen	25
	5.4	Ergebnisse und Diskussion der einzelnen Bodentiergruppen	37
		5.4.1 Oribatida	37
		5.4.2 Collembola	48
		5.4.3 Diplopoda	55
		5.4.4 Chilopoda	62
		5.4.5 Lumbricidae	69
		5.4.6 Enchytraeidae	77
	5.5	Taxonübergreifende Charakterisierung der Lebensgemeinschaften der	
		einzelnen Biotoptypen	85
	5.6	Auswertung der Fragestellungen und Empfehlungen für den	
		Nationalpark Eifel	89
6	D:-	Ländenstudie in Cookeen. Dedenälesleniseks Untersuckung von	
0		Länderstudie in Sachsen: "Bodenökologische Untersuchung von fern- und Buchenwäldernsowie Sandäckern"	90
		Problemstellung und Zielsetzung der Länderstudie im Land Sachsen	90
		Untersuchungsgebiet	91
		6.2.1 Geografische Lage	91
		6.2.2 Klima	91
		6.2.3 Untersuchungsflächen	91
	6.3	Ergebnisse zur Standortcharakterisierung	99
		6.3.1 Bodenkundliche Angaben	99
		6.3.2 Vegetationskundliche Aufnahmen	100
	6.4	Ergebnisse und Diskussion der einzelnen Bodentiergruppen	104
		6.4.1 Oribatida	104
		6.4.2 Collembola	115
		6.4.3 Diplopoda	124
		6.4.4 Chilopoda	129
		6.4.5 Lumbricidae	136
		6.4.6 Enchytraeidae	145

	6.5	laxonubergreifende Charakterisierung der Lebensgemeinschaften der einzelnen Biotoptypen	155
	6.6	Auswertung der Fragestellungen des LfULG	158
7	Die	Länderstudie im Freistaat Bayern: "Bodenökologische	
	Unt	tersuchung von Acker- und Graslandstandorten"	159
	7.1	Problemstellung und Ziele der Länderstudie im Freistaat Bayern	159
	7.2	Untersuchungsgebiet	161
		7.2.1 Geografische Lage	161
		7.2.2 Klima	161
		7.2.3 Untersuchungsflächen	163
	7.3	Ergebnisse zur Standortcharakterisierung	163
		7.3.1 Bodenkundliche Angaben	163
		7.3.2 Vegetationskundliche Aufnahme	168
	7.4	Ergebnisse und Diskussion der einzelnen Bodentiergruppen	170
		7.4.1 Oribatida	170
		7.4.2 Collembola	176
		7.4.3 Diplopoda	182
		7.4.4 Chilopoda	188
		7.4.5 Lumbricidae	193
		7.4.6 Enchytraeidae	202
	7.5	Taxonübergreifende Charakterisierung der Lebensgemeinschaften der	
		einzelnen Biotoptypen	212
	7.6	Auswertung der Fragestellungen und Empfehlungen für den Freistaat Bayern	213
		7.6.1 Wie beeinflussen Bodeneigenschaften die Bodenbiodiversität?	213
		7.6.2 Wie beeinflussen Bewirtschaftungsmaßnahmen die Bodenbiodiversität?	213
		7.6.3 Gibt es eine bodenbiologische Beurteilungsgrundlage für	
		landwirtschaftliche Böden?	213
		7.6.4 Können Bodentiere als Indikatoren für agrarökologische	
		Fragestellungen identifiziert werden?	
		7.6.5 Empfehlungen zum weiteren Vorgehen	215
8	Die	Länderstudie in Sachsen-Anhalt: "Bodenökologische Untersuchung	
	ver	schiedener extensiver FFH-Grünlandtypen (Borstgrasrasen, Goldhaferwies	en,
		senreiche Halbtrockenrasen)"	216
	8.1	Problemstellung und Zielsetzung der Fallstudie in ausgewählten	
		FFH-Lebensraumtypen in Sachsen-Anhalt	216
	8.2	Untersuchungsgebiet	217
		8.2.1 Geografische Lage	217

iv Inhalt

		8.2.2 Klima	217
		8.2.3 Untersuchungsflächen	218
	8.3	Ergebnisse zur Standortcharakterisierung	224
		8.3.1 Bodenkundliche Angaben	224
		8.3.2 Vegetationskundliche Aufnahme (Forschungsinstitut gaiac)	226
	8.4	Ergebnisse und Diskussion der einzelnen Bodentiergruppen	232
		8.4.1 Oribatida	232
		8.4.2 Collembola	240
		8.4.3 Diplopoda	250
		8.4.4 Chilopoda	255
		8.4.5 Lumbricidae	261
		8.4.6 Enchytraeidae	268
	8.5	Taxonübergreifende Charakterisierung der Lebensgemeinschaften der	
		einzelnen Biotoptypen	279
	8.6	Auswertung der Fragestellungen in Bezug auf die ausgewählten	
		FFH-Lebensraumtypen in Sachsen Anhalt	282
9	Abs	schlussdiskussion	284
10	Zus	ammenfassung	288
11	Dar	nksagung	288
12	Lite	ratur	289
12	۸ ـــ ا		303
13		Aphana Casantartarlistan	303
		Anhang Gesamtartenlisten	310
		2 Anhang NP Eifel	327
		Anhang Sachsen.	
		Anhang Bayern5 Anhang Sachsen-Anhalt	342 352
	1.5 5) AHHANG SACHSEN-AHHAN	いころ

PECKIANA 14 · Juli 2021

pp. 1–367

Die Edaphobase-Länderstudien

Synökologische Untersuchungen von Bodenorganismen in einem Biotop- und Standortgradienten in Deutschland 2014–2018

Andreas Toschki^{1,*}, Ulrich Burkhardt², Henning Haase³, Hubert Höfer⁴, Stephan Jänsch⁵, Johanna Oellers^{1,*}, Jörg Römbke⁵, Martina Roß-Nickoll⁶, Jörg-Alfred Salamon⁸, Rüdiger M. Schmelz^{5,7}, Björn Scholz-Starke^{6,9} und David Russell²

- ¹ gaiac Forschungsinstitut für Ökosystemanalyse und -bewertung e. V., Kackertstr. 10, 52072 Aachen, Germany
- ² Senckenberg Museum für Naturkunde Görlitz, Am Museum 1, 02826 Görlitz, Germany
- ³ Naturforschende Gesellschaft der Oberlausitz e. V., Sonnenstraße 19, 02826 Görlitz, Germany
- ⁴ Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstr. 13, 76133 Karlsruhe, Germany
- ⁵ ECT Oekotoxikologie GmbH, Böttgerstraße 2-14, 65439 Flörsheim am Main, Germany
- ⁶ Institut für Umweltforschung, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Universidad de A Coruña, Fac. Ciencias. GIBE, Grupo de Investigación en Biología Evolutiva. CICA, Centro de Investigaciones Científicas Avanzadas. As Carballeiras s/n. Campus de Elviña. 15071 A Coruña, Spain
- Institute of Ecology and Evolution & Field Station Schapen, University of Veterinary Medicine Hannover, Bünteweg 17d, 30559 Hannover, Germany
- ⁹ darwin statistics, Von-Broich-Strasse 23, 52072 Aachen, Germany
- * Corrensponding authors: toschki@gaiac-eco.de, oellers@gaiac-eco.de

unter Mitarbeit von: Jonas Hausen[†], Franz Horak, Stephan Lesch, Svenja Luther, Susanne Miller, Richard Ottermanns, Florian Raub, Sebastian Rick, Adam Scheffczyk, Nadine Willius, Carmen Zien

DOI 10.34750/peck14-2021

Received 26 Februar 2020 Published 7 Oktober 2021

Abstract

The ecological-taxonomic information system 'Edaphobase' was developed in a first phase (2009-2013) as a publically available data warehouse for soil zoological data. In a second project phase (2013-2018), the aim was to review the database with regard to its applicability in applied soil-biodiversity (e.g. monitoring) studies and to further develop the database and its data linkages in line with data and assessment requirements. A central aspect of this was the Edaphobase nationwide field monitoring, the results of which are presented in this publication and in which the application of Edaphobase for concrete nature conservation issues of various state authorities was tested, e.g. for assessing – from a biodiversity viewpoint the quality and conservation status of soil. For this purpose, data for different soil animal groups (Oribatida, Collembola, Chilopoda, Diplopoda, Lumbricidae, Enchytraeidae) were collected in the four federal states of North Rhine-Westphalia, Saxony-Anhalt, Saxony and Bavaria; in parallel, data on the vegetation and various other site (in particular, soil) parameters were recorded. In each region, three different habitat types were selected in order to cover as broad a spectrum of habitat types as possible. Two habitat gradients (acidic and base-rich) were investigated, and the habitat types ranged from seminatural vegetation (e.g. semi-natural forest sites), grassland vegetation (Narduus grassland, calcareous semi-dry grassland) to third-order substitute communities (arable land). Sampling was carried out according to standardised methods for specific animal groups in 2014 (North Rhine-Westphalia, Saxony) and 2015 (Bavaria, Saxony-Anhalt). The collected data were analysed synecologically, statistically and with the help of Edaphobase in regard to previously formulated questions of the

state authorities. The results show that the occurrence and distribution of soil animals form recurring patterns that depend on the habitat type and the site conditions. The typical (= recurring) species compositions were characterised and presented in the form of reference profiles. It could be shown that soil animal groups are suitable for site characterisation and evaluation of anthropogenic influences. Furthermore, the data of the Edaphobase nationwide field monitoring expanded the Edaphobase database for the various animal groups and for many habitat types, some of which are relevant for nature conservation. The study, which was coordinated by the Research Institute for Ecosystem Analysis and Assessment, gaiac (Aachen), was carried out in close cooperation with the following partners: Senckenberg Museum for Natural History Görlitz, ECT Oekotoxikologie GmbH (Flörsheim a. M.), State Museum for Natural History Karlsruhe, Institute for Biology, Institute for Environmental Research (Biology V) of the RWTH Aachen University, Dr. Jörg-Alfred Salamon and Naturforschende Gesellschaft der Oberlausitz e.V.

Keywords Biodiversität | Bodenzoologie | Biotoptypen | Naturschutz | Synökologie

2 Einleitung

Das Edaphon als Gesamtheit der im Boden lebenden Organismen besteht aus Bodenflora und Bodenfauna. Die Bodenflora setzt sich maßgeblich aus Pilzen, Algen, Flechten und Bakterien zusammen. Zur Bodenfauna gehören zahlreiche einzellige bis mehrzellige Tiergruppen, die sich unterschiedlichen Größenklassen (Durchmesser) zuordnen lassen:

- Mikrofauna (< 0,2 mm): z. B. Protista, Rotatoria, Nematoda
- Mesofauna (0,2–2 mm): z. B. Acari, Collembola, Enchytraeidae
- Makrofauna (> 2–20 mm): z. B. Lumbricidae, Isopoda, Gastropoda, Insecta, Myriapoda
- Megafauna (> 20 mm): Wirbeltiere (u. a. Maulwurf, Wühlmaus)

Die größte Zahl der Bodenorganismen besiedelt die luft- und wassergefüllten obersten Bodenschichten, die durch Humus und Streuauflage gekennzeichnet sind. Bodentiere haben einen wesentlichen Anteil (5-10%) an den Um- und Abbauprozessen der organischen Substanz im Boden (Petersen & Luxton 1982). Durch die Zerkleinerung und Umsetzung des abgestorbenen organischen Materials machen sie dieses der weiteren Mineralisierung und Humifizierung durch Bodenmikroorganismen zugänglich. Damit haben sie einen entscheidenden Einfluss auf die Stoffströme (z. B. Nährstoffkreislauf, CO₂-Fixierung) im Boden und somit auch auf die Bodenfruchtbarkeit (De Vries et al. 2016). Zugleich sind Bodenorganismen erheblich an weiteren ökosystemaren Dienstleistungen wie der Aufrechterhaltung der Bodenstruktur, dem Schutz des Grundwassers oder der Detoxifizierung belasteter Böden beteiligt (Bardgett & Van der Putten 2014). Diese Prozesse und Funktionen werden durch ein Netzwerk verschiedenster Organismen mehrerer

trophischer Ebenen gewährleistet (Turbé et al. 2010, Wurst et al. 2012). Zugleich tragen sie als wichtiger Teil des Nahrungsnetzes zum Erhalt der Diversität höherer Organismen (Säuger, Vögel etc.) (Lee 1985) bei. Der nachhaltige Schutz des Bodens und seiner natürlichen Funktionen sollte somit auch durch die Kenntnis und die Erhaltung der strukturellen und funktionalen Diversität der Bodenorganismen (Bodenlebensgemeinschaft = Bodenbiozönose) gewährleistet werden (Römbke et al. 2016).

Die Zusammensetzung der Bodenlebensgemeinschaft an einem gegebenen Standort ist abhängig von zahlreichen biotischen und abiotischen Faktoren. Sie wird einerseits durch die Pflanzen (Vegetationstyp) und somit von der Kultivierungsform und Historie der menschlichen Bewirtschaftung bestimmt, andererseits ist sie abhängig von Umweltfaktoren, vor allem den Bodeneigenschaften (z. B. pH-Wert, Feuchte, Bodenart, Bodentyp oder Nährstoffgehalt) sowie der Nahrungsqualität (z. B. Nadelstreu, Laubstreu). Darüber hinaus spielen sowohl biologische Faktoren (u. a. Fraßdruck, Konkurrenz) als auch anthropogene Faktoren (z. B. Kontaminationen oder Bodenverdichtung) standortspezifisch eine Rolle (vgl. Lee 1985, van Straalen 1997). Es ist bekannt, dass die Biozönose des Bodens in hohem Maße durch äußere Störungen beeinträchtigt bzw. gefährdet werden kann (EU 2006a, EU 2006b, Toschki 2008, Gardi et al. 2013). Dennoch ist das Wissen um die ökologische Verteilung einzelner Arten auf spezifischen Standorttypen sowie deren Funktionen innerhalb der jeweiligen Bodenbiozönosen sehr rudimentär. Das liegt zum einen an der geringen Größe vieler Bodenorganismen und zum anderen an der Komplexität der Beziehungsgefüge zwischen den vielen Arten in einem Bodenökosystem. Bislang existieren nur sehr wenige systematische, ökologische und raumbezogene Untersuchungen zu Bodenorganismen. Dieses Defizit wurde in den letzten Jahren sowohl auf europäischer (z. B. durch die Vorhaben

ENVASSO (Bispo et al. 2009) und EcoFINDERS (Lemanceau et al. 2015)) als auch deutscher (z. B. durch das Umweltbundesamt: Ross-Nickoll et al. 2004, Römbke et al. 2012) Ebene angegangen, so dass sich die Kenntnisse hinsichtlich der Diversität und Verbreitung von Bodenorganismen deutlich verbessert haben, was sich u. a. im "European Atlas of Soil Biodiversity" niedergeschlagen hat (Jeffrev et al. 2010).

Besonders ist in diesem Zusammenhang die durch das Bundesministerium für Bildung und Forschung (BMBF) geförderte Initiative zur Entwicklung der Datenbank Edaphobase (EB: www.edaphobase.org) hervorzuheben (Burkhardt et al. 2014), die Daten und Informationen zu Vorkommen und Ökologie von Bodentieren aus Literatur, Projektberichten sowie Sammlungen zusammenführt und der interessierten Öffentlichkeit zur Verfügung stellt. Sie wurde in einer ersten Projektphase (2009-2013) entwickelt, um u.a. bereits existierende Sammlungsdatenbanken zu verknüpfen. In einer zweiten Projektphase (2013-2018) wurde Edaphobase auch für die Darstellung ökologischer Datensätze weiterentwickelt. Ziel dieses Projekts war es, Informationen zu Bodentieren zentral zu sammeln und für weitere Untersuchungen zur Verfügung zu stellen. Dies bezog sich zum Einen auf Art und Umfang der Datenerhebung (d. h. Artname, Fundort, Funddatum, sonstige Metadaten), aber auch auf die Weiterentwicklung von Methoden und Standards, die aus den Erfahrungen bisheriger Untersuchungen abgeleitet werden können. Bestandteil dieser zweiten Projektphase waren auch die Länderstudien mit dem Ziel, die Anwendbarkeit von Datenbanken wie Edaphobase für naturschutzfachliche Fragestellungen verschiedener Behörden z. B. zu Qualität und Ökologie terrestrischer Lebensgemeinschaften, dem Erhaltungszustand des Bodens oder anthropogenen Stressoren zu testen.

3 Konzeption und Ziele der Länderstudien

3.1 Theoretischer Hintergrund

3.1.1 Grundlagen der Bewertung der biologischen Bodenqualität

Bisher gibt es in Europa nur wenige rechtliche Empfehlungen zum Schutz der Bodenorganismen oder ihrer Diversität (Römbke et al. 2016). Zwar wird im § 2 des deutschen Bundesbodenschutzgesetzes (BBodSchG 1998) darauf hingewiesen, dass die natürlichen Funktionen des Bodens, d. h. auch seine Funktion als Lebensgrundlage und Lebensraum für Menschen, Tiere, Pflanzen und Bodenorganismen, zu schützen sind, doch fehlen genauere Vorgaben zur Umsetzung. Zudem wird

in der Nationalen Biodiversitätsstrategie (BMU 2011) der Lebensraum Boden kaum berücksichtigt. Ebenso ist das Schutzgut Boden in der europäischen Fauna-Flora-Habitat-Richtlinie (FFH-Richtlinie, EU 1992) nur indirekt über die Lebensräume abgedeckt, konkrete Benennungen der Bodenlebewesen fehlen. Auf der Ebene der Europäischen Union lassen sich in einzelnen Richtlinien, z. B. zur Pflanzenschutzmittelregistrierung (EC 2009), Hinweise darauf finden, dass die Biodiversität von Organismen (inklusive der im Boden lebenden) ein Schutzziel der EU ist und dass dieses Schutzziel zwei Komponenten enthält: Den Schutz der Struktur (z. B. die Artenzusammensetzung)sowieden Schutzder Funktionen (u. a. die Leistung beim Abbau organischen Materials) von Organismengemeinschaften. Im politischen Kontext hat die Relevanz des Schutzes der Bodenbiodiversität in den letzten Jahren zugenommen, da sich die von Organismen erbrachten Leistungen inzwischen sowohl quantifizieren als auch (finanziell) bewerten lassen (Rutgers et al. 2010, Turbé 2010, Brussaard 2012). Die Kenntnis typischer Bodenlebensgemeinschaften bzw. auch deren genaue ökologische Verteilung in bestimmten Lebensräumen (Biotopen) als Grundlage einer notwendigen Referenzwertbildung ist jedoch stark defizitär.

3.1.2 Klassifikation von Standorten

Das Vorkommen von Arten und insbesondere von Artengemeinschaften richtet sich nicht ausschließlich nach einem standortspezifischen Faktor, sondern hängt von endogenen und exogenen Faktorenkomplexen (beruhend auf Umweltvariablen und biotischen Interaktionen wie z. B. Konkurrenz) ab, die für Bodenorganismen meist nicht bekannt sind. Zudem ist es nicht leicht, das räumliche Vorkommen von Bodenorganismengemeinschaften in der Landschaft zu bestimmen. Daher werden schon seit einigen Jahren integrative Ansätze zur Beurteilung von Arten und Artengemeinschaften in der Landschaft gefordert und entwickelt (vgl. Lennartz & Roß-Nickoll 1999, Lennartz 2003, Roß-Nickoll et al. 2004, Toschki 2008, Dauber et al. 2016). Als räumlich abgrenzbare Bezugssysteme wurden beispielsweise der Biotoptypenansatz nach Riecken et al. (2003) oder, auf europäischer Ebene, die EUNIS-Habitatklassifikation (2016) entwickelt. Diese hierarchisch organisierten Biotoptypen wurden primär anhand der Landnutzung, der Vegetation sowie der Bodeneigenschaften definiert, doch wurde vor kurzem vorgeschlagen, sie auch für die Klassifikation von Bodenorganismengemeinschaften zu verwenden. Hierzu wurden in einem Projekt des Umweltbundesamts (Römbke et al. 2012) bodenzoologische Datensätze

systematisch erfasst und alle erfassten Standorte, soweit 3.1.3 Standortangaben dazu vorlagen, einem Biotoptyp nach Riecken et al. (2003) zugeordnet. Die meisten Standorte konnten dabei nur einem Basistyp zugeordnet werden, und somit ist bisher auf der Grundlage der vorliegenden Daten eine Auswertung nur für vier Basistypen möglich: 1) Äcker und Ackerbrachen (Biotoptyp-Nummer 33), 2) Trockenrasen sowie Grünland trockener bis frischer Standorte (kurz: Grasland) (Nr. 34), 3) Laub(Misch)wälder und -forste (Nr. 43) und 4) Nadel(Misch)wälder und -forste (Nr. 44). In der Standard-Biotoptypenliste für Deutschland sind jedoch insgesamt 44 Basistypen (1. Ebene) mit ca. 1000 Untertypen aufgeführt. Hiervon können 21 Basistypen für Fragen zur Bodenbiodiversität als relevant eingestuft werden (Toschki et al. 2015). Die bisher vorliegenden Daten zur Verteilung von Bodenorganismen sind in die Datenbank Edaphobase eingegangen, so dass diese Informationen als grobe Bewertungsgrundlage dienen können. Um eine genauere Kenntnis der Verteilung von Bodenorganismen in verschiedenen Lebensräumen zu erhalten, wurde u. a. das vorliegende Projekt, eingebunden in weitere Länderstudien, durchgeführt. Dabei liegt der Schwerpunkt der Arbeiten in der Ermittlung von Verteilungsmustern in Abhängigkeit vom Lebensraum. Dazu wurden edaphische (z. B. pH-Wert, C_{org}) und ökologisch-soziologische Kriterien (u. a. Interaktion mit anderen Tierarten und der Vegetation) sowie weitergehende Landschaftsmerkmale wie beispielsweise die Höhenstufe mit einbezogen, die auch über den Rahmen der Standard-Biotoptypen hinausreichen.

3.1.3 Ableitung von Referenzwerten für Bodenlebensgemeinschaften

Die an einem Standort festgestellte Diversität oder Leistung von Bodenorganismen (d. h. der Ist-Zustand) sagt, für sich allein genommen, nichts über den ökologischen Zustand der jeweiligen Bodenorganismengemeinschaft aus (Römbke et al. 2013). Dazu muss vorab ein Beurteilungsmaßstab (d. h. ein Referenzsystem, aus dem Soll-Werte abgeleitet werden können) für die jeweilige Organismengruppe und den verwendeten Messparameter (z. B. Abundanz, Artenzahl oder Artenzusammensetzung) festgelegt werden, um eine bestimmte Beobachtung als positiv oder negativ beurteilen zu können. Es ist also notwendig, solche Referenzen, z. B. im Sinne eines "guten ökologischen Zustands", zu definieren, da nur so eine Abweichung erkannt und bewertet werden kann (Toschki 2008, Rutgers et al. 2010).

In Analogie zu ähnlichen Ansätzen in der Vegetationskunde (vgl. Dierschke 1994) und für aquatische Systeme, wie z. B. der EU-Wasserrahmenrichtlinie (u. a. Wright et al. 2000), kann ein Referenzsystem für Bodenorganismen am besten mittels der Erfassung der Diversität und Struktur auf möglichst vielen Standorten mit möglichst gleichen Eigenschaften (d. h. eines Biotoptyps) erarbeitet werden, wobei eindeutig gestörte Flächen zu vermeiden sind (Ruf et al. 2013). Innerhalb solcher Reihenuntersuchungen kann dann eine qualitative Beurteilung von Arten und Artengruppen hinsichtlich ihres Status in der Lebensgemeinschaft stattfinden und somit die Struktur der Lebensgemeinschaft beschrieben werden (vgl. Abb. 1).

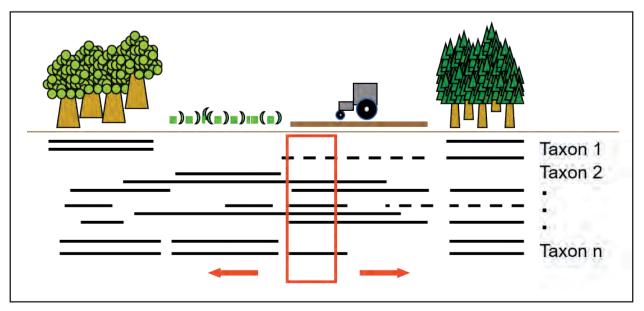


Abb. 1: Schematische Darstellung der biotoptypspezifischen Biodiversität (charakteristische Artenverbindung) basierend auf der Präsenz und Absenz verschiedener Taxa.

Zur praktischen bodenökologischen Bewertung müssen zudem auf der Basis der erhobenen Daten verschiedene Erhaltungszustände sowie eine Schwelle definiert werden, ab der eine Störung als erhebliche bzw. nicht annehmbare Beeinträchtigung gelten muss (vgl. Abb. 2). Das heißt, ein Referenzsystem zum Umgang mit der standortbezogenen Diversität von Bodenorganismen besteht einerseits aus Daten zu denjenigen Arten, die an einem Standort mit spezifischen Bedingungen (Klima, Bodenfaktoren, Region usw.) auftreten sollten und andererseits aus einer Vorstellung, wann eine Abweichung von der Erwartung als negativ zu bewerten ist (Jänsch et al. 2013, Römbke et al. 2013).

3.1.4 Die Edaphobase-Länderstudien

Im Rahmen der zweiten Phase (2013-2018) des Edaphobase-Datenbankprojekts wurden die deutschlandweiten Länderstudien durchgeführt. Ziele der Untersuchungen waren,

- die Prüfung bzw. Weiterentwicklung der Nutzbarkeit der Datenbank für ein bodenbiologisches Monitoring,
- die Bearbeitung konkreter naturschutzfachlicher Fragestellungen dreier Länderbehörden sowie des Nationalparks Eifel,
- die Erstellung eines umfassenden bodenbiologischen Datensatzes zur weiteren Befüllung von Datenlücken in Edaphobase sowie zur Nutzung für die Referenzwertbildung von Bodentier-Lebensgemeinschaften.

Hierzu wurde mit vier verschiedenen Landesbehörden kooperiert, die zu Beginn des Projekts konkrete naturschutzfachliche Fragestellungen formuliert und im weiteren Verlauf die Untersuchungen unterstützt und begleitet haben:

- das Nationalparkforstamt Eifel (Nordrhein-Westfalen),
- die Bayerische Landesanstalt für Landwirtschaft,
- das Sächsische Landesamt für Umwelt, Landwirtschaft und Geologie,
- das Landesamt für Umweltschutz Sachsen-Anhalt.

In den vier Bundesländern (Bayern, Sachsen, Sachsen-Anhalt und Nordrhein-Westfalen, siehe Tab. 1) wurde jeweils eine in sich schlüssige Länderstudie durchgeführt, in der die Fragestellung der entsprechenden Behörde bearbeitet wurde. Dabei wurden jeweils drei Biotoptypen hinsichtlich ihrer Lebensgemeinschaften verschiedener Bodentiergruppen (Collembola, Oribatida, Diplopoda, Chilopoda, Lumbricidae, Enchytraeidae) untersucht, darüber hinaus erfolgte die Aufnahme und Auswertung verschiedener Bodenparameter (z. B. Bodenart, Bodentyp, pH-Wert) sowie der Vegetation. Um ein möglichst breites Biotoptypenspektrum abzudecken, wurden zwei Standortgradienten(sauerundbasenreich)vonnaturnaher Vegetation bis zu Ersatzgesellschaften dritter Ordnung untersucht (Abb. 3). Die standardisierten Probenahmen bzw. die einheitliche Methodik ermöglichten es, die Artenspektren in den verschiedenen Biotoptypen sowohl innerhalb der einzelnen Länderstudien als auch überregional zu vergleichen und die Tierdaten mit den Umweltparametern sowie der Vegetation in Beziehung

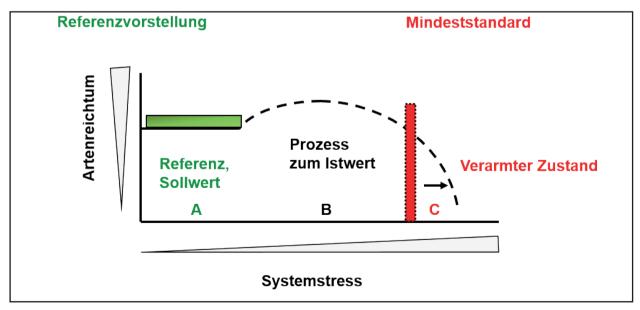


Abb. 2: Ableitung von Schwellenwerten von Referenzzuständen: A, B und C entsprechen verschiedenen Erhaltungszuständen in Bezug auf den Systemstress bzw. eine schädliche Bodenveränderung (z. B. FFH-Gesetzgebung (EU 1992) bzw. BBodSchG 1998).

zu setzen. Die in diesen Studien erhobenen Daten sowie weitere Informationen zu den untersuchten Flächen wurden in den fertiggestellten Länderstudien-Gutachten ausgewertet und können zudem online auf dem Edaphobase-Portal eingesehen und heruntergeladen werden (vgl. Burkhardt et al. 2014, Haase et al. 2018, Salamon et al. 2018, Schmelz et al. 2018, Toschki et al. 2018, Edaphobase 2018).

Die umfangreichen Untersuchungen wurden in der Projektlaufzeit von 2014 bis 2018 in enger Kooperation verschiedener Projektpartner durchgeführt, die jeweils für verschiedene Aufgabenbereiche verantwortlich waren:

- Forschungsinstitut gaiac, Aachen: Koordination des Länderstudienprojekts, Durchführung der Länderstudie im Nationalpark Eifel, Bearbeitung der Oribatida sowie der Vegetation
- ECT Oekotoxikologie GmbH, Flörsheim: Bearbeitung der Lumbricidae und Enchytraeidae sowie der Länderstudie in Bayern
- Dr. Jörg-Alfred Salamon, Hannover: Bearbeitung der Collembola und der Länderstudie in Sachsen-Anhalt

Tab. 1: Untersuchte Biotoptypen und deren Zuordnung zu den Untersuchungsgebieten bzw. Bundesländern; Angabe des Biotoptypen-Codes nach Riecken et al. (2003).

	Biotoptyp	Code
	Intensivgrünland	34.08.01.01
Bayern	Löss-Acker	33.04.03
	Kalk-Acker	33.01.01
	Fichtenforst (basenarm)	44.04.01.02
NP Eifel	Buchenwald (basenarm)	43.07.04.03
	Eichenwald (basenarm, trocken)	43.08.05.01
	Kiefernwald (basenreich, trocken)	44.02.03.02
Sachsen	Laubwald (basenreich)	43.07.05.02
	Sand-Acker	33.03.03/33.03.02
	Borstgrasrasen	34.06.01.02.02
Sachsen- Anhalt	Goldhaferwiese	34.07.02.02
	Halbtrockenrasen	34.02.01.02.02

Standortgradienten Anthropogener Einfluss <u>basenreich</u> sauer Laubwald Laubwald Naturnahe Vegetation - Buche (mittl. Feuchte) Laubwald (mittl. Feuchte) - Eiche (trocken, warm) Nadelwald Ersatzgesellschaft 1. Ord. - Fichte (mittl. Feuchte) Kiefer (trocken) **Borstgrasrasen** <u>Halbtrockenrasen</u> Wirtschaftsgrünland Wirtschaftsgrünland Ersatzgesellschaft 2. Ord. Bergwiese (mesophil) Intensiv bewirtsch. Grünland (mittl. Feuchte) <u>Acker</u> <u>Acker</u> Ersatzgesellschaft 3. Ord. Sand-Acker Kalk-Acker Löss-Acker

Abb. 3: Standortgradienten (sauer - basenreich) und Biotoptypen, die in den Edaphobase-Länderstudien untersucht wurden.

- Henning Haase, Naturforschende Gesellschaft der Oberlausitz (NfGOL), Görlitz: Bearbeitung der Chilopoda und Diplopoda sowie der Länderstudie in Sachsen
- Institut für Umweltforschung, RWTH Aachen: Statistische Auswertungen
- Staatliches Museum f
 ür Naturkunde, Karlsruhe (SMNK): Koordination Datenfluss
- Senckenberg Museum für Naturkunde Görlitz (SMNG): Bodenkunde

Die vorliegende Veröffentlichung enthält die Fragestellungen und Ergebnisse der vier Länderstudien (Nationalpark Eifel, Sachsen, Bayern, Sachsen-Anhalt), Informationen zur Vorgehensweise und standardisierten Methodik sowie eine Betrachtung und Diskussion der Gesamtergebnisse.

3.2 Auswahl und Vorstellung der Bodenorganismengruppen

3.2.1 Kriterien der Auswahl

Die Boden-Biozönose ist durch das Auftreten hoher Arten- und Individuenzahlen, vor allem wirbelloser gekennzeichnet. Organismengruppen, Untersuchung war es daher notwendig, vorab eine geeignete Auswahl an Tiergruppen zu treffen, wobei auf Vorschläge aus der Literatur zurückgegriffen werden konnte (Bispo et al. 2009, Pulleman et al. 2012, Faber et al. 2013, VDI 2014). Dabei wurde beachtet, dass die Lebensweise der ausgewählten Tiergruppe eng an den Boden bzw. die Teilkompartimente Streuschicht oder Mineralboden gebunden Um ein möglichst breites Spektrum verschiedener Bodenlebewesen zu berücksichtigen, sollten Tiergruppen

verschiedener Größenklassen (Mikro-, Meso-, Makrofauna) erfasst werden. Im Einzelnen wurden die folgenden Auswahlkriterien verwendet:

- Ökologische Relevanz: Wie wichtig (qualitativ und quantitativ) sind die von der jeweiligen Gruppe ausgeübten Funktionen und Leistungen?
- Informationswert: Existieren Zeigerarten zur ökologischen Differenzierung verschiedener Lebensraumtypen?
- Biogeographische Verbreitung: Kommt die jeweilige Gruppe in Deutschland häufig vor?
- Ausreichende Diversität: Ist die Gruppe artenreich bzw. funktional divers?
- Praktikabilität: Sind Bestimmungsschlüssel und standardisierte Fangmethoden verfügbar?

Nicht zuletzt musste sichergestellt werden, dass die Bearbeitung der betreffenden Organismengruppe durch Projekt-Mitarbeiter abgedeckt werden konnte. Auf der Grundlage dieser Kriterien wurden sechs Invertebratengruppen ausgewählt (**Tab. 2**).

Diese Gruppen sowie deren jeweilige Bearbeitung werden im folgenden Kapitel genauer vorgestellt. An dieser Stelle sei allerdings darauf hingewiesen, dass für eine umfassende biologische Charakterisierung nicht nur Invertebraten, sondern auch mikrobielle bzw. funktionale Endpunkte herangezogen werden können (z. B. Griffiths et al. 2006, Faber et al. 2013).

3.2.2 Oribatida (Hornmilben)

Die Hornmilben (Oribatida, **Abb. 4**) sind taxonomisch in die Klasse der Spinnentiere (Arachnida) einzuordnen und gehören damit dem artenreichsten Stamm der Gliederfüßer (Arthropoda) an. Oribatiden kommen

Tab. 2: In den Länderstudien bearbeitete Tiergruppen und Parameter, die zur Auswahl als geeignete Organismengruppen beitrugen (vgl. VDI 2014). mi: mikrophytophag, ma: makrophytophag, zo: zoophag; Kenntnisstand zu Taxonomie, Biologie, Häufigkeit und Verbreitung: 1: gering, 2: mittel, 3: hoch.

Organismengruppe	Ernährungstyp	Größenklasse	Kenntnisstand
Mikroarthropoda			
Oribatida	(ma), mi	Mesofauna	2
Collembola	mi	Mesofauna	3
Myriapoda			
Diplopoda	ma	Makrofauna	2
Chilopoda	ZO	Makrofauna	2
Oligochaeta			
Lumbricidae	ma	Makrofauna	3
Enchytraeidae	(ma), mi	Mesofauna	1

weltweit und individuenreich in unterschiedlichen terrestrischen und auch limnischen Habitaten vor. So sind sie z. B. an Waldstandorten, in Hecken und Gebüschen, aber auch in der Agrarlandschaft, auf Wiesen und auf Weiden zahlreich anzutreffen (Knülle 1957, Weigmann 1973, Weigmann & Kratz 1981, Behan-Pelletier 1999, Maraun et al. 2007). Mit einer Körpergröße zwischen ca. 0,15 und 2 mm (vgl. Weigmann 2006) zählen Hornmilben zur Boden-Mesofauna (VDI 2014).

Informationen zu Taxonomie, Biologie, Häufigkeit und Verbreitung der Oribatiden sind in mittlerem Maße verfügbar (vgl. **Tab. 2**). Im Vergleich zu vielen anderen Bodenorganismengruppen ist der Kenntnisstand zu den Hornmilben jedoch als hoch einzustufen. Die Abhängigkeit des Auftretens der verschiedenen Oribatiden-Arten von Standortparametern (z. B. pH-Wert, Feuchte, anthropogene Beeinflussung) wurde bereits in verschiedenen Untersuchungen nachgewiesen und dokumentiert (Knülle 1957, Moritz 1963, Weigmann 1973, 1984, 1997, Siepel & van de Bund 1988, Römbke et al. 1997, van Straalen 1997).

Zur Erfassung der Hornmilben existieren bereits Standardmethoden. Hier ist an erster Stelle die Entnahme von Bodenkernen mit Stechzylindern (ISO 2006c) zu nennen, der sich die standardisierte Extraktion (mittels Berlese- oder Macfadyen-Apparatur) anschließt. Die mit diesem Verfahren ermittelten Individuenzahlen können auf eine definierte Fläche oder ein bestimmtes Volumen hochgerechnet werden.

Die Hornmilbenarten lassen sich insgesamt drei verschiedenen Ernährungstypen zuordnen: Es gibt makrophytophage/xylophage, mikrophytophage und panphytophage Arten. Diese drei Haupttypen lassen sich wiederum in verschiedene Untertypen unterteilen (Schuster 1956, 1960, Luxton 1972, Römbke et al. 1997). Obgleich auch einige wenige zoophage Arten vorkommen, nehmen die Oribatiden hauptsächlich die wichtige Funktion des Abbaus organischer Substanz im Boden wahr. Sie leisten einen wichtigen Beitrag zur Mineralisation organischer Substanz, indem sie durch Fraß von Mikroorganismen und Pilzen und die Zerkleinerung der Streu auf die Umsetzungsprozesse und die Durchmischung des Bodens einwirken (Weigmann 1993, Römbke et al. 1997, Behan-Pelletier 1999).

3.2.3 Collembola (Springschwänze)

Die Springschwänze (Collembola, siehe **Abb. 5**) werden derzeit als eine eigene Klasse innerhalb der Gruppe der Hexapoda angesehen und stehen damit auf einer taxonomischen Ebene mit den Insekten (Deharveng 2004). Collembolen besiedeln fast alle Lebensraumtypen

Abb. 4: Eniochthonius minutissimus (Oribatida) (Foto: A. Toschki).

und kommen von Meeresküsten, Oberflächen von Süßgewässern, Agrarflächen, Wäldern, Grünland bis hin zu alpinen Habitaten in häufig großen Individuenzahlen vor (Fjellberg 1998, Hopkin 2007). Ihre durchschnittliche Individuendichte liegt, je nach Habitattyp, bei 10.000 bis 70.000 Individuen pro m² (Petersen & Luxton 1982). Die Ernährungsweise der Springschwänze ist weit gefächert, sie ernähren sich z. T. saprophag (Scheu & Falca 2000, Lavelle & Spain 2005) oder weiden Bakterien- und Algenbeläge sowie Pilzrasen ab (VDI 2014).

Die Springschwänze lassen sich in drei verschiedene Lebensformen unterteilen: Die epedaphischen Arten besiedeln die Bodenoberfläche und sind z. B. durch eine ausgeprägte Pigmentierung, lange Körperanhänge und Sehvermögen an das Leben an der Bodenoberfläche angepasst. Die euedaphischen Arten besiedeln die luftgefüllten Poren des Streuhorizonts sowie des Mineralbodens und sind gering pigmentiert, häufig blind und ihre Körperanhänge sind teilweise reduziert. Die hemiedaphischen Arten leben in den obersten Grenzhorizonten des Bodens und stehen morphologisch zwischen den beiden anderen Lebensformen (Hopkin 1997, VDI 2014). Wie auch die Oribatiden gehören die Collembolen mit einer Körpergröße von etwa 0,5 bis 9 mm (Dunger 1983, Hopkin 2007) zur Boden-Mesofauna.

In den meisten Böden, mit Ausnahme sehr spezieller Habitattypen, dominieren Arten mit Habitatbindung (Wolters 2001). Allerdings liefert die Betrachtung der Artenzusammensetzung in Verbindung mit den Dominanzverhältnissen der unterschiedlichen eine gute bioindikatorische Information. Insbesondere die euedaphischen Arten mit ihrer geringen Mobilität und engen Bindung an den Boden liefern die größte Aussagekraft zu räumlichen sowie zeitlichen Veränderungen des Bodens (vgl. van Straalen 1997, Filser et al. 2008, VDI 2014).

3.2.4 Diplopoda (Doppelfüßer) und Chilopoda (Hundertfüßer)

Die Myriapoda (Tausendfüßer, siehe **Abb. 6**, **7**) gelten als eine Untergruppe der Gliederfüßer (Arthropoda), deren genaue systematische Stellung nicht abschließend geklärt ist. Zu ihnen gehören, neben den Pauropoda (Wenigfüßer) und den Symphyla (Zwergfüßer), die Chilopoda (Hundertfüßer) und die Diplopoda (Doppelfüßer) (Rosenberg 2009), die in der Edaphobase-Länderstudie erfasst wurden.

Die Gruppe der Chilopoda (Hundertfüßer, Abb. 7) unterteilt sich in verschiedene Lebensformen, wie z. B.

Abb. 5: Orchesella sp. (Foto: H. Höfer).

Abb. 6: Diplopoda: Ommatoiulus sabulosus (Foto: U. Burkhardt).

in die epigäischen Steinläuferartigen (Lithobiomorpha) und die eher endogäisch lebenden Erdläuferartigen (Geophilomorpha) (Brohmer 1988), die sich hinsichtlich ihrer Biologie deutlich unterscheiden. So besiedeln die Lithobiomorpha hauptsächlich die oberen Bodenhorizonte und sind unter Rinden und Steinen oder in der Laubstreu zu finden. Die Erdläufer dagegen sind an das Leben in tieferen Bodenschichten angepasst, wo sie die Gangsystemebesiedeln. Gemeinsamist den verschiedenen Lebensformen ihre räuberische Lebensweise, d. h. sie ernähren sich vorwiegend von kleineren Tieren, wie z. B. verschiedenen Larven, Würmern oder Insekten. Mit einer Körpergröße von etwa 10-100 mm gehören die Chilopoden zur Boden-Makrofauna (Decker et al. 2009, Rosenberg 2009, Voigtländer 2009a, b).

Obgleich der Kenntnistand zur Autökologie, Synökologie und Zoogeografie der Chilopoden als gut einzustufen ist, müssen die Informationen hierzu häufig aus vielen Einzelpublikationen zusammengetragen werden (Zapparoli 2003, Spelda 2005, Voigtländer 2005, 2009a, b, VDI 2014).

Die Diplopoden (Doppelfüßer, **Abb. 6**) dagegen spielen eine wichtige Rolle in der Streuzersetzung. Als Primärzersetzer leben sie von organischem Bestandsabfall, den sie zerkleinern und so der weiteren Zersetzung und Mineralisation durch Mikroorganismen zugänglich machen. In Habitaten, in denen keine Regenwürmer vorkommen, können sie den Streuabbau nahezu vollständig übernehmen (Decker et al. 2009, VDI 2014).

Doppelfüßer leben epigäisch in den verschiedensten Lebensräumen, wie z. B. in der Laubstreu, im Totholz oder unter der Borke von Bäumen, sie kommen jedoch ebenso, wenn auch in geringerer Artenzahl, auf Äckern oder Wiesen vor. Wie die Chilopoden gehören die Diplopoden zur Boden-Makrofauna. Zur Zoogeografie sowie zur Syn- bzw. Autökologie dieser Tiergruppe liegen gute Kenntnisse vor (Spelda 1991, Kime 2000, 2004, Decker et al. 2009, Hauser & Voigtländer 2009, VDI 2014).

Abb. 7: Chilopoda: Lithobius austriacus (Foto: SMNG).

3.2.5 Lumbricidae (Regenwürmer)

Die Familie der Lumbricidae (Regenwürmer, Abb. 8) ist taxonomisch der Klasse der Oligochaeta (Wenigborster) innerhalb des Stammes der Annelida (Ringelwürmer) zuzuordnen. Die in Deutschland auftretenden Regenwurmarten lassen sich mit Standard-Bestimmungsliteratur (Graff 1953, Bouché 1972, Sims & Gerard 1999, Blakemore 2002) bestimmen. Neuere Arbeiten zur genetischen Charakterisierung von Lumbriciden deuten aber auf eine hohe kryptische Diversität hin (z. B. King et al. 2008), wobei es bisher nur in einem Fall – auch auf der Grundlage morphologischer Unterschiede - zu einer Änderung des Artstatus kam (Trennung von Lumbricus terrestris und Lumbricus herculeus (James et al. 2010).

Der Kenntnisstand zu den in Deutschland nachgewiesenen Arten ist als gut zu bewerten, da zu den Regenwürmern viele Daten zur Syn- und Autökologie, zur Zoogeografie und auch zur Ökotoxikologie vorliegen (Lee 1985, Briones et al. 1995, Edwards & Bohlen 1997, Edwards 1998, Jänsch et al. 2005). Durch die Kombination der Handauslese in Verbindung mit einer chemischen Austreibung (früher Formaldehyd, mittlerweile wird eher Allyl-Isothiocyanat (AITC) verwendet) lassen sich die Lumbriciden standardisiert erfassen (ISO 2006b).

Aufgrund ihrer Länge von bis zu 30 cm (der endemisch im Südschwarzwald auftretende Lumbricus badensis wird bis zu 60 cm lang) zählen die Regenwürmer zur Makrofauna des Bodens (Sims & Gerard 1999, VDI 2014). Sie gelten als wichtige Bodenorganismen, die je nach Art und deren Lebensweise an der Zerkleinerung bzw. dem Abbau des organischen Materials beteiligt sind, den Boden durchmischen und durch die Bildung von Ton-Humus-Komplexen die Wasserhaltekapazität des Bodens verbessern (Petersen & Luxton 1982, Lavelle et al. 1997, Edwards & Shipitalo 1998). Innerhalb der Regenwürmer lassen sich grundsätzlich verschiedene Lebensweisen unterscheiden: Die epigäisch lebenden Streuschichtbewohner, die endogäisch lebenden Mineralschichtbewohner und die anözischen Tiefgräber (z. B. Lumbricus terrestris) (Bouché 1977, Sims & Gerard 1999, VDI 2014).

Im Rahmen des holländischen BISQ-Projekts wurde festgestellt, dass Regenwürmer an den dort untersuchten 170 landwirtschaftlichen Standorten neben den Enchytraeiden dominierten (Mulder et al. 2011). Als Entscheidungskriterium wurde dabei ihr jeweiliger Beitrag zur Erfüllung von 16 ökosystemaren Leistungen (Erhalt der Bodenstruktur, Einfluss auf den Wasserhaushalt usw.) verwendet. Insbesondere konnte in den letzten Jahren ihre positive Wirkung auf das

Pflanzenwachstum belegt werden (van Groenigen et al. 2014). Allerdings werden die als positiv angesehenen Funktionen meist nur von wenigen Arten erfüllt, speziell den anözischen Tiefgräbern (Lavelle et al. 1997). Regenwurmarten treten in der Landschaft mit stark schwankenden Individuenzahlen auf. Aufgrund der Bodenbearbeitung sowie des Einsatzes von Düngern und Pestiziden kommen allerdings an Agrarstandorten normalerweise nur wenige Arten vor (Hendrix 1998). Auch in sauren Böden werden nur wenige Arten, meistens Streuschichtbewohner, gefunden. Generell lassen sie sich jedoch zur Bioindikation nutzen (Paoletti 1999, Schouten et al. 1999, Barth et al. 2000, Didden 2003, Ruf et al. 2003, Jänsch et al. 2005, Römbke et al. 2005). Die wesentlichen Umweltfaktoren für die Verteilung dieser Organismengruppe sind neben der Bodenbearbeitung der pH-Wert, die Bodenart und -feuchte sowie der Nährstoffgehalt (Satchell 1983, Lavelle et al. 1997).

3.2.6 Enchytraeidae (Kleinringelwürmer)

Wie die Lumbricidae gehören die Enchytraeidae (Kleinringelwürmer, Abb. 9) zur Ordnung der Oligochaeta und zum Stamm der Annelida. Erste Arbeiten zur molekularen Phylogenie dieser Familie liegen vor (Christensen & Glenner 2010, Erseus et al. 2010). Es deutet sich an, dass die Zahl der beschriebenen Arten stark zunehmen wird, z. T. mit erheblichen Auswirkungen auf deren Systematik (Martinsson & Erseus 2014, Martinsson et al. 2014). Die Enchytraeidae werden mit einigen wenigen bodenlebenden Arten anderer Taxa der Annelida (terrestrische Polychaeten, Tubificiden) zu den Kleinringelwürmern zusammengefasst. Die Aufsammlung dieser Tiergruppe erfolgt mittels Standardmethode (ISO 2007), die bei fast

Abb. 8: L. terrestris, A. caliginosa, E. andrei (Foto: J. Römbke).

allen neueren Arbeiten angewandt wird. Dabei werden mit einem Stechrohr Bodenproben entnommen und ggf. in mehrere Tiefenstufen aufgeteilt. Aus den Proben werden die Tiere per Nassextraktion ausgetrieben und anschließend lebend gezählt und zur Art bestimmt.

Kleinringelwürmer gehören mit einem Körperdurchmesser von etwa 0,1-1 mm und einer Körperlänge von etwa 2 bis über 18 mm zur Mesofauna (Schmelz & Collado 2010). Kleinringelwürmer ernähren sich sapromikrophytophag, d. h. sie leben von toter organischer Substanz und den diese besiedelnden Bakterien und Pilzen. Auf diese Weise tragen sie zur Streuzersetzung sowie durch die Grabtätigkeit der größeren Arten auch - in geringerem Maße als die Regenwürmer zur Gefügebildung und Durchmischung des Bodens bei (Didden 1990). Im Rahmen des holländischen BISQ-Projekts wurde festgestellt, dass sie an den dort untersuchten 170 Standorten neben den Regenwürmern hinsichtlich des Beitrags zu den 16 erfassten ökosystemaren Leistungen (speziell für die Steuerung von Nährstoffkreisläufen sowie der Erosionskontrolle) dominierten (Mulder et al. 2011).

Kenntnisse zur Autökologie der in Deutschland vorkommenden Arten sind in Form von Zeigerwerten für Bodenreaktion (pH) und -feuchte gut dokumentiert (Graefe & Schmelz 1999), synökologische Informationen sind jedoch lückenhaft (z. B. Didden 2003). Aufgrund der Auswirkungen der Bodenbearbeitung sowie des Einsatzes von Düngern und Pestiziden sind Arten- und Individuenzahlen der Enchytraeiden in Ackerflächen geringer als im Grünland.

Referenzwertvorschläge für Arten- und Individuenzahlen für unterschiedliche Standortbedingungen liegen für die Niederlande und Norddeutschland vor (Rutgers et al. 2008, Beylich & Graefe 2009). Mit etwa 5-25 Arten je Standort ist die Artenzahl für Indikationszwecke ausreichend hoch, aber nicht unübersichtlich groß. Die Enchytraeiden werden in einer Reihe von Monitoringprogrammen bzw. Beurteilungsansätzen eingesetzt oder empfohlen (vgl. Schouten et al. 1999, Barth et al. 2000, Jänsch et al. 2005, Bispo et al. 2009).

Abb. 9: Exemplar der Gattung Enchytronia sp. (Foto: ECT).

3.2.7 Artenzahlen der ausgewählten Tiergruppen

Bisher wurden in Deutschland etwa 520 Oribatiden-Arten nachgewiesen (Weigmann 2006), die Schätzungen der Artenvielfalt in Mitteleuropa belaufen sich auf ca. 1.000 Taxa (Römbke et al. 1997, vgl. Tab. 3). Ungefähr die gleiche Anzahl an Collembolen-Arten ist aus Deutschland bekannt (derzeit 520 Arten, vgl. http:// portal.edaphobase.org/, Stand: 18.09.2020, wobei bisher weltweit etwa 9.000 Collembolen-Arten beschrieben wurden (Bellinger et al. 1996-2019, Deharveng 2004) und ständig neue Arten dokumentiert werden (z. B. Benito & Palacios-Vargas 2007, Mateos 2012). Mit deutschlandweit ca. 210 bis 240 nachgewiesenen Arten sind Hundert- und Doppelfüßer im Vergleich zu anderen Arthropoden-Gruppen artenarm (Decker et al. 2009), wobei mehr als zweimal so viele Doppel- wie Hundertfüßer auftreten. Weltweit sind über 3.000 (in Mitteleuropa mehr als 500) Chilopoden- und etwa 12.000 (Europa: 1.500) Diplopoden-Arten bekannt (Rosenberg 2009, VDI 2014). Bei den über die Literatur abgeleitenen Artenzahlen der beiden Myriapodengruppen handelt es sich um die in Deutschland etablierten Arten. Edaphobase dagegen listet auch Gewächshausarten bzw. eingeschleppte tropische Vertreter auf, die in Häfen

Tab. 3: Artenzahlen für Deutschland der in diesem Vorhaben erfassten Bodentiergruppen laut Literatur (Weigmann 2006, Römbke et al. 2013, Lehmitz et al. 2014, Decker et al. 2016, Reip et al. 2016) bzw. nach dem aktuellen (= 20.06.2018) Stand von Edaphobase.

Tiergruppe	Artenzahl nach Literatur	Artenzahl nach Edaphobase
Chilopoda	66	76
Collembola	513	520
Diplopoda	140	162
Enchytraeidae	127	123
Lumbricidae	48	49
Oribatida	520	516

o. ä. gefunden wurden. Außerdem sind in Edaphobase auch "Nomina dubia" aufgeführt, also sehr alte Funde, deren Artnamen keinem geltenden Taxon zugeordnet werden können, so dass die Artenzahlen in Edaphobase die der Literatur übersteigen. Weltweit wurden bisher etwa 6.000 Regenwurm-Arten beschrieben, wovon ca. 670 in Mitteleuropa (Blakemore 2008) und 48 Arten in Deutschland vorkommen (Lehmitz et al. 2014). Die Zahl der beschriebenen und akzeptierten Enchytraeiden-Arten liegt weltweit bei ca. 710 (Schmelz & Collado 2015). In Europa sind derzeit ca. 220 (Schmelz & Collado 2010) und in Deutschland aktuell etwa 127 (Römbke et al. 2013) Arten bekannt. Nach jetzigem Stand wurden praktisch alle in Deutschland nachgewiesenen Oligochaetenarten in Edaphobase erfasst, eine Quote, die weitgehend auch für die Collembolen und Oribatiden gilt.

4 Material und Methoden 4.1 Probenahme-Design und generelle Durchführung

In den vier Untersuchungsgebieten (Bayern, Sachsen, Sachsen-Anhalt, Nationalpark Eifel) wurden jeweils drei für die Fragestellung relevante Biotoptypen ausgewählt (siehe **Tab. 1**), von denen jeweils drei möglichst homogene Bestände als Replikate untersucht wurden. Hierzu wurde innerhalb jedes Replikats eine Untersuchungsfläche mit einer Größe von 20 m x 20 m

markiert. Dieser Kernfläche wurden einerseits für die Bodenanalyse und andererseits für die Erfassung der Collembolen, Oribatiden, Enchytraeiden, Chilopoden und Diplopoden Proben entnommen bzw. Fallen gestellt. Außerdem erfolgte hier die Vegetationsaufnahme. Um diese Kernfläche herum wurde eine Fläche mit einer Kantenlänge von 50 m x 50 m markiert, innerhalb derer die Lumbriciden beprobt wurden (siehe Abb. 10). Durch diese Anordnung ist der räumliche (gleiche Örtlichkeit) sowie ökologische (gleiche Vegetationseinheit) Bezug von Standortfaktoren, Vegetationsaufnahmen und faunistischen Erhebungen gewährleistet und kann für nachfolgende Analysen genutzt werden.

Die Probenahmen der unterschiedlichen Tiergruppen im Nationalpark Eifel und in Sachsen erfolgten im Jahr 2014, die in Bayern und Sachsen-Anhalt im Jahr 2015. Dabei wurde jeweils eine erste im Frühjahr und eine zweite im Herbst durchgeführt, die Vegetation wurde jeweils einmalig im Frühjahr aufgenommen. Die genauen Probenahmetemine der Bodentiere sind **Tab. 4** zu entnehmen.

4.2 Habitatparameter

Für die Bestimmung der Bodenvariablen wurden die Bodenkerne der Mesofauna-Proben nach der Extraktion verwendet (vgl. Kap. 4.4). Die Messung der Bodenfeuchte, des Gesamtkohlenstoffs, des Gesamtstickstoffs und des pH-Werts erfolgte aus insgesamt 20 Bodenkernen,

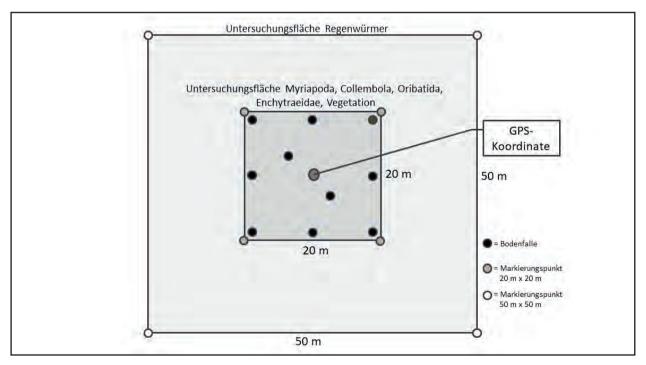


Abb. 10: Probenahmedesign der vier Länderstudien.

Dadautianamuna	NP Eifel		Sac	Sachsen	
Bodentiergruppe	Frühjahr	Herbst	Frühjahr	Herbst	
Collembola/Oribatida	5/7/2014	10/7/2014	20.05.2014 (außer SN34: 24.06.2014, SN24: 9/17/2014 19.05.2015)		
Enchytraeidae 5/7/2014 0607.10.2014		0607.10.2014	04.06.2014 (außer SN34: 24.06.2014, SN24: 19.05.2015)	9/17/2014	
Myriapoda	23.0404.06.2014	07.1005.11.2014	7.1005.11.2014 16.0428.05.2014 (SN1, SN22, SN23) 28.05 09.07.2014 (SN31, SN32) 24.0905.11.2014 15.0427.05.2015 (SN24) SN2) 10.1019.11 27.0508.07.2015 (SN34)		
Lumbricidae	5/7/2014	0708.10.2014	04.06.2014 (außer SN34: 24.06.2014, SN24: 19.05.2015)	9/17/2014	
	Bayern		Sachsen-Anhalt		
Bodentiergruppe	Frühjahr	Herbst	Frühjahr	Herbst	
Collembola/Oribatida	1722.04.2015	1015.09.2015	5/19/2015	10/13/2015	
Enchytraeidae	0510.05.2015	1821.10.2015	6/3/2015	9/29/2015	
Myriapoda	22.0420.05.2015	29.0927.10.2015	06.0517.06.2015	17.0928.10.2015	
Lumbricidae	0510.05.2015	1821.10.2015	6/3/2015	9/29/2015	

Tab. 4: Erfassungszeiten der verschiedenen Tiergruppen in den vier Länderstudien (NP Eifel, Sachsen, Bayern, Sachsen-Anhalt).

das heißt den Bodenproben sowohl der Frühjahrs- als auch der Herbst-Probenahme der Mikroarthropoden jeder Untersuchungsfläche. Korngrößenverteilung und Karbonatgehalt der neun Untersuchungsflächen wurden in den jeweils 10 Bodenkernen der Frühjahrs-Probenahme ermittelt. Die Messungen erfolgten nach den in **Tab. 5** dargestellten verschiedenen ISO-Richtlinien.

4.2.1 Trockenrückstand und Wassergehalt

Der Trockenrückstand bzw. Wassergehalt des Bodens errechnet sich aus dem Gewicht vor und nach der Trocknung der Bodenproben (ISO 1993). Abweichend zur ISO-Richtlinie erfolgte das Abwiegen der Bodenproben vor und nach der Austreibung der Bodentiere im Macfadyen-Extraktor. Hierbei wurden die Proben über einen Zeitraum von 10 Tagen von einer Temperatur von 20 °C auf 55 °C erwärmt, so dass eine vollständige Trocknung des Bodens erreicht wurde.

4.2.2 Trennung in die Grob- und Feinfraktion des Bodens

Zur Trennung der Grob- und Feinfraktion des Bodens (ISO 2006a) kam ein Analysesieb (Maschenweite: 2 mm) zum Einsatz. Sichtbare pflanzliche Bestandteile und Fremdpartikel wurden entfernt. Der Feinboden

wiederum wurde für die weiteren Analysen in drei Teilmengen getrennt und in verschiedene Probengefäße eingewogen.

4.2.3 Messung des pH-Werts

Zur Bestimmung des pH-Wertes (ISO 2005) wurden 5 ml Feinboden mit 1 mol/l Kaliumchloridlösung versetzt. Nach ausgiebiger Durchmischung und anschließender Ruhephase (60 bis max. 180 min.) wurden die Werte mit Hilfe eines kalibrierten pH-Messgeräts ermittelt.

4.2.4 Gesamt-Kohlenstoff, Gesamt-Stickstoff und C/N-Verhältnis

Vorbereitend wurde der Feinboden mit Hilfe einer Kugelmühle zerkleinert und jeweils 0,5 mg in Zinnschiffchen verpackt. Die Bestimmung des Gesamt-Kohlenstoffs sowie des Gesamt-Stickstoffs nach trockener Verbrennung (Elementaranalyse; ISO 1995b bzw. ISO 1998) erfolgte im Elementaranalysator vario PYRO cube der Firma Elementar Analysensysteme GmbH, Hanau. Sie wurde nach dem Prinzip der katalytischen Rohrverbrennung unter Zufuhr von Sauerstoff und Temperatur in einem geschlossenen System durchgeführt, worin Helium als Trägergas fungierte. Aus den gemessenen Werten konnte anschließend das C/N-Verhältnis berechnet werden.

Tab. 5: Gemessene Variablen mit zugehöriger ISO-Richtlinie.

Parameter	ISO-Richtlinie	Bemerkungen
Trockenrückstand/Wassergehalt	ISO 11465:1993	Trocknung im MacFadyen-Extraktor
Trennung Grob-/Feinfraktion	ISO 11464:2006	Analysesieb, Maschenweite 2 mm
pH-Wert	ISO 10390:2005	mit Kaliumchloridlösung (1 mol/l)
Gesamt-Kohlenstoff	ISO 10694:1995	trockene Verbrennung
Gesamt-Stickstoff	ISO 13878:1998	trockene Verbrennung
C/N-Verhältnis	Berechnung aus Gesamt-Kohlenstoff und Gesamt-Sticks	stoff
Karbonat	ISO 10693:1995	v. a. kalkreiche Standorte
Bodentextur	ISO 11277:2002	Laserbeugung mit vorgeschaltetem Nassmodul

4.2.5 Anorganisches Karbonat

Die Menge des anorganischen Karbonats wurde bestimmt (ISO 1995a) und anschließend wurde der Gesamt-Kohlenstoffgehalt um diesen Betrag vermindert. Die Messung erfolgte mit einem Calcimeter der Firma Eijkelkamp gemäß der Methode nach Scheibler (Barsch et al. 1984). Sie basiert auf einer volumetrischen Methode, wobei die in der Probe vorhandenen Karbonate durch Zugabe von Salzsäure in CO₂ umgewandelt werden. Aufgrund des durch das freigesetzte CO₂ erzeugten Druckes steigt das Wasser in einer entlüfteten Bürette an. Der Unterschied des Wasserstands ist ein Maß für die freigegebene Menge CO₂, woraus der Karbonatgehalt errechnet wird. Er wird als äquivalenter Kalzium-Karbonatanteil in [g/kg] des ofengetrockneten Bodens angegeben.

4.2.6 Bodentextur

Der bodenphysikalische Parameter Bodentextur (ISO 2002) wird zur Klassifizierung der Bodenart sowie z.B. zur Abschätzung des Rückhaltevermögens, der Nährstoffspeicherung, der Filterwirkung und Erodierbarkeit von Böden ermittelt. Nach Vorbehandlung der Probe (Zerstörung der organischen Bestandteile mittels 30 %iger Wasserstoffperoxidlösung und Dispergieren der Konglomerate) wurde der Feinboden zur Analyse der Partikelgröße in ein Laserbeugungsgerät (Beckman Coulter) mit vorgeschaltetem Nassmodul eingesaugt.

4.2.7 Ellenbergzahlen

In Mitteleuropa heimischen Pflanzen wurden für verschiedene Umweltparameter, wie z.B. Feuchte und Temperatur, entsprechend ihrer Standortansprüche Zahlen zwischen 1 und 9 (Feuchte: 1-12) zugeordnet (Ellenberg et al. 1991 aus Dierschke 1994), die wiederum beim

Auftreten dieser Pflanzen als Zeiger für die jeweiligen Standortbedingungen verwendet werden können. Zur weitergehenden Charakterisierung der untersuchten Flächen wurden über die in den Edaphobase-Länderstudien nachgewiesenen Pflanzenarten die Ellenbergzahlen für die Bodenreaktion, den Stickstoffgehalt sowie die Feuchte-, Licht- und Temperaturbedingungen errechnet. Hierzu wurden den gefundenen Pflanzenarten ihre entsprechenden Ellenbergzahlen zugeordnet und aus allen in einer Fläche auftretenden Arten der Median für die Fläche abgeleitet. Eine Gewichtung entsprechend des Deckungsgrads der Pflanzen wurde nicht vorgenommen, um die ökologische Aussagekraft wenig deckender Pflanzen gleichermaßen zu berücksichtigen.

4.3 Vegetationsaufnahmen

Die Erfassung der Vegetation wurde in Aufnahmeflächen der Größe 20 x 20 Meter nach der Methode von Braun-Blanquet (1928, 1964) vorgenommen. Auf jeder Untersuchungsfläche wurde dabei eine Vegetationsaufnahme durchgeführt. Diese erfolgte innerhalb der in Kap. 4.1 (Probenahme-Design) genannten "Kernflächen" der Untersuchungsflächen (20 x 20 m²), innerhalb derer auch die Probenahmen der Mikroarthropoden, Enchytraeiden und Myriapoden stattfanden. Dabei umfassten die Vegetationsaufnahmen an den Waldstandorten das gesamte innere Aufnahmequadrat (20 x 20 m²), an den Offenlandstandorten wurde die Vegetation auf einer Teilfläche von 5 x 5 m² bestimmt.

Die Aufnahmen wurden in jedem Untersuchungsgebiet einmalig durchgeführt:

•	Nationalpark Eifel:	2223.05.2014
•	Sachsen:	1718.06.2014
•	Sachsen-Anhalt:	2223.05.2015
•	Ravern:	20 -22 04 2015

Aufgenommen wurde jeweils der Deckungsgrad aller Pflanzenarten innerhalb des Vegetationsaufnahmequadrats in der Krautschicht und, wenn vorhanden, auch in der Strauch- und Baumschicht. Unter Deckungsgrad ist dabei der Flächenanteil, der bei senkrechtem Sonnenstand von Pflanzenteilen beschattet wird, zu verstehen (Dierschke 1994). Der Deckungsgrad wurde in %-Anteilen, bezogen auf das gesamte Aufnahmequadrat, abgeschätzt, wobei für Arten mit sehr geringer Abundanz innerhalb des Aufnahmequadrats der Wert < 1% angegeben wurde. Die geschätzten prozentualen Deckungsgrade können Deckungsgradspannen zugeordnet werden: +; < 1%; 1: 1-5%; 2: 5-25%; 3: 25-50%; 4: 50-75%; 5: 75-100% (Tüxen & Ellenberg 1937 aus Dierschke 1994). Des Weiteren wurden die Gesamtdeckung der Vegetation innerhalb des Vegetationsaufnahmequadrats und die Wuchshöhe jeder Schicht angegeben. Weitere aufgenommene Parameter sind die Exposition der Untersuchungsfläche und die Hangneigung. Befanden sich auf der Untersuchungsfläche Pflanzenarten, die nicht innerhalb des Vegetationsaufnahmequadrats vorkamen, wurden sie ohne Deckungsgrad der Artenliste hinzugefügt.

Die aufgenommenen Daten wurden pflanzensoziologisch nach Peppler (1992), Pott (1992), Krause & Möseler (1995), Rost (1996), Dierschke (1997), Härdtle et al. (1997), Peppler-Lisbach & Petersen (2001), Schmidt et

Abb. 11, 12: Probennahme mit Bodenstecher sowie Trennung von Streu und Mineralhorizont (Fotos: SMNG).

al. (2002) und Härdtle et al. (2008) ausgewertet, so dass jede Untersuchungsfläche aufgrund ihrer charakteristischen Artenkombination einer Vegetationseinheit zugeordnet werden konnte.

Jede Untersuchungsfläche wurde zudem einem Biotoptyp nach Riecken et al. (2003) sowie einem Habitattyp nach der EUNIS-Habitatklassifikation (2016) zugeordnet.

4.4 Erfassung und Determination der Bodenorganismen

4.4.1 Oribatida und Collembola 4.4.1.1 Erfassung im Freiland

Die Erfassung und Extraktion der Mikroarthropoden (Oribatida und Collembola) erfolgte standardisiert (ISO 2006c) mit Hilfe eines Bodenstechers (siehe **Abb. 11**, **12**). Auf jeder Untersuchungsfläche wurden dabei zweimalig (Frühjahrs- und Herbstprobenahme) jeweils 10 Bodenkerne mit einem Durchmesser von 6,4 (6,6) cm und einer Tiefe von bis zu 10 cm entnommen. Diese wurden mit einem Rasenstecher in zwei Teilproben, bestehend aus dem Ah-Horizont (0-5 cm Tiefe) sowie aus der Streuschicht (ohne L-Horizont, bis zu 5 cm Dicke) unterteilt. Die einzelnen Teilproben wurden in nummerierte verschließbare Kunststoffgefäße verbracht, mit einem Probenetikett versehen und in durch Kälteakkus gekühlten Boxen ins Labor transportiert.

4.4.1.2 Probenaufbereitung

Die Austreibung der Tiere erfolgte nach dem durch Schauermann (1982) modifizierten Verfahren von Macfadyen (1961). Anschließend wurden die extrahierten Tiere in die Gruppen Collembola und Oribatida sortiert und zur weiteren Aufbewahrung in 70 %iges Ethanol überführt.

4.4.1.3 Präparation und Bestimmung der Oribatida

Die Bearbeitung der ausgetriebenen Oribatiden umfasste folgende Arbeitsschritte:

- Sortierung der Oribatiden nach Zugehörigkeit zu taxonomischen Gruppen mit dem Ziel einer Optimierung der Bestimmungstätigkeit.
- 2. Probenteilung bei sehr individuenreichen Gruppen (s. unten, <u>Oppioidea</u>).
- 3. Determination der verschiedenen Arten.

Sortierung der Oribatidenarten nach Zugehörigkeit zu taxonomischen Gruppen

Die Oribatiden wurden in die vier Gruppen Oppioidea. Phthiracaridae. Brachychthoniidae/Juvenile alle "restlichen" Oribatiden aufgeteilt. Wegen ihrer geringen Größe und der geringen Sklerotisierung der Brachychthoniidae wurden diese zunächst mit den Juvenilen in einem gemeinsamen Gefäß gesammelt. Die zu sortierende Probe wurde vollständig in eine Petrischale überführt und bei mindestens 10-20facher Vergrößerung unter dem Binokular nach relevanten Tieren abgesucht. Aufgefundene Tiere wurden mit der Pasteurpipette in ein entsprechend beschriftetes Flachbodengläschen sortiert und mittels eines Handstückzählers gezählt. Die Proben wurden bis zur weiteren Bearbeitung in Aufbewahrungsboxen gelagert und die Gesamtindividuenzahl je Taxon in den entsprechenden Rohdatenblättern vermerkt.

Determination

Brachychthoniidae/Juvenile, Phthiracaridae, "restliche" Oribatiden

Die Gruppen der Phthiracaridae und "restlichen" Oribatiden wurden vollständig bis zur Art bestimmt. Dazu wurden die Tiere aus dem Flachbodenbodengläschen in eine Blockschale überführt und zunächst unter dem Binokular (10-40fache Vergrößerung) determiniert. Unsichere oder nicht unter dem Binokular bestimmbare Individuen wurden mit geeignetem Präparationswerkzeug in einen Hohlschliffobjektträger mit Milchsäure eingebettet und anschließend unter dem Mikroskop (Zeiss Orthoplan, 40-400fache Vergrößerung) bestimmt. Waren die Tiere stark sklerotisiert, wurden sie in der Milchsäure weiter aufgehellt und bis zur späteren Determination in Objektträgermappen mit entsprechender Beschriftung gelagert.

Aus der Gruppe der Brachychthoniidae wurden Stichproben bis zur Art bestimmt. Nicht determinierte Brachychthoniidae sowie juvenile Oribatiden wurden als solche notiert.

Der Bestimmungsvorgang wurde auf Rohdatenblättern dokumentiert. Nach der Determination wurden die Oribatiden wieder zurück in das Probengefäß oder in die Belegsammlung (Verbleib: SMNK) überführt. Die Bestimmung und Nomenklatur richteten sich nach Weigmann (2006) und Weigmann et al. (2015).

Die Bestimmung kritischer Arten wurde durch den Taxon-Spezialisten Franz Horak (SMNK), z. T. anhand von Belegexemplaren aus der SMNK-Sammlung, überprüft.

Oppioidea

Die Gruppe der Oppioidea wurde bei einer Individuenzahl < ca. 120 vollständig bestimmt. Überschritt die Individuenzahl den o. g. Wert, wurde eine Probenteilung durchgeführt. Dazu wurden alle Tiere aus der Probe in eine entsprechende Teilungs-Petrischale überführt. Zur homogenen Verteilung der Tiere wurde diese Petrischale achtförmigen Bewegungen geschwenkt anschließend mit einer Präpariernadel im Zickzackmuster durchstreift. Anschließend wurden Trennschieber eingesetzt, die eine Halbierung oder Viertelung der Probe ermöglichten. Die jeweilige Oribatiden-Teilprobe wurde entnommen und in eine Blockschale überführt. Der Volumenanteil der Teilprobe (z. B. 25 %, 50 %) wurde auf den Protokollblättern zur Präparation vermerkt.

Die Teilung konnte wiederholt werden, so dass eine Gesamtsumme von mindestens 100 Oppioidea pro Probe für die Bestimmung erreicht wurde. Die nicht für die Bestimmung verwendete Restprobe wurde in das ursprüngliche Flachbodengläschen zurückgeführt. Erfolgte die Determination der Teilprobe zu einem späteren Zeitpunkt, wurde diese in ein weiteres, entsprechend beschriftetes Flachbodengläschen gegeben. Die Oppioidea wurden, wie auch die anderen Oribatidengruppen, unter dem Binokular und ggf. unter dem Mikroskop bestimmt. Die Determination und Nomenklatur richtete sich nach Weigmann (2006) und Weigmann et al. (2015).

4.4.1.4 Präparation und Bestimmung der Collembola

Präparation

Die in Ethanol fixierten Collembolen wurden in eine Petrischale überführt und unter einem Stereomikroskop (Euromex DZ Series) mit Hilfe einer Federstahlpinzette aussortiert, auf einen Objektträger in einen Tropfen Milchsäure-Glycerin-Gemisch (Mischungsverhältnis 5:1) übertragen und mit einem Deckgläschen abgedeckt (Abb. 13, 14).

Anschliessend wurden sie auf einer Heizplatte bzw. mit Hilfe eines Feuerzeugs erhitzt und damit aufgehellt, so dass einzelne, für die Artbestimmung relevante Strukturmerkmale besser sichtbar wurden (Segmentgrenzen, Pseudocellen, Borstenanordnungen etc.).

Determination

Zum Teil wurden Individuen der Gattungen Entomobrya und Orchesella mit Hilfe ihres Farbmusters direkt unter dem Steromikroskop auf Artniveau bestimmt und nicht aufgehellt. Zur Bestimmung dieser Tiere anhand des 4.4.2 Myriapoda Farbmusters wurde speziell der Bestimmungsschlüssel 4.4.2.1 Erfassung im Freiland von Fiellberg (2007) verwendet (siehe unten).

Die Determinierung der übrigen Collembolen-Taxa erfolgte bei bis zu 600-facher Vergrößerung, wenn möglich auf Artniveau, mit Hilfe eines Mikroskops (Typ: XJS 5000).

Insgesamt wurden. wenn möglich. Untersuchungsfläche zwei Individuen pro Art als Belegexemplare (Dauerpräparate) archiviert. Belegexemplare (auch relativ große Individuen der Gattungen Isotoma, Isotomurus, Entomobrya, Orchesella und Pogonognathellus) wurden in Milchsäure/Glycerin eingebettet (siehe oben) und die Deckgläschen am Rand mit klarem Lack umschlossen. Die Objektträger wurden anschließend durch eine entsprechende Beschriftung eindeutig der jeweiligen Probe (Probenkodierung, Probenahmetermin) zugeordnet. Die Bestimmung erfolgte weitgehend nach Gisin (1960), Fjellberg (1998, 2007) und Hopkin (2007), Arten der Tullbergiidae wurden nach Dunger & Schlitt (2011), der Symphypleona nach Bretfeld (1999), der Isotomidae nach Potapov (2001) und der Hypogastruridae nach Thibaud et al. (2004) determiniert. Die Nomenklatur richtete sich nach Deharveng (2004). Die Belegexemplare wurden der Sammlung des SMNG übergeben.

Abb. 13, 14: Aussortieren der Collembolen aus der Petrischale mit Hilfe eines Stereomikroskops und einer Federstahlpinzette (Fotos: J.-A. Salamon).

Für die Erfassung oberflächenaktiver Makro-Arthropoden ist der Einsatz von Bodenfallen die Standardmethode (u. a. Barber 1931, Trautner 1992, Mühlenberg 1993, Dunger & Fiedler 1997). Bodenfallen sind oben offene, ebenerdig eingegrabene Fanggefäße. Die Methode gilt als sehr fangeffizient und ermöglicht die gleichzeitige Untersuchung mehrerer Tiergruppen. Die Wiederholbarkeit und ein häufiger Einsatz der Methode lassen außerdem eine (eingeschränkte) Interpretation von bspw. Aktivitätsdichten und Dominanzen zu. Damit die Fallen über längere Perioden fängig gehalten werden können, sind sie in der Regel mit einer Tötungs-Konservierungsflüssigkeit gefüllt. Probleme beim Fang mit Bodenfallen bzw. der Auswertung der Fangergebnisse werden u. a. bei Luff (1975), Adis (1979), Work et al. (2002) und Schmidt et al. (2006) diskutiert.

Innerhalb der Edaphobase-Länderstudien erfolgte die Erfassung der epigäisch aktiven Hundertfüßer (Chilopoda) und Doppelfüßer (Diplopoda) mit modifizierten Bodenfallen nach Dunger (1963). Diese zylindrischen Gefäße bestehen aus PVC und haben einen Öffnungsdurchmesser von 4,7 cm sowie eine Tiefe von 10 cm. Sie wurden bündig mit dem Boden in einen Rohrabschnitt eingebracht. Eine mit Holzstäben fixierte Abdeckung (Petrischale aus Polystyrol) verhinderte das Volllaufen der Falle mit Regenwasser (Abb. 15). Als Fangflüssigkeit diente Propylenglykol (1,2-Propandiol, techn. grade). Vorteile dieser ungiftigen Konservierungsflüssigkeit sind die einfache Handhabbarkeit (keine Mixtur, kein unangenehmer Geruch, einfache Entsorgung), eine niedrige Verdunstungsrate und damit verbunden eine lange Konservierungsdauer sowie sehr gute Tötungs- und Konservierungseigenschaften. Außerdem erlaubt sie die weitere Untersuchung des gesammelten Materials mittels DNA-Barcoding (Höfer et al. 2015). Um das schnelle Absinken der Tiere zu gewährleisten, wurde zur Herabsenkung der Oberflächenspannung Tween20 (Roth) als Detergens zugesetzt.

Die Fallen wurden systematisch im zu untersuchenden Biotoptyp eingebracht. Auf jeder der etwa 20 m x 20 m großen Untersuchungsflächen (Standort) wurden jeweils 10 Fallen eingegraben. Um eine gegenseitige Beeinflussung auszuschließen, hatten die Fanggefäße dabei einen Abstand von mindestens fünf Metern voneinander. Aufgrund erhöhter Aktivität Diplopoden und Chilopoden im Frühjahr und Herbst erfolgte der Fang in zwei je sechs Wochen langen Fangperioden (siehe Tab. 4). Die Fallen wurden in der Regel alle 14 Tage geleert und mit neuer Fangflüssigkeit versehen.

Abb. 15: Bodenfalle zum Fang der epigäischen Arthropoden (Foto: A. Toschki).

4.4.2.2 Probenaufbereitung

Nachdem die Fallen geleert wurden, erfolgte die Aussortierung der Tiergruppen im Labor. Dazu wurden die Taxa Chilopoda und Diplopoda unter einem Stereomikroskop vom restlichen Fangmaterial getrennt und in vergällten, mit 10 mM Tris Pufferan pH 9,1 (Roth)/1 mM EDTA (Sigma) gepufferten 70 %igen Ethanol überführt. Diese Pufferung erleichtert eine spätere DNA-Extraktion.

4.4.2.3 Determination

Die Individuen der aussortierten Tiergruppen wurden mit einem Leica Stereomikroskop M80 bei 20-60facher Vergrößerung determiniert. In der Regel sind hierbei äußere Merkmale ausschlaggebend. Differenzierende Merkmale der Chilopoden wie auch der Diplopoden sind bspw. Form und Anzahl der Körpersegmente, Stellung und Anzahl der Augen oder das Vorhandensein bestimmter Poren.

Bei der Identifikation der Chilopoden sind daneben u. a. die Bedornung insbesondere der beiden letzten Beinpaare, das Aussehen des weiblichen Genitalsegments oder Vertiefungen bzw. Erhebungen der letzten beiden Beinpaare der Männchen von entscheidender Bedeutung. Die Bestimmung der Chilopoden erfolgte nach den Schlüsseln von Eason (1964) und Koren (1986, 1992). Die Nomenklatur richtete sich nach der aktuellen Roten Liste Deutschlands (Decker et al. 2016).

Eine sichere Bestimmung der Diplopoden war in einigen Fällen nur anhand der männlichen Gonopoden (= Genitalien) möglich. Diese wurden unter dem Stereomikroskop mit Hilfe einer spitzen Pinzette herauspräpariert. Die präparierten Gonopoden wurden danach separat in ein kleines Probenglas mit 70% igem Ethanol überführt und dem dazugehörigen Sammlungsexemplar beigelegt. Weibliche Exemplare mancher Diplopoden-Arten bspw. der Familien Julidae und Chordeumatidae können nicht auf Artniveau identifiziert werden, weshalb die Bestimmung nur bis zur Familienebene vorgenommen wurde. Dies gilt auch für juvenile Tiere. Die Bestimmung der Diplopoden erfolgte nach den Schlüsseln von Schubart (1934) und Hauser und Voigtländer (2009). Die Nomenklatur folgte der aktuellen Roten Liste Deutschlands (Reip et al. 2016).

Die Determinationen kritischer Arten wurden durch die Spezialisten Dr. Karin Voigtländer und Dr. Peter Decker (beide Senckenberg Museum für Naturkunde Görlitz) abgesichert. Belegexemplare aller Arten (pro Art und Geschlecht mindestens 2 Exemplare) wurden der Sammlung des SMNG übergeben.

4.4.3 Enchytraeidae4.4.3.1 Erfassung im Freiland

Die Beprobung der Enchytraeiden erfolgte nach der ISO-Richtlinie Nr. 23611-2 (ISO 2007: "Erfassung und Extraktion der Enchytraeiden im Freiland aus Bodenproben"). Dazu wurden innerhalb des zentralen, 20 x 20 m² großen inneren Quadrats jeder Untersuchungsfläche (siehe **Abb. 10**) (Frühjahrs- und Herbstprobenahme) jeweils 10 Einstiche mit einem Stechbohrer (Durchmesser: 5,6 cm; Fläche: 24,6 cm²) vorgenommen. Diese waren zufällig verteilt, wobei störende Strukturen (z. B. anstehendes Grundgestein) vermieden wurden. Nach Entnahme der jeweiligen Einzelprobe wurde der Probenstecher geöffnet und der Bodenkern mittels eines Messers in zwei Teilproben unterteilt. In den untersuchten Waldtvpen stellte die obere Tiefenstufe die Streuschicht (ohne den L-Horizont) dar, während die untere Probe die obersten

5 cm des Mineralbodens enthielt. Jede Teilprobe wurde in einen eigenen Plastikbeutel überführt und dieser sofort verschlossen. Alle Proben eines Standortes wurden in eine Styroporkiste gefüllt und in das Labor der ECT GmbH transportiert. Die durch die Bodenkernentnahme entstandenen Löcher wurden mit umliegendem Material verfüllt.

4.4.3.2 Probenaufbereitung

Im Labor der ECT GmbH wurden die Enchytraeiden aus dem Streu- bzw. Bodenmaterial per Nassextraktion mit Wärme ausgetrieben (Abb. 18, 19). Gekühlte Proben wurden vorher 12 h an die Zimmertemperatur

adaptiert (21 °C). Die Wässerung erfolgte über einen Zeitraum von 6 Stunden, die Hitzequelle wurde nach 2 Stunden eingeschaltet, und das Wasser innerhalb von 4 Stunden auf ca. 40 °C erhitzt. Die Tiere wurden lebend unter dem Mikroskop bestimmt und anschließend in 70% igem Ethanol fixiert. Belegexemplare wurden in heißer Bouin'scher Lösung fixiert und in aufsteigender Ethanolreihe (5-10%, 70%, 96-100%) zunächst anästhesiert, sodann fixiert und schließlich konserviert. Weitere Belegexemplare wurden nach Anästhesieren in heißer Bouin'scher Lösung fixiert und in 70 %igem Ethanol aufbewahrt. Die Sammlung befindet sich z. Zt. im Labor von R. M. Schmelz (A Coruña) und wird nach taxonomischer Aufarbeitung im Museum für Naturkunde (MfN) Berlin hinterlegt.

Abb. 16: Regenwurmerfassung mittels Handauslese und AITC- Abb. 17: Fanggefäß mit Tieren einer Probe (Foto: ECT). Austreibung (Foto: ECT).

Abb. 18: Nassextraktionsanlage zur Austreibung von Enchytraeiden Abb. 19: Fanggefäß mit Bodenprobe (Foto: J. Römbke). (Foto: R. Schmelz).

4.4.3.3 Determination

Die Bestimmung der Enchytraeiden erfolgte anhand des Schlüssels von Schmelz & Collado (2010), wobei in Zweifelsfällen Einzelarbeiten zur Taxonomie der jeweiligen Gattung herangezogen wurden. Auch die verwendete Nomenklatur folgte, wenn nicht anders aufgeführt, dem Schlüssel von Schmelz & Collado (2010). Anschließend wurden die Arten und ihre Abundanzen den jeweiligen ökologischen Gruppen nach Graefe & Schmelz (1999) zugeordnet.

4.4.4 Lumbricidae 4.4.4.1 Erfassung im Freiland

An Standorten in den gemäßigten Breiten werden seit den Anfängen der Bodenzoologie Regenwürmer mit weitgehend gleichen Methoden erfasst (Dunger & Fiedler 1997): Einer Kombination aus Handauslese und chemischer Extraktion, wobei sich das Extraktionsmittel aus verschiedenen Gründen mehrfach änderte. Seit ca. 10 Jahren sind diese Verfahren von der ISO international standardisiert (ISO 2006b). Anpassungen der jeweiligen ISO-Richtlinie an Standortbedingungen waren nicht notwendig.

Die Beprobung der Lumbriciden erfolgte nach der ISO-Richtlinie Nr. 23611-1 (ISO 2006b): "Erfassung der Regenwürmer im Freiland mittels Handauslese und Formalinextraktion". Aufgrund zunehmender Bedenken hinsichtlich der Humantoxizität von Formalin wird seit 2014 von der ISO empfohlen, stattdessen die Chemikalie Allyl-Isothiocyanat (AITC) zu verwenden. Diese Änderung wurde Ende des Jahres 2016 bei der Veröffentlichung der neuen Fassung der Richtlinie 23611-1 auch formal vollzogen.

Bei der Beprobung wurde an jeweils fünf Stellen im Randbereich jeder Untersuchungsfläche (siehe Abb. 10) der Oberboden (inklusive Streuschicht, wenn vorhanden) auf einer Fläche von 50 x 50 cm (= 1/4 Quadratmeter) bis zu einer Tiefe von 10 cm mit Hilfe eines Spatens ausgestochen. Das Bodenmaterial wurde in eine Plastikwanne verfüllt und direkt am Entnahmeort mittels Handauslese durchsucht (Abb. 16). Parallel dazu wurden zur Extraktion tiefgrabender Regenwürmer 5 l einer 0,01 %igen AITC-Lösung mit einer Gießkanne in das ausgehobene Probenloch gegossen (in mehreren Schüben, je nach Bodendichte und Bodenbeschaffenheit). Alle gefundenen Regenwürmer wurden in vorbereitete Plastikgefäße, gefüllt mit 70 %igem Ethanol, überführt und so fixiert (Abb. 17). Nach Abschluss beider Beprobungsmethoden wurde das ausgestochene Loch mit dem durchsuchten Bodenmaterial verfüllt.

4.4.4.2 Probenaufbereitung und Determination

Die gesammelten Regenwürmer wurden ins Labor der ECT GmbH transportiert. Nach dem Eingang der Proben wurden die Regenwürmer in 70% igen Ethanol umfixiert. Alle adulten und subadulten Exemplare wurden unter dem Binokular auf Artebene und die meisten Juvenile auf Gattungsebene bestimmt. Das Summengewicht aller Individuen per Art wurde gemessen. Parallel dazu wurde die Zugehörigkeit zu einer der drei ökologischen Gruppen festgehalten (Bouché 1977).

Die Bestimmung der Regenwürmer erfolgte anhand des Schlüssels von Sims & Gerard (1999), wobei in Zweifelsfällen Graff (1953), Bouché (1972) oder Csuzdi & Zicsi (2003) konsultiert wurden. Hinsichtlich der Nomenklatur folgten wir Lehmitz et al. (2014). Das Probenmaterial befindet sich im Bestand der ECT GmbH in Flörsheim.

4.5 Auswertungsmethodik

Die Basis der systematischen Ausarbeitung ökologischer Gruppen und Indikatoren liegt in der Betrachtung der Artenzusammensetzung an den verschiedenen Standorten. Durch den Vergleich und die Gruppierung ähnlicher Zusammensetzungen auf den verschiedenen Untersuchungsflächen können Artengemeinschaften bestimmt und die Bindungsgrade einzelner zugehöriger Arten sowie deren Wertigkeit als z.B. Kennart oder Trennart bestimmt bzw. abgeschätzt werden (Tischler 1947, Braun-Blanquet 1964, Toschki 2008). Die durch die einheitliche Beprobung garantierte Vergleichbarkeit der Abundanzen an den verschiedenen Standorten bietet den Vorteil, Artengruppen mit gleicher ökologischer Bindung (z. B. Feuchte liebende Arten) in Artengruppen zusammenzufassen und in Form von Kreuztabellen übersichtlich darzustellen. Gleichzeitig können Indikatoren und Artengruppen auch mit Hilfe statistischer Methoden ermittelt werden. Unterschiede der beiden Methoden entstehen durch zum Teil unterschiedliche Bewertungen innerhalb der Auswertungsroutinen. Während in der synökologischen Tabellenarbeit Er-fahrungen und Kenntnisse aus der Literatur eingebunden werden können, ist dies im Rahmen der statistischen Analyse nur bedingt möglich bzw. sinnvoll. In der vorliegenden Arbeit wurden deshalb beide Methoden aufeinander abgestimmt und über den Zugriff auf Daten aus der Datenbank Edaphobase möglichst umfassende Informationen zu Bodenorganismen in die synökologische und statistische Analyse einbezogen.

Sortierte Kreuztabellen

In sortierten Kreuztabellen werden Arten hinsichtlich ähnlicher Präsenz und daher ähnlichen ökologischen Präferenzen sortiert und gruppiert. Diese Gruppierung dient der Visualisierung des komplexen Artengefüges aus ubiquitären Arten und hochspezifischen Kennarten an einem Standort bzw. in einer Lebensgemeinschaft. Zur systematischen Gruppierung dienen folgende Einteilungen:

Kennarten (-Gruppen)

Einige Standorte zeigen eine exklusive, typische Artengruppe, die als Kennartengruppe bezeichnet wird. Das Vorkommen dieser Kennarten ist im Rahmen der Edaphobase-Länderstudien überregional weitgehend auf einen Biotoptyp beschränkt, so dass die Vertreter dieser Artengruppen als Indikatoren verwendet werden können.

Edaphische Gruppen

Edaphische Gruppen werden gebildet, indem Arten, deren Präsenz sich mit einem Standortfaktor korrelieren lässt, zusammengefasst werden. Dem spezifischen Muster entsprechend werden unterschiedliche Gruppen einem edaphischen Faktor zugeordnet, z. B. in der Feuchtegruppe (wechselfeuchte Standorte, trockene Standorte etc.). Da viele Faktoren an einem Standort gleichermaßen wirken, können edaphische Gruppen in verschiedenen Kombinationen (vieldimensional) an verschiedenen Standorten vorkommen.

Grundarten (-Gruppen)

Grundarten sind Arten und Artengruppen mit einer weiteren ökologischen Amplitude, die einem nichtedaphischen Merkmal zugeordnet werden, welches innerhalb oder außerhalb der betrachteten Standorttypen Standorte differenziert. Hierzu zählen z.B. Grundartengruppen der Laubwälder, die Nadelwald-Standorte oder Waldartengruppen, die Offenland abgrenzen.

Begleitarten (-Gruppen)

Als Begleiter bezeichnete Arten können in abundante und stete Arten (=stete Begleiter) sowie in nur sporadisch oder zufällig auftretende Arten (sonstige Begleiter) getrennt werden. Das Vorkommen der steten Begleiter ist für alle betrachteten Standorttypen gleichermaßen typisch. Ebenso können das Vorkommen und die Zahl sporadischer Arten als durchaus typisch für einen Standort angesehen werden, jedoch kann die Zusammensetzung von Arten variieren.

Die Lebensgemeinschaft eines Standortes wird insgesamt "positiv" durch die Kombination von präsenten

Arten und Artengruppen sowie "negativ" durch das Nicht-Auftreten von Arten und Artengruppen charakterisiert. Die spezifische Kombination der am Standort auftretenden Arten und Artengruppen spiegelt die multifaktoriellen Standortwirkungen (pH-Wert, Feuchte, Nährstoffe, Licht etc.) wider.

Statistische Auswertung

Die Indikatorartenanalyse

Die Indikatorartenanalyse (ISA) nach Dufrêne & Legendre (1997) berechnet für jede Art in einem ökologischen Datensatz einen kombinierten Kennwert – den Indikatorwert – aus der relativen Abundanz (rel_abundance) und der relativen Frequenz (rel_frequency) für jede Standortgruppe, die durch a-priori festgelegte Klassen zusammengeführt werden.

Die relative Abundanz (*rel_abundance*) wird im Verhältnis zur Abundanz der Art im gesamten Datensatz angegeben. Zunächst wird die mittlere Abundanz einer Art j über die n Standorte der gerade betrachteten Gruppe k berechnet. Dieser Wert wird durch die Summe aller mittleren Abundanzen der Art j über alle Gruppen geteilt.

Die relative Frequenz (rel_frequency) gibt die Stetigkeit einer Art j innerhalb der interessierenden Gruppe an. Sie berechnet sich als die Anzahl der Standorte in der betrachteten Gruppe k, in denen die Art vorkommt, geteilt durch die Gesamtzahl der Standorte in der Gruppe.

Aus diesen beiden Verhältnissen wird der Indikatorwert (*indicator_value*) durch Multiplikation *rel_abundance* x *rel_frequency* berechnet (Leyer & Wesche 2007).

Eine Bindung an eine der betrachteten Klassen wird für jede Art im Datensatz ermittelt, indem nach dem maximalen Indikatorwert im Vergleich aller Standortgruppen gesucht wird. Der Indikatorwert kann Werte zwischen 0 und 1 annehmen. In einem Permutationsverfahren kann dann geprüft werden, ob diese Bindung nicht zufällig im Vergleich zu Vorkommen und Abundanz in den anderen Standortgruppen ist. Wir legten einen Indikatorwert > 0.8 als relevant und eine Irrtumswahrscheinlichkeit (pvalue) von p <= 0.1 als signifikant fest.

Für die vorliegende Studie wurden 13 a-priori Klassen verwendet, die jeweils die ökologisch relevante Ebene des Biotoptypenklassifikationssystems nach Riecken et al. (2003) enthalten (vgl. Kap 3.1.4).

Die Indikatorartenanalysen wurden in R version 3.3.2 (2016-10-31) "Sincere Pumpkin Patch" (R Core Team 2016) in RStudio Version 1.0.136 (RStudio Team 2016) unter Verwendung der Funktionen des R-packages "indicspecies" (De Caceres & Legendre 2009) programmiert.

Korrespondenzanalysen und Kanonische Korrespondenzanalysen

Das Konzept der vorliegenden Studie impliziert Unterschiede in den Mustern der Artzusammensetzung in den 13 unterschiedlichen Standortklassen, die Umweltbedingungen Gradienten von zurückführen lassen. Um die Komplexität dieser Muster zu reduzieren und interpretierbar zu machen. Korrespondenzanalysen (Correspondence Analysis - CA, Hill 1973) durchgeführt. Relevante Umweltvariablen wurden zuvor mit Hilfe von Korrespondenzanalysen Kanonischen (Canonical Correspondence Analysis - CCA, Ter Braak 1986) identifiziert und als zusätzliche Information in die Abbildungen eingefügt.

Die Analyse erfolgte schrittweise. Es wurden logarithmierte Individuenzahlen pro Quadratmeter oder pro Probe verwendet, um den Einfluss von sehr stark streuenden Individuenzahlen zu dämpfen, wie sie typisch für die (zeitpunktabhängig) sehr geklumpt auftretenden Bodenorganismen sind. Zunächst wurden aus den erhobenen Umweltparametern plausible und relevante Variablen ausgewählt. Bodenparameter wie beispielsweise Humusform, pH-Wert, CN-Verhältnis, Gesamtkohlenstoffund Stickstoffgehalt sowie Korngrößenanteile (vgl. Kap. 5.3.1, 6.3.1, 7.3.1, 8.3.1) flossen neben geographischen Kennwerten als erklärende Variablen in die CCA ein (siehe **Tab. 6**).

Die Funktion "ordistep" wurde verwendet, um sowohl ein Modell unter Einbeziehung aller Variablen als auch eine Variablenselektion der signifikanten Umweltparameter durchzuführen. Dabei wurden Variablen als signifikant angenommen, deren p-Wert nach Permutation kleiner als 0,05 war. Die automatische Variablenselektion wurde in der Kombination "bidirektional" durchgeführt. Das bedeutet, dass sowohl einem "leeren" Modell solange Variablen hinzugefügt werden, bis die Verbesserung der Modellanpassung an die Daten eine Schwelle nicht mehr überschreitet ("forward selection"). Andersherum werden bei der "backward selection" ausgehend vom vollständigen Modell mit allen Variablen und einer Verbesserungsschwelle des Modells Variablen entfernt, bis das Kriterium zur Modellgütebeurteilung nicht mehr über einen Schwellenwert hinaus verbessert wird. Der bidirektionale Ansatz kombiniert diese beiden schrittweisen Auswahlmethoden der Umweltvariablen.

Nachfolgend wurde eine CA berechnet. Die Darstellung enthält, neben den Arten (gefiltert auf die signifikanten Indikatorarten aus der ISA) und den Standorten, als "Overlay" die signifikanten Umweltvariablen, um Informationen über die a-priori postulierten Gradienten für eine visuelle Interpretation einfließen lassen zu können. Quantitative Variablen wurden als

Vektoren, kategoriale Variablen als Mittelwerte der Faktorstufen in das Ordinationsdiagramm eingefügt. Konvexe Hüllen verbinden im Diagramm die Standorte einer a-priori Standortklasse, Zentroide zeigen den Schwerpunkt einer Standortklasse an (Mittelwerte der site scores jeder Standortklasse der dargestellten Achsen). Diese Darstellung erleichterte das Auffinden der a-priori festgelegten, als homogen postulierten Klassen. Es wurden die beiden Achsen mit dem höchsten Erklärungsgehalt dargestellt (Prozent erklärter Varianz als Achsenbeschriftung angegeben).

Auswertungen mit Edaphobase (Edaphostat und Edaphoclass)

Zur ökologischen Auswertung wurde neben der gängigen Literatur zu den verschiedenen taxonomischen Gruppen auch auf die Anwendungsmöglichkeiten bodenzoologischen Datenbank Edaphobase zurückgegriffen. In Edaphobase werden Daten zu verschiedenen Bodenorganismengruppen Collembola, Lumbricidae, Enchytraeidae, Oribatida, Myriapoda) aus unterschiedlichen Quellen (z. B. Publikationen, Feldstudien oder Gutachten) Verbindung mit Daten zum Fundort und zur Aufsammlung zusammengeführt (vgl. Burkhardt et al. 2014). Zur Auswertung dieser Daten wurden Analyse-Tools entwickelt und in Edaphobase implementiert, mit denen die Datenbank hinsichtlich verschiedener Problemstellungen abgefragt werden kann. Mit Hilfe des Analyse-Tools Edaphostat (Hausen et al. 2017) können gezielt Informationen zu den Bodentier-Taxa abgeleitet werden. Dabei werden einzelne Arten ausgewählt und der in Edaphobase bestehende Datenbestand wird hinsichtlich gewünschter Parameter (z. B. pH-

Tab. 6: Verwendete Umweltvariablen in der Kanonischen Korrespondenzanalyse.

Variable	Ausprägung, Maßeinheit
Humusform	Mull, Moder, Rohhumus, kein
pH-Wert	0-14
CN-Verhältnis	Prozent
Cgesamt	Volumen-Prozent
Carbonatgehalt	Volumen-Prozent
Lehm	Volumen-Prozent
Ton	Volumen-Prozent
Sand	Volumen-Prozent
Ellenberg-Reaktionszahl	1-7
Ellenberg-Stickstoffzahl	1-7
Ellenberg-Feuchtezahl	1-7
Ellenberg-Lichtzahl	1-7
Ellenberg-Temperaturzahl	1-7

Wert, Biotop- oder Bodentyp) ausgewertet. Auch das Analyse-Tool Edaphoclass (RWTH Aachen, Institut für Umweltforschung) fragt den Datenbestand von Edaphobase ab. Hierbei wird jedoch ein Biotoptyp nach Riecken et al. (2003) oder der EUNIS-Klassifikation (2016) ausgewählt. Edaphoclass zeigt dann die Frequenzen der Arten einer taxonomischen Gruppe an, mit denen die unterschiedlichen Arten in diesem Biotoptyp auftreten. Durch die Sortierung nach der Frequenz der nachgewiesenen Arten lassen sich typische Zönosen für die ausgewählten Biotoptypen darstellen.

- 5 Die Länderstudie im Nationalpark Eifel: "Bodenökologische Untersuchung von Fichtenforsten, Buchen- und Eichenwaldbeständen"
- 5.1 Problemstellung und Zielsetzung der Länderstudie im Nationalpark Eifel

Die bodenökologischen Untersuchungen im Nationalpark Eifel zielen auf eine bodenökologische Biodiversitätsbewertung des Waldumbaus ab. Dazu werden in der vorliegenden Untersuchung die im Nationalpark erhobenen bodenökologischen Daten in einen Gesamtkontext zu bisherigen Kenntnissen der Ökologie von Bodenlebensgemeinschaften gestellt.

Die Problemstellung wurde durch den Nationalpark wie folgt skizziert:

"In verschiedenen Bereichen des fachlichen Naturschutzes sind Bewertungen von abiotischen und biotischen Bodeneigenschaften von großer Bedeutung. Derzeit fehlen jedoch für eine Bewertung der Boden-Biodiversität unserer Kenntnis nach zielführende Methoden und Bewertungsmaßstäbe besonders auf der Ebene räumlich differenzierter Standorttypen. Die Zusammenstellung und konzeptionelle, für die Anwendung angepasste Auswertung von Bodentierdaten begrüßen wir deshalb sehr."

Die Zielsetzung im vorliegenden Bericht ist es somit, eine naturschutzfachliche Bewertung ökologisch und räumlich differenzierter Standorte im Nationalpark Eifel durchzuführen. Darüber hinaus sollen Standards und Methoden für bodenökologische Untersuchungen entwickelt und Bewertungsmaßstäbe transparent dargestellt werden, die einen räumlichen sowie standortökologischen Vergleich ermöglichen. Des Weiteren werden folgende Punkte bearbeitet:

 Prüfung der Nutzbarkeit von Bodenorganismen für die Bewertung des Bodenzustands

- und seiner Veränderungen für Zwecke des Gebietsmonitorings und der Ergebniskontrolle.
- Ermittlung, inwieweit verschiedene Bodentiergruppen im Rahmen der aktiven Gebietsentwicklung einförmiger, naturferner Nadelbaumbestände zu naturnäheren Laubwäldern zur Ergebniskontrolle und Maßnahmenoptimierung herangezogen werden können.
- 3. Erarbeitung und Prüfung eines geeigneten und auch unter beschränkten finanziellen Kapazitäten praktikablen, langfristig einsetzbaren Indikatorsystems.

Die Nationalparkverwaltung Eifel war in diesem Projekt daran interessiert, das Informationssystem Edaphobase dabei für eine eventuelle zukünftige Nutzbarkeit insbesondere für Zwecke des naturkundlichen Monitorings und der Maßnahmenoptimierung im Nationalpark Eifel zu evaluieren.

5.2 Untersuchungsgebiet5.2.1 Geografische Lage

Der Nationalpark Eifel liegt im Südwesten von Nordrhein-Westfalen im Naturraum "Nördliche Eifel" zwischen den Ortschaften Nideggen, Heimbach, Gemünd und Einruhr, und grenzt im Westen an die Rurtalsperre (siehe **Abb. 20**). Der 2004 gegründete Nationalpark umfasst eine Fläche von etwa 110 Quadratkilometern mit verschiedenen Lebensraumtypen, wie z. B. Wald, Grünlandflächen, Gewässer, Felsen, trockene Heiden sowie Moore (Nationalpark Eifel 2015).

5.2.2 Klima

Durch seine Lage im Westen Deutschlands ist das Klima im Nationalpark atlantisch beeinflusst. Typisch für diese Klimazone sind verhältnismäßig niederschlagsreiche und kühle Sommer sowie relativ milde Winter. Das Klima innerhalb des Nationalparks unterliegt deutlichen Unterschieden in der Niederschlagsmenge. Durch den dort vorherrschenden Westwind regnet sich das meiste Wasser an den Hängen im Westen des Nationalparks ab, der Osten ist daher trockener. So erreicht der Südwesten des Gebiets im Jahresmittel 1000-1200 mm, der Nordosten bei Heimbach dagegen nur durchschnittliche Werte von etwa 600-800 mm Niederschlag im Jahr. Auch die durchschnittliche Jahrestemperatur unterscheidet sich innerhalb des Nationalparks um bis zu 1,5 °C: In den tiefen Lagen erreicht sie 8 °C, in den höheren Lagen liegt sie bei nur 6,5 °C (Nationalpark Eifel 2015).

Die dem Untersuchungsgebiet nächstgelegenen Wetterstationen werden in Heimbach-Hasenfeld (Herr Siegfried Krischer), Gemünd-Malsbenden (Herr Thomas Jansen) und seit Juni 2014 auch auf dem Kermeter (Nationalpark Eifel) betrieben. Von einer Wetterstation des Deutschen Wetterdiensts (DWD) in Gemünd-Malsbenden, die im Jahr 2005 geschlossen wurde, existieren Daten aus der Zeit zwischen 1971 und 2000, so dass das langjährige Mittel über diesen Zeitraum gebildet werden konnte (vgl. **Tab. 7**).

Die Aufzeichnungen für das Jahr 2014 ergeben in Gemünd eine Niederschlagssumme von 808 mm/Jahr bei einer durchschnittlichen Temperatur von 9,9 °C. Auffällig ist hierbei die Verteilung der Niederschläge und Temperaturen im Jahresverlauf: In den meisten Monaten des Jahres 2014 liegen die Niederschlagssummen deutlich unter denen des langjährigen Mittels zwischen 1971 und 2000, die beiden Sommermonate Juli und August waren

jedoch erheblich regenreicher. Und auch die Temperaturen lagen in den meisten Monaten, mit Ausnahme des durchschnittlichen Maies und kühlen Augusts, über den gemittelten Werten.

Im tiefer gelegenen Heimbach erreichte die jährliche Niederschlagssumme einen Wert von 645 mm und die mittlere Temperatur lag bei 11,4 °C, so dass es in Heimbach durchschnittlich wärmer und trockener als in Gemünd war.

Da die Wetterstation auf dem Kermeter erst im Juni 2014 installiert wurde, ist ein Vergleich der Summen bzw. Mittelwerte nicht sinnvoll. Der Vergleich der einzelnen Monate zeigt jedoch, dass die Temperaturen auf dem Kermeter durchweg unter denen in Heimbach lagen, und mit Ausnahme des durchschnittlich kälteren Dezembers denen in Gemünd ähnelten. Die Niederschlagsmengen lagen auf dem Kermeter mit 208 mm im Juli noch einmal deutlich über denen in Gemünd und Heimbach (siehe **Tab. 7**).

Tab. 7: Wetterdaten des Untersuchungsjahrs 2014, aufgenommen von den Wetterstationen Heimbach-Hasenfeld, Kermeter "Wilder Weg" sowie Gemünd-Malsbenden mit Abweichungen zum langjährigen Mittel der Jahre 1971-2000. (Angaben in mm [Niederschlag], °C [Temperatur] und h [Sonnenstunden]; 2014 wärmer/niederschlagsreicher [↑], 2014 kühler/trockener [↓] als das langjährige Mittel; Quellen: Heimbach: Siegfried Krischer; Gemünd: Thomas Jansen; Kermeter: NP Eifel; Langjährige Mittel: DWD).

Gemünd-Malsbenden												
Jan	Feb	März	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	2014
Niederschlag (mm) + Abweichung vom langjährigen Mittel											Summe	
52	45	21	29	80	50	147	137	51	61	41	93	808
↓30%	↓70%	↓70%	↓51%	↑16 %	126%	↑220%	↑132%	↓14%	↓3 %	↓45%	↑14 <i>%</i>	808
Temperatur (monatlicher Durchschnitt) + Abweichung vom langjährigen Mittel											Mittelwert	
4,0	4,3	6,3	10,5	11,8	14,9	17,9	14,7	13,7	10,9	6,9	3,0	
↑ 2,5	↑ 2,8	† 1,6	↑ 3,3	$\pm~0.0$	↑ 0,3	↑ 1,1	↓ 1,8	↑ 0,3	↑ 1,5	↑ 1,9	↑ 0,3	9,9
Höhe ü. NN:		338 m										

Heimbach-Hasenfeld												
Jan	Feb	März	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	2014
	Niederschlag (mm)											
45	28	11	19	53	65	130	124	42	55	34	41	646
	Sonnenstunden (h)											
61	81	177	143	164	183	195	147	117	107	66	17	1458
Temperatur (monatlicher Durchschnitt)												Mittelwert
5,2	5,8	8,3	11,9	13,1	16,5	19,4	16,2	15,4	13,1	8,2	3,7	11,4
Höhe ü. NN:		272 m										

Kermeter, "Wilder Weg"											
Jan	Feb	März	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez
Niederschlag (mm)											
					64	208	144	47	64	41	75
Temperatur (monatlicher Durchschnitt)											
					14,5	17,6	14,1	13,8	11,2	6,8	1,7
Höhe ü.	NN:	500 m									

5.2.3 Untersuchungsflächen

Die Untersuchungsflächen sind über weite Teile des Nationalparks verteilt. So befinden sich die Eichen-Trockenwälder im Norden des Untersuchungsgebiets auf dem Kermeter sowie bei den Ortschaften Heimbach und Gemünd (siehe **Abb. 20**), und die Fichtenforst- und Buchenwaldflächen liegen im südlichen Teil bei Wahlerscheid, Dedenborn und Erkensruhr. Die Höhenlage der Standorte umfasst eine Spanne von 340 m ü. NHN bei Heimbach bis zu 630 m ü. NHN im Süden des Nationalparks.

Im gesamten Untersuchungsgebiet haben zur Zeit des 2. Weltkriegs Kampfhandlungen stattgefunden, deren Spuren noch heute durch Funde (z. B. Munitionsrückstände) zu erkennen sind.

5.3 Ergebnisse zur Standortcharakterisierung5.3.1 Bodenkundliche Angaben

Die gemessenen Habitatparameter-Werte wurden in **Tab. 8** und **Tab. 9** zusammengefasst.

Die Messung der aktuellen Bodenfeuchte ergab, dass der Boden der drei Untersuchungsflächen des Biotoptyps "trockener Eichenwald" (EB_NW31 bis -33) zum Zeitpunkt der beiden Mikroarthropoden-Probenahmetermine deutlich trockener war als der der beiden anderen Biotoptypen. Die Messung der aktuellen Bodenfeuchte ist lediglich als Momentaufnahme zu bewerten. Ein Vergleich mit den Feuchtezahlen (siehe **Tab. 10**, Ergebnisse der Ellenbergzahlen) ergab jedoch, dass auch die Pflanzen zumindest auf den Flächen EB_NW32 und EB_NW33 trockene Standortbedingungen anzeigten.

Der pH-Wert der neun Untersuchungsflächen lag zwischen pH=2,87 (EB_NW11) und pH=3,38 (EB_NW21). Somit waren alle Untersuchungsflächen als saure Standorte einzustufen (vgl. Gisi 1990, Killham 1994).

Die Werte des Gesamt-Kohlenstoffs (C_{gesamt}) erreichten Zahlen zwischen 9,59% [Masse] auf der Fläche EB_NW31 und 26,18% [Masse] auf der Fichtenforst-Fläche EB_NW13. Im Mittel war der Gesamtkohlenstoffgehalt im Biotoptyp Fichtenforst höher als der der anderen beiden Biotoptypen. Der Karbonat-Anteil am Gesamtkohlenstoffgehalt aller neun Untersuchungsflächen war mit Werten von deutlich unter 1 g/kg gering (Arbeitsgruppe Boden 1996). Auch der Gesamtstickstoffgehalt war auf der Fläche EB_NW31 am niedrigsten (0,57% [Masse]), jedoch wies die Fläche EB_NW32 des gleichen Biotoptyps ("trockener

Eichenwald") den höchsten Gesamtstickstoffgehalt auf. Da auf den Untersuchungsflächen mit höherem Gesamtkohlenstoffgehalt auch ein höherer Gesamtstickstoffgehalt gemessen wurde, ergaben die jeweiligen C/N-Verhältnisse jedochrelativ ähnliche Werte zwischen 16,67 (EB_NW22) und 23,52 (EB_NW13). Im Mittel ergaben die Werte der Buchenwaldstandorte die niedrigsten C/N-Verhältnisse, was auf die höchsten Streuabbauraten in diesem Biotoptyp hinweist (siehe Killham 1994).

Die Messungen der Korngrößenverteilungen ergaben, dass der Anteil des Schluffes auf allen Untersuchungsflächen mit Werten zwischen 53,33 % (EB_NW32) und 66,52 % (EB_NW31) am größten war. Die Bodenart der einzelnen Untersuchungsflächen war somit als Schluff mit unterschiedlichen Ton-, Lehmund Sandanteilen zu bezeichnen (vgl. **Tab. 9** und Arbeitsgruppe Boden 1996).

Die Ellenbergzahlen dernachgewiesenen Pflanzenarten wurden in **Tab. 10** zusammengefasst. Entsprechend der gemessenen pH-Werte liegen auch die Ellenbergzahlen mit Ausnahme der Fläche EB_NW23 im sauren Bereich. Die Stickstoffzahlen entsprechen mageren (Eiche), mäßig stickstoffreichen (Fichte, EB_NW23) und eher eutrophen (EB_NW21, EB_NW22) Standortbedingungen, und die Feuchtezahl weist auf frische (Fichte, Buche, EB_NW31) bis trockene (EB_NW32, EB_NW33) Habitate hin. Die Ellenbergzahlen zeigen im Buchenwald schattige sowie in den anderen beiden Waldtypen Halblicht- bis Volllicht-Verhältnisse an, und liegen durchweg im mäßig warmen Temperaturbereich.

5.3.2 Vegetationskundliche Aufnahmen5.3.2.1 Montaner Fichtenforst (Ersatzgesellschaft des *Luzulo-Fagetums*)

Formation: XI. Waldgesellschaften **Assoziation**: montaner Fichtenforst

Biotoptyp

BTL D: 44.04.01.02

Fichtenforst frischer Standorte

EUNIS: G3.F Highly artificial coniferous

plantations

Die systematische Eingliederung von Fichtenforsten in der Nordeifel ist nur schwer möglich. Fichtenforste werden in der Vegetationskunde von den natürlichen Waldgesellschaften getrennt klassifiziert und hier als *Sylvofacies* geführt (Härdtle et al. 2008). Die Standorte der untersuchten Flächen in der Eifel gehören nicht in den natürlichen Verbreitungsraum der natürlichen Fichtenwälder. Diese Standorte sind als Ersatzgesellschaft

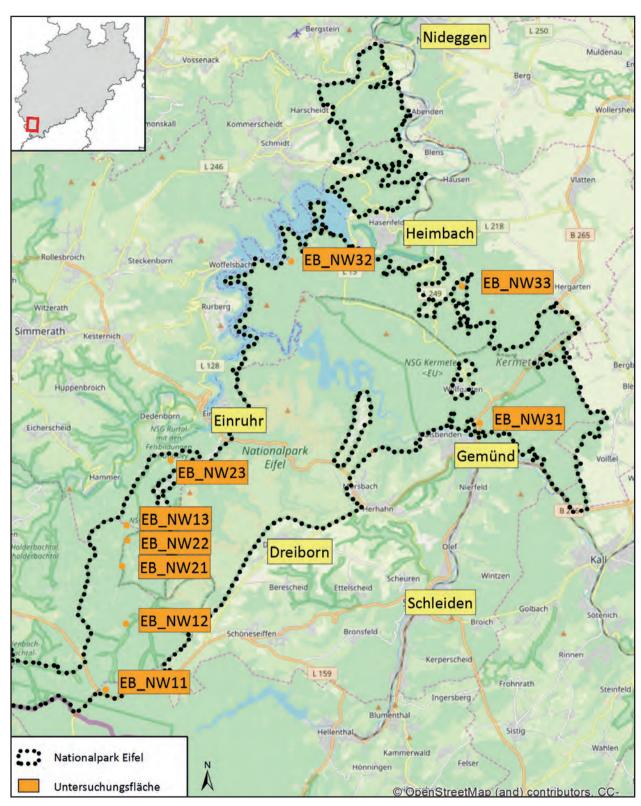


Abb. 20: Lage des Nationalparks Eifel (rot umrandete Fläche) in NRW (Ausschnitt oben links) sowie der Untersuchungsflächen im NP Eifel (große Abbildung).

(1): Standortname: Tereno Replikat: Fichtenforst 1

Standortkennung: EB_NW11 **Koord. (WGS 84)**: 50.50398/6.32881

Standortbeschreibung:

Fichtenbestand mit einem Alter von ca. 50-70 Jahren auf montanem, zum Teil wechsel-feuchten, pseudovergleyten Buchenwaldstandort

Vegetationseinheit:

montaner Fichtenforst auf Buchenwaldstandort

Biotoptyp BTL D: 44.04.01.02 - Fichtenforst frischer

Standorte

EUNIS: G3.F11 - Highly artificial

coniferous plantations

Potentielle Natürliche Vegetation (PNV):

 $Rasen schmielen \hbox{-} Hain simsen \hbox{-} Buchen wald$

Hangneigung: 1°/Ost **Höhe ü. NHN**: 632 m

Bodentyp: Braunerde (teilw. Pseudogley-Braunerde)

pH-Wert: 2,87

Bodenart: Stark toniger Schluff bis steinig grusiger, schluffiger Lehm

Humusform: feinhumusreicher rohhumusartiger Moder **Geologie**: Wüstebachschiefer (Unterdevon, Siegen); Tonstein, stark geschiefert, vereinzelt Bänke von quarzitischem Sandstein (Geologisches Landesamt NRW 1980)

Weitergehende Maßnahmen: Kalkungen bzw. der Einsatz von Pflanzenschutzmitteln sind nicht bekannt

Sonstige Flächeninformationen:

Vermutlich durch Pflanzung mit anschließender Läuterung (Stammzahlreduktion) in der frühen Zeit sowie mehreren Durchforstungen mit selektiver Baumentnahme entstanden. Nach 2004 wurden die Maßnahmen eingestellt. Historischen Karten ist zu entnehmen (z. B. Uraufnahme 1836-1850, vgl. tim-online.nrw.de/tim-online/letzter Zugriff: 05.11.2015), dass die Fläche bereits seit mindestens dem frühen 19. Jh. bewaldet ist. Ab 2017 ist für diese Fläche ein Voranbau mit Rotbuche geplant (Informationen: Herr Falkenberg, Nationalparkverwaltung).

(2): Standortname: Fichte Süd Replikat: Fichtenforst 2

Standortkennung: EB_NW12 **Koord. (WGS 84)**: 50.52131/6.34056

Standortbeschreibung:

Durch Pflanzung entstandener Fichtenbestand mit einem Alter von 90 Jahren auf montanem Buchenwaldstandort

Vegetationseinheit:

montaner Fichtenforst auf Buchenwaldstandort

Biotoptyp BTL D: 44.04.01.02 - Fichtenforst frischer

Standorte

EUNIS: G3.F11 - Highly artificial

coniferous plantations

Potentielle Natürliche Vegetation (PNV): Rasenschmielen-Hainsimsen-Buchenwald

Hangneigung: 2°/Süd-Ost Höhe ü. NHN: 577 m Bodentyp: Braunerde pH-Wert: 3,00

Bodenart: Schwach humoser, steiniger, toniger Schluff Humusform: feinhumusreicher rohhumusartiger Moder Geologie: Wüstebachschiefer (Unterdevon, Siegen); Tonstein, stark geschiefert, vereinzelt Bänke von quarzitischem Sandstein (Geologisches Landesamt NRW 1980)

Weitergehende Maßnahmen: Boden-Kalkung 1986, Einsatz von

Pflanzenschutzmitteln ist nicht bekannt

Sonstige Flächeninformationen:

Wie der Uraufnahme (1836-1850) zu entnehmen ist (vgl. tim-online.nrw.de/tim-online/letzter Zugriff: 05.11.2015), war die Fläche bereits im 19. Jh. mit Wald bedeckt. Die letzten Durchforstungsmaßnahmen fanden im Jahr 2010 statt (Informationen: Herr Falkenberg, Nationalparkverwaltung).

(3): Standortname: Langerscheid 1

Replikat: Fichtenforst 3

Standortkennung: EB_NW13 **Koord. (WGS 84)**: 50.55002/6.34147

Standortbeschreibung:

Durch nachkriegszeitliche Pflanzung entstandener Fichtenbestand mit einem Alter von etwa 70 Jahren auf montanem Buchenwaldstandort

Vegetationseinheit:

montaner Fichtenforst auf Buchenwaldstandort

Biotoptyp BTL D: 44.04.01.02 - Fichtenforst frischer

Standorte

EUNIS: G3.F11 - Highly artificial

coniferous plantations

Potentielle Natürliche Vegetation (PNV):

Flattergras-Hainsimsen-Buchenwald

Hangneigung: Höhe ü. NHN: 584 m
Bodentyp: Braunerde
pH-Wert: 2,90

Bodenart: Stark steinig, grusiger, sehr schwach humoser toniger

Schluff + lehmig sandiger Schluff

Humusform: feinhumusreicher rohhumusartiger Moder **Geologie**: Obere Ruhrberger Schichten (Unterdevon, Siegen); Tonstein stark geschiefert, Schluffstein und Sandstein

(Geologisches Landesamt NRW 1980)

Weitergehende Maßnahmen: In den letzten 25 Jahren keine Kalkung, davor ungewiss; kein Einsatz von Pflanzenschutzmitteln

Sonstige Flächeninformationen:

Die am Bestandsrand stehenden alten Buchen lassen vermuten, dass der Anteil der Buchen im Vorbestand höher war als heute (Informationen: Herr Dickmann, Nationalparkverwaltung). Die Fläche war bereits im 19. Jh. mit Wald bedeckt, wie der Uraufnahme (1836-1850) zu entnehmen ist (vgl. tim-online.nrw. de/tim-online/letzter Zugriff: 05.11.2015).

(4): Standortname: Wächterbuche

Replikat: Buchenwald 1

Standortkennung: EB_NW21 **Koord. (WGS 84)**: 50.54022/6.33821

Standortbeschreibung:

Standortgerechter Buchenwald mit einem Alter von ca. 135

Jahrei

Vegetationseinheit:

Luzulo-Fagetum Meusel 1937

Biotoptyp BTL D: 43.07.04.03 - Bodensaurer

Buchenwald der montanen bis

hochmontanen Stufe

EUNIS: G1.6122 - Western medio-

European montane woodrush beech forests

$\label{lem:potential} \textbf{Potentielle Natürliche Vegetation (PNV):}$

Flattergras-Hainsimsen-Buchenwald

Hangneigung: 5°/Ost Höhe ü. NHN: 560 m Bodentyp: Braunerde pH-Wert: 3,38

Bodenart: Sehr schwach humoser, steinig bis stark steiniger-

grusiger, mittel bis stark toniger Schluff **Humusform**: feinhumusarmer Moder

Geologie: Wüstebachschiefer (Unterdevon, Siegen); Tonstein, stark geschiefert, vereinzelt Bänke von quarzitischem Sandstein

(Geologisches Landesamt NRW 1980)

Weitergehende Maßnahmen: In den letzten 25 Jahren keine Kalkung, davor ungewiss; kein Einsatz von

Pflanzenschutzmitteln

Sonstige Flächeninformationen:

Die letzte schwache Durchforstung hat in der 2. Hälfe der 1990er Jahre stattgefunden. Seit 1990 ist die Fläche als Saatgutbestand anerkannt und wurde mehrfach, zuletzt 2014, beerntet (Informationen: Herr Dickmann, Nationalparkverwaltung). Die Fläche war bereits in der ersten Hälfte des 19. Jh. mit Wald bedeckt, wie der Uraufnahme (1836-1850) zu entnehmen ist (vgl. tim-online.nrw.de/tim-online/letzter Zugriff: 05.11.2015).

(5): Standortname: Langerscheid 2

Replikat: Buchenwald 2

Standortkennung: EB_NW22 **Koord.** (**WGS 84**): 50.54611/6.34046

Standortbeschreibung: Standortgerechter Buchenwald mit

einem Alter von ca. 125 Jahren

Vegetationseinheit:Luzulo-Fagetum Meusel 1937BiotoptypBTL D: 43.07.04.03 - Bodensaurer

Buchenwald der montanen bis

hochmontanen Stufe

EUNIS: G1.6122 - Western medio-

European montane woodrush beech forests

Potentielle Natürliche Vegetation (PNV):

Flattergras-Hainsimsen-Buchenwald **Hangneigung**: 4°/Süd-Ost **Höhe ü. NHN**: 554 m

Bodentyp: Pseudogley-Braunerde

pH-Wert: 3,19

Bodenart: Sehr schwach humoser, steinig bis stark steiniger-

grusiger, mittel bis stark toniger Schluff **Humusform**: feinhumusarmer Moder

 $\textbf{Geologie} \hbox{: W\"{u}} \hbox{stebach schiefer (Unterdevon); stark geschieferter,}$

sandarmer Tonstein, vereinzelt Bänke von quarzitischem Sandstein (Geologisches Landesamt NRW 1980) **Weitergehende Maßnahmen**: In den letzten 25 Jahren

keine Kalkung, davor ungewiss; kein Einsatz von

Pflanzenschutzmitteln

Sonstige Flächeninformationen:

Wald wurde regelmäßig durchforstet, wobei die Buchen-Naturverjüngung gefördert wurde (Informationen: Herr Dickmann, Nationalparkverwaltung). Die Uraufnahme von 1836-1850 zeigt, dass die Untersuchungsfläche bereits in der ersten Hälfte des 19. Jh. mit Wald bedeckt war (vgl. tim-online.nrw.de/ tim-online/letzter Zugriff: 05.11.2015). (6): Standortname: Naturwald Nord

Replikat: Buchenwald 3

Standortkennung: EB_NW23 **Koord. (WGS 84)**: 50.56977/6.36014

Standortbeschreibung: Naturnaher Buchenwald mit einem Alter

von ca. 190 Jahren

Vegetationseinheit:Luzulo-Fagetum Meusel 1937BiotoptypBTL D: 43.07.04.03 - Bodensaurer

Buchenwald der montanen bis

hochmontanen Stufe

EUNIS: G1.6122 - Western medio-

European montane woodrush beech forests

Potentielle Natürliche Vegetation (PNV):

Typischer Hainsimsen-Buchenwald im Komplex mit

Flattergras-Hainsimsen-Buchenwald
Hangneigung: 2°/Süd-Ost
Höhe ü. NHN: 508 m
Bodentyp: Braunerde
pH-Wert: 3,29

Bodenart: Schwach humoser, mittel bis stark steinig-grusiger,

stark toniger Schluff + schluffiger Lehm

Humusform: feinhumusreicher rohhumusartiger Moder **Geologie**: Obere Ruhrberger Schichten (Unterdevon, Siegen);

Tonstein stark geschiefert, Schluffstein und Sandstein

(Geologisches Landesamt NRW 1980)

Weitergehende Maßnahmen: In den letzten 25 Jahren keine Kalkung, davor ungewiss; kein Einsatz von

Pflanzenschutzmitteln

Sonstige Flächeninformationen:

Autochthoner Bestand, seit 1970 keine Bewirtschaftung (Naturwaldparzelle). Aus Verkehrssicherheitsgründen wurden einzelne Stämme aufgearbeitet. (Informationen: Herr Dickmann, Nationalparkverwaltung). Auch die Uraufnahme von 1836-1850 (tim-online.nrw.de/tim-online/letzter Zugriff: 05.11.2015) weist die Fläche als Wald aus.

(7): Standortname: B265 Gemünd Replikat: trock. Eichenwald 1

Standortkennung: EB_NW31 **Koord. (WGS 84)**: 50.58027/6.50202

Standortbeschreibung: Naturnaher Eichentrockenwald in

Hanglage mit einem Alter von ca. 75 Jahren

Vegetationseinheit: Luzulo-Quercetum petraeae Hilitzer 1932

nomen inversum propos.

Biotoptyp BTL D: 43.08.05.01 - Eichen-Trockenwald

basenarmer Standorte

EUNIS: G1.71 - Western white oak woods

and related communities

Potentielle Natürliche Vegetation (PNV):

Habichtskraut-Traubeneichenwälder (azonal)

Hangneigung: 15°/Süd-West Höhe ü. NHN: 445 m Bodentyp: Braunerde pH-Wert: 3,37

Bodenart: Sehr schwach humoser, stark steinig-grusiger toniger

und lehmig sandiger Schluff

Humusform: feinhumusarmer Moder

Geologie: Klerfer und Heimbacher Schicht (Unterdevon, Ems); Tonstein, geschiefert, Schluffstein, Sandstein (Geologisches

Landesamt NRW 1980)

Weitergehende Maßnahmen: Kalkung und Einsatz von

Pflanzenschutzmitteln nicht bekannt Sonstige Flächeninformationen:

Extensive Nutzung durch sporadische Brennholzgewinnung (Informationen: Herr Gromotka, Nationalparkverwaltung). Der Uraufnahme von 1836-1850 (tim-online.nrw.de/tim-online/letzter Zugriff: 05.11.2015) ist zu entnehmen, dass die Fläche bereits in der ersten Hälfte des 19. Jh. mit Wald bedeckt war.

(8): Standortname: Schlitterley Replikat: trock. Eichenwald 2

Standortkennung: EB_NW32 **Koord. (WGS 84)**: 50.62629/6.41537

Standortbeschreibung: Naturnaher Eichentrockenwald in

Hanglage mit einem Alter von ca. 105 Jahren

Vegetationseinheit: Luzulo-Quercetum petraeae Hilitzer 1932

nomen inversum propos.

Biotoptyp BTL D: 43.08.05.01 - Eichen-Trockenwald

basenarmer Standorte

EUNIS: G1.71 - Western white oak woods

and related communities

Potentielle Natürliche Vegetation (PNV): Habichtskraut-Traubeneichenwälder (azonal)

Hangneigung: Kuppenlage Höhe ü. NHN: 386 m Bodentyp: Braunerde pH-Wert: 3,24

Bodenart: Sehr schwach humoser, sehr stark steiniger, toniger

und lehmig -sandiger Schluff

Humusform: feinhumusarmer rohhumusartiger Moder **Geologie**: Obere Ruhrberger Schichten (Unterdevon, Siegen); Tonstein stark geschiefert, Schluffstein und Sandstein

(Geologisches Landesamt NRW 1980)

Weitergehende Maßnahmen: Kalkung und Einsatz von

Pflanzenschutzmitteln nicht bekannt

Sonstige Flächeninformationen:

Ab 1993 stillgelegt, so dass keine Nutzung (auch keine Brennholzwerbung) mehr stattgefunden hat (Informationen: Herr Gromotka, Nationalparkverwaltung). Die Uraufnahme von 1836-1850 (tim-online.nrw.de/tim-online/letzter Zugriff: 05.11.2015) zeigt, dass die Fläche bereits in der ersten Hälfte des 19. Jh. mit Wald bedeckt war.

(9): Standortname: Weiersheld Replikat: trock. Eichenwald 3

Standortkennung: EB_NW33 **Koord. (WGS 84)**: 50.62028/6.49382

Standortbeschreibung:

Naturnaher Eichentrockenwald in Hanglage mit einem Alter von

ca. 110 Jahren

Vegetationseinheit: Luzulo-Quercetum petraeae Hilitzer 1932

nomen inversum propos.

Biotoptyp BTL D: 43.08.05.01 - Eichen-Trockenwald

basenarmer Standorte

EUNIS: G1.71 - Western white oak woods

and related communities

Potentielle Natürliche Vegetation (PNV):

Habichtskraut-Traubeneichenwälder (azonal)

Hangneigung: 17°/Süd Höhe ü. NHN: 340 m Bodentyp: Braunerde pH-Wert: 3,18

Bodenart: Sehr schwach humoser, schwach kiesig bis stark steiniger toniger und lehmig-sandiger Schluff bis sandiger Lehm

Humusform: feinhumusarmer Moder

Geologie: Wüstebachschiefer (Unterdevon); stark geschieferter, sandarmer Tonstein, vereinzelt Bänke von quarzitischem

Sandstein (Geologisches Landesamt NRW 1980)

Weitergehende Maßnahmen: Kalkung und Einsatz von

Pflanzenschutzmitteln nicht bekannt

Sonstige Flächeninformationen:
Ab 1993 stillgelegt, so dass keine Nutzung (auch keine

Brennholzwerbung) mehr stattgefunden hat (Informationen: Herr Gromotka, Nationalparkverwaltung). Die Waldparzelle war bereits in der ersten Hälfte des 19. Jh. mit Wald bedeckt (vgl. Uraufnahme von 1836-1850 (tim-online.nrw.de/tim-online/letzter

Zugriff: 05.11.2015).

Tab. 8: Ergebnisse der Bodenvariablen-Messungen (Mittelwerte).

	Bodenfeuchte	nH-Wort	C/N-	Cgesamt	Ngesamt	Carbonat
Untersuchungs-	bodemeuchte	pri-wert	C/N-	Cgesaint	ngesamt	Carbonat
fläche	/% [Masse]		Verhältnis	/% [Masse]	/% [Masse]	/g/kg
EB_NW11	43,0	2,87	18,45	17,01	0,92	0,42
EB_NW12	42,2	3,00	20,00	16,95	0,83	0,56
EB_NW13	41,0	2,90	23,52	26,18	1,11	0,36
Mittelwert	42,0	2,92	20,66	20,05	0,95	0,44
EB_NW21	41,2	3,38	17,41	15,06	0,86	0,27
EB_NW22	40,3	3,19	16,67	14,39	0,86	0,34
EB_NW23	36,6	3,29	18,63	15,79	0,84	0,31
Mittelwert	39,4	3,29	17,57	15,08	0,85	0,30
EB_NW31	25,9	3,37	16,85	9,59	0,57	0,31
EB_NW32	22,5	3,24	18,32	21,34	1,18	0,39
EB_NW33	21,1	3,18	21,20	12,58	0,60	0,44
Mittelwert	23,1	3,26	18,79	14,50	0,78	0,38

d. h. bepflanzte Buchenwaldstandorte zu verstehen. Diese "Kultivierung" der Fichten zur Holzgewinnung in der Nordeifel ist jedoch seit langer Zeit typisch und die entsprechenden Standorte sind entsprechend langjährig ökologisch verändert. Die Veränderung wird hauptsächlich durch die veränderte Streu und die damit einhergehende veränderte Humusbildung sichtbar sowie durch die damit verbundene pH-Wert-Absenkung.

Die Untersuchungsflächen EB NW11, EB NW12 und EB NW13 gehören aufgrund der räumlichen Nähe zu den Buchenwaldstandorten und ihrer Stockung auf denselben Böden zu dieser genannten Sylvofacies (Tab. 11). Im Vergleich zu den entsprechenden natürlichen Buchenwaldstandorten (s. u.) sind diese Fichtenforste mit 14 bis 32 Arten pflanzenartenreicher. Dieser Artenreichtum kommt durch das Hinzukommen von Stör- sowie von Säurezeigern zustande, die in natürlichen Buchenwäldern untypisch sind. Es ist jedoch auch deutlich sichtbar, dass die eigentlichen Kennarten der Buchenwälder, wie z. B. Luzula luzuloides, Oxalis acetosella, Milium effusum, stark vertreten sind. Dies kennzeichnet die edaphischen Ähnlichkeiten der Fichtenstandorte mit denen der Buchenstandorte innerhalb der vorliegenden Untersuchung. Aufgrund des relativ hohen Wilddichte (Verbiss junger Laubbäume) sowie des bestehenden Fichtenreinbestands ist die Art in der Lage, sich auf den Flächen zu verjüngen.

5.3.2.2 Luzulo-Fagetum Meusel 1937

Formation: XI. Waldgesellschaften

Klasse: Querco-Fagetea Br.-Bl. et Vlieger in

Vlieger 1937

Ordnung: Quercetalia roboris Tx. 1931,

Sommergrüne Laubwälder

Verband: Luzulo-Fagion Lohmeyer et Tx.

in Tx. 1954, Buchenwälder

Unterverband: Luzulo-Fagenion Lohm. & R.Tx.,

bodensaure, nährstoffarme

Buchenwälder

Assoziation: *Luzulo-Fagetum* Meusel 1937

Sub-Assoziation: Luzulo-Fagetum milietosum

Meusel 1937

Flattergras-Hainsimsen-Buchenwald

Biotoptyp

BTL D: 43.07.04.03

Bodensaurer Buchenwald der

montanen bis hochmontanen Stufe

EUNIS: G1.6122

Western medio-European montane

woodrush beech forests

Alle in Mitteleuropa vorkommenden Buchenwälder auf stark sauren Böden werden im Unterverband des *Luzulo-Fagenion* zusammengefasst. In den Mittelgebirgen treten häufig Hainsimsen-Buchenwälder auf, die durch das Vorkommen von *Luzula luzuloides* gekennzeichnet sind. Es handelt sich um Hallenwälder mit einer sehr spärlichen Krautvegetation und einer nahezu lückenlosen Moderhumus-Auflage. Diese Buchenwälder haben mit den meso- und eutraphenten Buchenwaldgesellschaften bis auf ihre Physiognomie, d. h. dem Vorherrschen der Buche, nur wenige floristische und bodenökologische Gemeinsamkeiten (Härdtle et al. 2008).

Nach Krause & Möseler 1995 lassen sich in der Nordeifel verschiedene Subassoziationen differenzieren, wonach die untersuchten Flächen EB_NW21, EB_NW22 und EB_NW23 dem *Luzulo-Fagetum milietosum* (Flattergras-Hainsimsen-Buchenwälder) zuzuordnen sind (siehe **Tab. 12**). Diese Subassoziation zeigt innerhalb der Moderbuchenwälder die am besten Basen versorgten Standorte an. Sie sind weniger stark versauert und besitzen moderartige, feinhumusreiche, biologisch aktive Moderformen (Härdtle et al. 2008). Somit vermitteln sie floristisch wie standörtlich zu den basenreicheren Standorten der Waldmeister-Buchenwälder.

Die Vegetationsaufnahmen der drei Untersuchungsflächen zeigen für die Gesellschaft typische artenarme Krautschichten. Insgesamt lag die Artenzahl der Pflanzen zwischen 7 und 9 Arten. Auf allen Untersuchungsflächen dominierte die Buche mit geschlossenem Kronendach. In den Untersuchungsflächen EB NW21 und EB NW22 konnten weitere typische Bäume wie Acer pseudoplatanus und Fraxinus excelsior sowie die Strauchart Sorbus aucuparia (EB NW22) in der Verjüngung festgestellt werden. Luzula luzuloides wurde ebenso nur in diesen beiden Flächen aufgenommen. Die Zugehörigkeit der Flächen zur Subassoziation des L.-F. milietosum zeigt sich durch das Vorkommen von Milium effusum sowie Oxalis acetosella, Anemone nemorosa, Dryopteris filix-mas und Polygonatum multiflorum, die allesamt mesotraphentere Bodenverhältnisse anzeigen.

5.3.2.3 Luzulo-Quercetum petraeae Hilitzer 1932

Formation: XI. Waldgesellschaften

Klasse: Querco-Fagetea Br.-Bl. et Vlieger in

Vlieger 1937

Ordnung: Quercetalia roboris Tx. 1931,

Sommergrüne Laubwälder

Verband: Quercion roboris Malcuit 1929
Assoziation: Luzulo-Ouercetum petraeae Hil

n: *Luzulo-Quercetum petraeae* Hilitzer 1932 Hainsimsen-(Habichtskraut)-

Traubeneichenwälder

Vikariante: von Teuc Biotoptyp

von Teucrium scorodonia

BTL D: 43.08.05.01 Eichen-Trockenwald

basenarmer Standorte

EUNIS: G1.71 Western white oak woods and

related communities

Innerhalb des *Quercion*-Verbandes werden bodensaure Eichenmischwälder zusammengefasst, in denen aufgrund der standortbedingten Feuchteverhältnisse (Wechselfeuchte oder zeitweilige Trockenheit) die Buche in ihrer Konkurrenzkraft zurücktritt. In den exponierten, trockenen und gleichzeitig wärmebegünstigten Hanglagen tritt die Traubeneiche als bestandsbildende Art hervor und bildet das *Luzulo-Quercetum petraeae*. Die hier wachsenden

Bäume erreichen typischerweise kaum 10 m Höhe. Die Böden in diesen Hanglagen sind meist flachgründige Ranker bzw. Ranker-Braunerden. Im Unterwuchs finden sich verschiedene Habichtskraut-Arten sowie einige durch den lückigen Baumbestand begünstigte, lichtliebende krautige Pflanzen. Ebenso ist die Strauchschicht durch die höhere Lichtversorgung begünstigt. Bodenreaktion, Bodenart sowie Nährstoffversorgung sind jedoch ähnlich wie in den syntaxonomisch benachbarten Gesellschaften der *Luzulo-Fageten* und somit werden sie aufgrund ähnlicher azidotoleranter Arten in der Krautschicht in derselben soziologischen Ordnung gefasst (Pott 1992).

Im Nationalpark Eifel werden die Untersuchungsflächen EB_NW31, EB_NW32 und EB_NW33 als *Luzulo-Ouercetum petraeae* in der geographischen Vikariante

Tab. 9: Korngrößenverteilung (in Masse-%) und Bodenart. T. Ton; U: Schluff; S: Sand; Uls: sandig-lehmiger Schluff; Us: sandiger Schluff; Ut2: schwach toniger Schluff; Ut3: mittel toniger Schluff (Arbeitsgruppe Boden 1996).

Untersuchungs-	Korngrößenverteilung		Bodenart	
fläche	Ton /%	Schluff /%	Sand /%	
EB_NW11	10,1	59,6	30,3	Uls
EB_NW12	8,9	64,5	26,6	Uls
EB_NW13	7,9	59,2	32,9	Us
EB_NW21	12,2	61,9	25,9	Uls
EB_NW22	10,1	65,6	24,3	Ut2
EB_NW23	12,7	63,3	24,0	Uls
EB_NW31	14,4	66,5	19,1	Ut3
EB_NW32	8,3	53,3	38,4	Uls
EB_NW33	12,2	60,5	27,3	Uls

Tab. 10: Mediane der Ellenbergzahlen für die Bodenreaktion, den Stickstoffgehalt sowie die Feuchte-, Licht- und Temperaturbedingungen auf den Untersuchungsflächen im NP Eifel.

		Reaktion	Stickstoffzahl	Feuchtezahl	Lichtzahl	Temperatur
	EB_NW11	3,5	5,0	5,0	6,0	5,0
Fichte	EB_NW12	4,0	5,0	5,0	6,0	5,0
	EB_NW13	4,0	5,5	5,0	4,5	5,0
	EB_NW21	4,0	6,0	5,0	4,0	5,0
Buche	EB_NW22	4,0	6,0	5,0	4,0	5,0
	EB_NW23	5,0	5,0	5,0	3,0	5,0
	EB_NW31	3,0	4,0	5,0	5,0	5,0
Eiche	EB_NW32	3,5	3,0	4,0	6,0	5,5
	EB_NW33	3,0	3,0	4,0	6,0	5,0

Reaktion St		Stickstoffzahl		Feuchtezahl		Lichtzahl		Temperatur		
sauer	0-4,0	mager	0-4,0	trocken	0-4,0	schattig	0-4,0	kühl	0-4,0	
neutral	4,1-5,5	mäßig	4,1-5,5	frisch	4,1-5,5	halblicht	4,1-5,5	mäßig warm	4,1-5,5	
basisch	5,6-10	eutroph	5,6-10	feucht	5,6-10	volllicht	5,6-10	warm	5,6-10	

Tab. 11: Montaner Fichtenforst (Ersatzgesellschaft des Luzulo-Fagetums); V-K: Verband-Klasse.

	Standort	EB_NW11	EB_NW12	EB_NW13
	Artenzahl	14	31	17
Baumschicht				
	Picea abies	4	4	3
Strauchschicht u. Verjüngung				
Begleitarten	Picea abies	+	1	+
	Rubus fruticosus agg.	1	1	+
	Rubus idaeus L.	+	2	+
	Sorbus aucuparia L.	1	1	
	Fagus sylvatica L.			+
	Acer pseudoplatanus L.		+	
	Ilex aquifolium L.			+
	Sambucus racemosa L.	+		
Krautschicht				
Störanzeiger	Digitalis purpurea L.	+	+	+
	Mycelis muralis (L.) Dumort.	+	1	
	Galeopsis tetrahit L.		+	+
	Epilobium angustifolium L.		+	
Säurezeiger	Teucrium scorodonia L.	+	+	
_	Vaccinium myrtillus L.		2	3
	Galium saxatile L.	+	+	
	Cytisus scoparius (L.) Link	+	+	
	Lonicera periclymenum L.		+	
Kennarten des Luzulo- Fagetum	Luzula luzuloides (Lam.) Dandy & Wilm.	1	2	1
V-K Fagion-Querco-	Dryopteris carthusiana (Vill.) Fuchs	1	1	1
Fagetea	Oxalis acetosella L.	•	2	1
	Festuca altissima All.			1
	Deschampsia flexuosa (L.) Trin.	3	2	1
	Milium effusum L.	•		+
	Dryopteris filix-mas (L.) Schott	•	+	•
	Dryopteris dilatata (Hoffm.) A. Gray	•		+
	Poa chaixii Vill.	•	+	•
Begleitarten	Calamagrostis canescens (Weber) Roth	+	2	1
	Senecio ovatus (G. Gaertn., B. Mey. & Scherb.) Willd.		1	1
	Cardamine flexuosa With.		+	
	Dactylis glomerata L.		+	
	Deschampsia cespitosa (L.)		1	
	Hieracium piloselloides Vill.		+	
	Hieracium lachenalii C. C. Gmel.	•	+	
	Holcus lanatus L.		1	
	Lysimachia nemorum L.		+	
	Moehringia trinervia (L.) Clairv.		+	
	Viola spec.		+	

Tab. 12: Luzulo-Fagetum Meusel 1937 (Hainsimsen Buchenwald), Sub-Assoziation Luzulo-Fagetum milietosum (Flattergras-Hainsimsen-Buchenwald); V-K: Verband-Klasse.

	Standort	EB_NW21	EB_NW22	EB_NW23
	Artenzahl	9	8	7
Baumschicht				
	Fagus sylvatica L.	5	5	5
Strauchschicht u. Verjüngung				
	Fagus sylvatica L.	1	3	2
	Acer pseudo-platanus L.	1	1	
	Fraxinus excelsior L.	1		
	Sorbus aucuparia L.		+	
Begleitarten				
	Rubus fruticosus agg.		+	
Krautschicht				
Kennarten des Luzulo	o-Fagetum			
	Luzula luzuloides (Lam.) Dandy & Wilm.	1	1	
V-K Fagion-Querco-F	'agetea			
	Dryopteris carthusiana (Vill.) Fuchs	+		+
	Oxalis acetosella L.	+	+	
	Festuca altissima I		1	2
	Milium effusum L.		+	+
	Anemone nemorosa L.	+		
	Dryopteris filix-mas (L.) Schott	+		
	Polygonatum multiflorum (L.) All.			+
Begleitarten				
	Galeopsis tetrahit L.			+
	Luzula pilosa (L.) Willd.			+
	Polygonatum verticillatum (L.) All.	+		•

Tab. 13: *Luzulo-Quercetum petraeae* Hilitzer 1932 (Hainsimsen-(Habichtskraut)-Traubeneichenwälder), geographische Vikariante von *Teucrium scorodonia* (subatlantisch-ozeanisch); AC: Assoziations-Charakterarten; V-O: Verband-Ordnung; KC: Klassen-Charakterarten.

	Standort	EB_NW31	EB_NW32	EB_NW33
	Artenzahl	29	28	12
Baumschicht				
	Quercus petraea Liebl.	5	4	4
Strauchschicht u. Verjüngung				
Teucrium scorodonia	-Vikariante			
	Cytisus scoparius (L.)	+	1	+
	Sorbus aria (L.)	+	•	
	Quercus petraea Liebl.	1	1	+
	Sorbus aucuparia L.	+	1	•
	Fagus sylvatica L.		+	•
	Corylus avellana L.	1		
Begleitarten				
	Picea abies (L.)		+	+
	Pinus sylvestris L.			+
	Acer pseudoplatanus L.	+		
	Carpinus betulus L.	1		

Tab. 13 (Fortsetzung).

		Standort	EB_NW31	EB_NW32	EB_NW33
		Artenzahl	29	28	12
		Crataegus monogyna Jacq.	+	•	
		Prunus spinosa agg.	+	•	
		Fraxinus excelsior L.	+	•	
		Rubus idaeus L.	1	+	
Krautschicht					
	Teucrium scorodonia	-Vikariante			
		Teucrium scorodonia L.	2	2	1
		Genista pilosa L.		+	
		Lonicera periclymenum L.	+		
	AC Luzulo-Quercetu	ım			
		Poa nemoralis L.	1	1	
		Hieracium glaucinum Jord.	•	1	+
		(schmidtii - murorum)			
		Campanula rotundifolia agg.		+	
	V-O Quercion - Quer	rcetalia roboris			
		Melampyrum pratense L.	+	+	+
		Calluna vulgaris (L.) Hull	•	1	+
		Anthoxanthum odoratum L. s. str.	1	+	
		Hypericum pulchrum L.	+		
		Deschampsia flexuosa (L.) Trin.	1	1	1
		Luzula luzuloides (Lam.) Dandy & Wilm.	1	1	+
		Vaccinium myrtillus L.	1		+
		Veronica officinalis L.		1	+
		Agrostis capillaris L.		1	
		Carex pilulifera L.	+		
	KC Querco-Fagetea				
		Stellaria holostea L.	1	1	
		Holcus mollis L.	2		
		Anemone nemorosa L.	1	•	
Krautschicht					
	Begleitarten				
		Dryopteris filix-mas (L.) Schott		+	
		Festuca altissima All.		+	
		Festuca filiformis Pourr.	+	1	
		Galeopsis tetrahit L.	+		
		Galium saxatile L.	+	+	
		Hypericum perforatum L.		+	
		Luzula pilosa (L.) Willd.	+		
		Luzula sylvatica (Huds.) Gaudin s. l.		1	
		Rosa spec.	+		
		Rumex acetosella L.		+	
		Senecio inaequidens DC.		+	
		Silene vulgaris (Moench) Garcke s. l.		+	
i	-	Silvers Fungar to (Intodicti) Guicke 5. 1.	•		·

von Teucrium scorodonia eingestuft (**Tab. 13**). Die Baumschicht der Untersuchungsflächen wurde durch krüppelartig wachsende Traubeneichen bestimmt. Im Unterwuchs der lichten Bestände konnten einige Straucharten, wie beispielsweise Sorbus aucuparia, Corylus avellana und Cytisus scoparius sowie Baumverjüngung festgestellt werden. Die Krautschicht wurde neben den die Assoziation kennzeichnenden Hieracium-Arten auch durch atlantisch und subatlantisch verbreitete Arten wie Teucrium scorodonia und Genista pilosa gebildet.

5.4 Ergebnisse und Diskussion der einzelnen Bodentiergruppen

5.4.1 Oribatida 5.4.1.1 Individuen- und Artenzahlen

Im Nationalpark Eifel wurden im Untersuchungsjahr 2014 insgesamt 34.630 Individuen aus 156 Arten nachgewiesen (vgl. **Tab. 14**, **Tab. Anhang 1**, **7-9**, Erfassung der Oribatida Kap. 4.4.1).

Der individuenreichste Biotoptyp war der Fichtenforst mit 14.644 determinierten Oribatiden, die wenigsten Individuen wurden auf den Buchenwaldflächen gefangen (7.299 Tiere). Innerhalb des Biotoptyps erwiesen sich die Individuenzahlen der Fichentenforst-

Standorte als weitgehend homogen mit 4.630 bis 5.299 Hornmilben. Bei den Laubwald-Biotoptypen dagegen unterschieden sich die Individuenzahlen der einzelnen Untersuchungsflächen deutlich. So wurden z. B. in den *Luzulo-Querceten* auf der Fläche EB_NW32 (5.038 Individuen) nahezu doppelt so viele Tiere gefangen wie auf der Fläche EB NW31 (2.652).

Die Zahl der nachgewiesenen Arten unterschied sich zwischen den Biotoptypen. Der artenreichste Biotoptyp war der trockene Eichenwald mit insgesamt 112, der artenärmste der Fichtenforst mit insgesamt 83 Arten. Innerhalb der drei Biotoptypen unterschieden sich die Untersuchungsflächen hinsichtlich ihrer Artenzahl mit jeweils maximal drei Arten nur wenig.

BeimVergleich der Frühjahrs-und Herbstprobenahmen fällt auf, dass in den meisten Fällen die Individuen- und Artenzahl der Frühjahrstermine höher war. Einzige Ausnahme war die Fläche EB_NW32, bei der im Frühjahr trotz größerer Artenzahl weniger Tiere als im Herbst gefangen wurden.

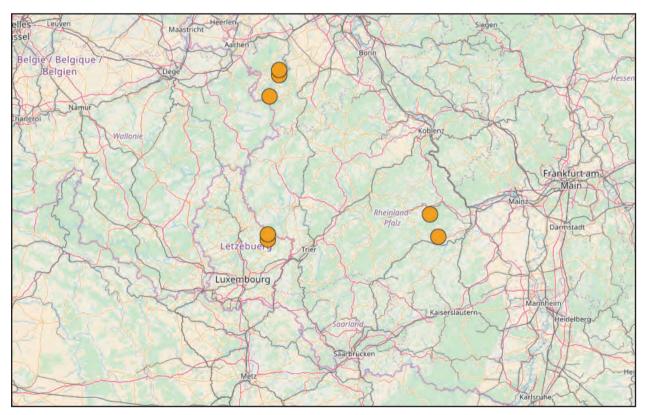
Häufigste Art der Untersuchung war *Oppiella nova* mit 8.452 Individuen, gefolgt von *Oppiella falcata* (5.388 Individuen), *Oppiella subpectinata* (2.152 Individuen) und *Microppia minus* (1.704 Individuen) (siehe **Tab. Anhang 1-3**). Damit entfielen 51% der nachgewiesenen Oribatiden auf die vier häufigsten Arten bzw. auf Vertreter der Familie der Oppiidae. 25 der 156 Arten wurden als Einzelindividuen nachgewiesen.

Tab. 14: Arten- und Individuenzahlen der Oribatiden auf den Untersuchungsflächen des Nationalparks Eifel.

		Individuenzahlen			Artenzahlen		
NIW/11	Frühjahr	2427	4630		51	57	
1N WV 11	Herbst	2203	4030		31	37	
NW/12	Frühjahr	3136	5200	14644	49	60	83
IN W 12	Herbst	2163	3299	14044	36	00	63
NW/12	Frühjahr	3082	4715		55	50	
11 11 13	Herbst	1633	4/13		28	36	
NW/21	Frühjahr	945	1804		57	65	
14 44 21	Herbst	859	1004		36	03	
NIW/22	Frühjahr	1382	2228	7200	56	62	95
Buche NW22	Herbst	856	2238	1233	33	02	93
NIW/22	Frühjahr	1769	2257		61	65	
IN W 23	Herbst	1488	3231		35	0.5	
NW/31	Frühjahr	2072	2652		63	60	
1N W 31	Herbst	580	2032		37	09	
NIW/22	Frühjahr	2447	5028	12697	64	72	112
1 V VV 32	Herbst	2591	3038	12007	47	12	112
NW33	Frühjahr	2667	4007		65	72	
14 44 22	Herbst	2330	T991		41	12	
Nationalpark Eifel 2014		Individue	nzahl gesamt:	34630	Artenza	hl gesamt:	156
	NW11 NW12 NW13 NW21 NW22 NW23 NW31 NW32 NW33	NW11 Herbst Frühjahr Herbst Frühjahr Herbst Frühjahr Herbst NW21 Frühjahr Herbst Frühjahr Herbst NW22 Frühjahr Herbst	NW11 Frühjahr 2427 Herbst 2203 Frühjahr 3136 NW12 Herbst 2163 NW13 Frühjahr 3082 Herbst 1633 Herbst 859 NW21 Herbst 859 Frühjahr 1382 Herbst 856 NW23 Frühjahr 1769 Herbst 1488 Herbst 580 NW31 Frühjahr 2072 Herbst 2591 Frühjahr 2667 NW33 Herbst 2330	NW11 Frühjahr 2427 4630 Herbst 2203 4630 NW12 Frühjahr 3136 5299 Herbst 2163 4715 NW13 Frühjahr 3082 4715 Herbst 1633 1804 NW21 Frühjahr 945 1804 Herbst 859 2238 NW22 Herbst 856 2238 Frühjahr 1769 3257 NW33 Frühjahr 2072 2652 Herbst 580 5038 NW32 Herbst 2591 5038 NW33 Frühjahr 2667 4997 Herbst 2330 4997	NW11 Frühjahr 2427 Herbst 2203 4630 NW12 Frühjahr 3136 Herbst 2163 Frühjahr 3082 Herbst 1633 5299 14644 NW13 Frühjahr 3082 Herbst 1633 4715 NW21 Frühjahr 945 Herbst 859 Frühjahr 1382 Herbst 856 Frühjahr 1769 Herbst 1488 2238 7299 NW23 Frühjahr 2072 Herbst 580 Frühjahr 2072 Herbst 580 Frühjahr 2447 Herbst 2591 Frühjahr 2667 Herbst 2330 5038 12687	NW11 Frühjahr 2427 4630 51 NW12 Frühjahr 3136 49 49 NW12 Herbst 2163 5299 14644 49 NW13 Frühjahr 3082 4715 28 NW21 Herbst 1633 28 NW21 Herbst 859 1804 57 NW22 Herbst 856 33 56 NW22 Herbst 856 33 7299 33 NW23 Frühjahr 1769 3257 35 NW31 Herbst 1488 3257 35 NW32 Herbst 580 37 64 NW32 Herbst 2591 5038 12687 47 NW33 Frühjahr 2667 4997 65 Herbst 2330 4997 41	NW11 Frühjahr 2427 4630 51 57 Herbst 2203 31 57 NW12 Frühjahr 3136 5299 14644 49 60 NW13 Herbst 2163 255 58 NW13 Herbst 1633 28 55 58 NW21 Frühjahr 945 1804 57 65 65 NW22 Frühjahr 1382 2238 7299 56 62 NW23 Frühjahr 1769 3257 61 65 NW31 Frühjahr 2072 63 65 NW32 Herbst 580 37 69 NW32 Frühjahr 2447 5038 12687 47 72 NW33 Frühjahr 2667 4997 65 72 Herbst 2330 4997 41 41

5.4.1.2 Faunistische Anmerkungen zu ausgewählten Arten

Oribatula longelamellata (Schweizer, 1956)


Diese nach Weigmann (2006) montan bis alpin vorkommende Art wurde mit 11 Individuen auf der Fläche EB NW32 (Schlitterley) gefangen. Die Art wurde bislang weder in Edaphobase noch GBIF (Global Biodiversity Information Facility, https://www.gbif.org/, aufgerufen am 20.06.2018) erfasst. Weigmann (2006) gibt als Verbreitungsgebiet die Schweiz, Polen und Deutschland an, so dass ein Vorkommen in Deutschland angenommen werden konnte. Das Fehlen dieser Art in zahlreichen Untersuchungen weist darauf hin, dass ihr Vorkommen ggf. auf selten untersuchte Extremstandorte wie die in der Eifel vorkommenden Luzulo-Ouerceten beschränkt ist oder die Art allgemein selten bzw. in geringer Abundanz vorkommt. Die Art wurde im Rahmen der Länderstudie erstmalig in den Datenbestand von Edaphobase aufgenommen.

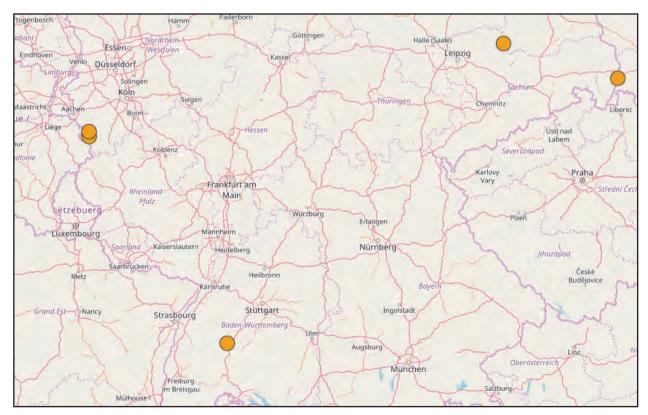
Pseudachipteria magna (Sellnick, 1928)

Die paläarktisch verbreitete Art *Pseudachipteria magna* (Weigmann 2006) wurde in der Länderstudie vorwiegend in den trockenen Eichenwäldern nachgewiesen und daher als Kennart dieses Waldtyps eingestuft. Die Verbreitung

der Art in Deutschland beschränkt sich entsprechend des Datenbestands in Edaphobase (Abfrage vom 07.03.2018, Burkhardt et al. 2014, siehe **Abb. 21**) auf den Süden und Westen des Landes, bisherige Fundmeldungen liegen aus Baden-Württemberg (03.04.1992-13.11.1993, det. Ludwig Beck und Franz Horak, Belege am SMNK) und Rheinland-Pfalz (16.04.1984/25.10.1984, det. Franz Horak, Belege am SMNK) vor (siehe auch Weigmann et al. 2015). Des Weiteren ist die Art aus Luxemburg bekannt (21.05.1998/21.10.1998, Beck et al. 2007). Die Fundorte dieser Studie erweitern daher das dokumentierte Verbreitungsgebiet dieser Art in Richtung Norden.

Quadroppia longisetosa Minguez, Ruiz & Subias, 1985 Quadroppia longisetosa konnte mit insgesamt 10 Individuen auf der Fläche EB_NW31 (B265 Gemünd) erstmalig in Deutschland belegt werden. Weigmann (2006) gibt das Vorkommen der Art für Spanien, die Kanarischen Inseln sowie die Schweiz an, wobei sie dort die organische Bodenauflage besiedeln soll. In GBIF ist ein Fund für die Niederländische Küste angegeben, in Edaphobase existieren derzeit keine weiteren Fundpunkte. Da seltenere Biotoptypen bzw. pflanzensoziologische Einheiten, zu denen auch das Luzulo-Quercetum zählt, bislang kaum auf ihre Oribatidenfauna hin untersucht wurden, bleibt die Verbreitung bzw. Konstanz der Art ungewiss.

Abb. 21: Fundorte von *Pseudachipteria magna* in Deutschland und Luxemburg. (Abfrage der Datenbank Edaphobase vom 07.03.2018, Kartendarstellung: Edaphobase).


Quadroppia maritalis Lions, 1982

Ouadroppia maritalis, eine aus mehreren Ländern Europas (Weigmann 2006) bekannte Art, ist entsprechend des Datenbestands in Edaphobase (Abfrage vom 07.03.2018, Burkhardt et al. 2014) ohne die in der Länderstudie gefangenen Tiere bisher nur von drei Fundorten in Deutschland bekannt (siehe Abb. 22, siehe auch Weigmann et al. 2015). Ein Tier wurde am 09.06.1998 auf einer Dauerbeobachtungsfläche in Sulz am Neckar (Baden-Württemberg, det. Ludwig Beck, Franz Horak und Steffen Woas, Belege am SMNK, Biotoptyp: Buchen(misch)wald frischer, basenreicher Standorte, 43.07.05 nach Riecken et al. 2003) gefangen. Weitere Funde stammen aus Sachsen bei Görlitz (15.08.2002, 3 Expl., det. Volker Hampe, Belege am SMNG) und Glauchau (25.10.2002, 1 Expl., det. Volker Hampe, Belege am SMNG). Im Rahmen der Länderstudie gelang der Fang von insgesamt acht Individuen in allen drei untersuchten Buchenwaldflächen.

4.4.1.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Waldtypen des Nationalparks

Die Verteilung der Oribatiden zeigt eine klare Differenzierung, die mit den unterschiedlichen Biotoptypen sowie deren unterschiedlichen Feuchte-, Säure- und Nährstoffgraden korreliert. So konnten für alle drei Biotoptypen Kennarten identifiziert werden, wie z. B. *Nanhermannia dorsalis* (Fichte), *Liacarus xylariae* (Buche) oder *Xenillus tegeocranus* (Eiche). Des Weiteren lassen sich edaphische Gruppen der Faktoren Feuchte, Säure- und Nährstoffgehalt bilden. Innerhalb der Feuchtegruppe treten Gruppen der wechselfeuchten und der trockenen, zeitweise austrocknenden Streu-/Bodenschichten auf, innerhalb der Säuregruppe lassen sich saure Laubwaldstandorte, frisch und saure sowie generell saure (im Mittel < pH=4 /basenarm) Standorte unterscheiden, und zur Nährstoffgruppe zählt die Gruppe der sehr nährstoffarmen Wälder. Die Grundartengruppe der Laubwälder grenzt diese von den Fichtenforsten ab (vgl. **Tab. 15**).

Die Indikatorartenanalyse (ISA) zeigt, dass nahezu alle Kennarten für die drei Biotoptypen in der sortierten Kreuztabelle auch statistisch signifikante Indikatorarten darstellen (siehe **Tab. 16**). Die einzige Ausnahme ist *Cepheus grandis*, Kennart der Fichtenforste, die in der ISA aufgrund der geringen Individuenzahlen einen Wert unter 0,8 erhielt. Einige Arten mit einer Präferenz für die trockenen Eichenwälder wurden nicht als sichere Kennarten eingestuft (**Tab. 15**, Kennarten saurer Eichentrockenwald, gestrichelte Linie), da sie nicht stetig auf allen drei Untersuchungsflächen vorkamen und

Abb. 22: Fundorte von *Quadroppia maritalis* in Deutschland. Abfrage der Datenbank Edaphobase vom 07.03.2018, Kartendarstellung: Edaphobase).

Tab. 15: Sortierte Kreuztabelle der Hornmilben (Oribatida); Angaben in Individuen/m²; Punkte: kein Tier gefunden; durchgezogene Rahmen: kennzeichnende Artengruppen; gepunktete Rahmen: schwach kennzeichnende Artengruppe.

	lfd. Nr. 2	1: Tereno 2: Fichte Si 3: Langerso		lfd. Nr. 5	lfd. Nr. 4: Wächterbuche lfd. Nr. 5: Langerscheid 2 lfd. Nr. 6: Naturwald Nord			lfd. Nr. 7: B 265 Gemünd lfd. Nr. 8: Schlitterley lfd. Nr. 9: Weiersheld		
	Fichte 4	4.04.01.02	2	Buche 4	3.07.04.03	3	Eiche 43	3.08.05.01		
Flächenkürzel Edaphobase	EB_ NW11	EB_ NW12	EB_ NW13	EB_ NW21	EB_ NW22	EB_ NW23	EB_ NW31	EB_ NW32	EB_ NW33	
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Kennarten										
Kennarten Fichtenforst				_						
Nanhermannia dorsalis	7076	835	62						•	
Autogneta parva	16	186	93	-						
Nanhermannia elegantula	451	61	105	30					•	
Cepheus grandis	31	15	16	<u>]</u> .				16	•	
Kennarten saurer Buchenwald							_			
Liacarus xylariae				15	15	30	.			
Liochthonius horridus	•			15	381	15	.			
Quadroppia maritalis				31	58	29	.			
Phthiracarus ferrugineus				185	107	15	_].			
Kennarten saurer Eichentrocken	wald									
Oppiella (O.) splendens						31	31	1301	6005	
Ramusella insculpta			16				2830	2478	2535	
Xenillus tegeocranus							200	78	171	
Liebstadia humerata							15	16	16	
Carabodes marginatus		15						1072	154	
Liacarus subterraneus							47	16		
Metabelba papillipes							29	31		
Machuella draconis							47		524	
Malaconothrus monodactylus							16		78	
Licneremaeus licnophorus								16	356	
Pseudachipteria magna		62						1274	154	
Odontocepheus elongatus								62	77	
Suctobelba regia								170	15	
Neotrichoppia confinis								62	78	
Feuchtegruppen							•••••	••••••		
wechselfeuchte Standorte										
Scheloribates (H.) initialis	1286	2715	660	1.	16	274	٦.			
Hypochthonius rufulus	2626	276	458	570	311	709	1.		15	
Achipteria coleoptrata	62	1575	47	553	383	402	1.	217		
trockene, zeitweise austrocknend			chten				_			
Porobelba spinosa	684	62	106	٦.		31	124	572	176	
Melanozetes mollicomus	429	93					1.	155	1537	
Liacarus coracinus	16	16	15				306	354	92	
Carabodes labyrinthicus	47	170	16	1.			16	295	92	
Säuregruppen				_						
saure Laubwaldstandorte										
Ophidiotrichus tectus			93	16	430	1297	603	495	854	
Phthiracarus anonymus				231	215	290	76	16	16	
frisch & saure Standorte	-	-	-				1			
Suctobelbella similis	109	62	222	16	47	73	7			
Gaetooetoetta siiittis	107	04		110	1/	, ,	1.	•	•	

		lfd. Nr. 1: Tereno lfd. Nr. 2: Fichte Süd lfd. Nr. 3: Langerscheid 1			lfd. Nr. 5 lfd. Nr. 6	lfd. Nr. 4: Wächterbuche lfd. Nr. 5: Langerscheid 2 lfd. Nr. 6: Naturwald Nord			lfd. Nr. 7: B 265 Gemünd lfd. Nr. 8: Schlitterley lfd. Nr. 9: Weiersheld		
		Fichte 4	4.04.01.02		Buche 4	3.07.04.03		Eiche 43	3.08.05.01		
	el Edaphobase	EB_ NW11	EB_ NW12	EB_ NW13	EB_ NW21	EB_ NW22	EB_ NW23	EB_ NW31	EB_ NW32	EB_ NW33	
lfd. Nr.:		1	2	3	4	5	6	7	8	9	
	a minutissima	139	167	198		77	123	<u>]</u> .	•	•	
	< ph4 /basenarm				1			1			
	ı serratirostrum	31	109	357	118	199	119	44	15	45	
1	quadricarinata	90	482	136	31	15	47	179	398	92	
Suctobelbelle		16	140	344	16	47	59	15	155	443	
Adoristes ov	atus	181	695	585	31	62	109	16	666	•	
Nährstoffgruppe											
sehr nährstoffa											
Ceratozetes			•		•	•	•	•	263	45	
Microtritia 1		•	•	•	•		•	•	3777	108	
Eupelops tor			47					61	47	15	
Grundarten der Laubwä											
Phthiracaru.	e e				155	247	60	292	863	62	
_	s (S.) magnus				357	762	830	687	755	107	
Ceratozetes					2696	15	169	448		•	
Berniniella l	picarinata				15	209	196	<u> </u> .	170		
Begleitarten											
Begleiter mit h	-										
Berniniella o	conjuncta	15	311	353	183	213	1506	124	389	602	
Dissorhina o	rnata	945	5087	4301	1650	2513	134	1711	864	62	
Hermannia	gibba	4993	3716	4087	16	326	31	714	170	1723	
Microppia n		16	124	366	75	205	31	13119	2410	9618	
Nothrus silv	estris	1695	205	407	413	969	1000	91	47	526	
Oppiella (O.) falcata	10667	29355	15271	6364	5364	7586	2897	4917	187	
Oppiella (O.		14054	10188	18348	3271	8975	15522	5875	32495	21012	
Oppiella (R.) subpectinata	1990	10869	3586	2138	2731	9320	1331	914	60	
Oribatula ti	bialis	342	171	372	15	62	59	757	1720	261	
Quadroppia		45	1851	6230	138	232	289	602	3248	2833	
Rhysotritia a	_	492	1756	945	16	413	202	16	777	559	
Suctobelbell		109	233	885	238	581	176	179	120	418	
	a subcornigera	637	1056	1874	551	1131	968	383	336	1078	
_	s group velatus	7028	745	2298	78	16	61	706	4469	5595	
	mit hoher Stetigke										
Brachychtho		1518	387	887	44	1528	232	140	249	668	
juvenile Ori		7503	1461	1152	1138	965	1129	1163	711	4807	
sonstige Beglei											
Platynothru		1450	2250	140	756	709	1393	93	93	•	
Suctobelbell	a arcana	47	140	109		15	44	16	16	44	
Berniniella s	igma		170	1288	195	400	154	399		47	
Oppiella (R.) obsoleta	29			570	378	1060	782	1593	62	
Suctobelbell	a nasalis		78	584	169	199	29	31		15	
Suctobelbell	a subtrigona	62	31	62			44	59	16	31	
Tectocepheu	=	15			154	559	109	931	308	2149	
Carabodes fo			16	108	31	93	31	31			

Tab. 15 (Fortsetzung).

	lfd. Nr. 1: Tereno lfd. Nr. 2: Fichte Süd lfd. Nr. 3: Langerscheid 1			lfd. Nr. 5	lfd. Nr. 4: Wächterbuche lfd. Nr. 5: Langerscheid 2 lfd. Nr. 6: Naturwald Nord			lfd. Nr. 7: B 265 Gemünd lfd. Nr. 8: Schlitterley lfd. Nr. 9: Weiersheld			
	Fichte 4	4.04.01.02	2	Buche 4	3.07.04.03	3	Eiche 43	Eiche 43.08.05.01			
Flächenkürzel Edaphobase	EB_ NW11	EB_ NW12	EB_ NW13	EB_ NW21	EB_ NW22	EB_ NW23	EB_ NW31	EB_ NW32	EB_ NW33		
lfd. Nr.:	1	2	3	4	5	6	7	8	9		
sonstige Begleiter (Fortsetzung)											
Eniochthonius minutissimus	108	16		1132	771	2105			4905		
Eupelops plicatus	31			339	232		76	31	31		
Liochthonius brevis	140	140	310			102	44		77		
Liochthonius leptaleus		31	15		30	58	16		16		
Phthiracarus longulus	372	342	154	16		29		78			
Sellnickochthonius zelawaiensis	326		267		16	29	15		15		
Suctobelbella duplex	109		374		62	279	58		310		
Chamobates borealis	994	2265	2143		31	46					
Nanhermannia nana	15	16	92		47				1745		
Suctobelba trigona	16		133	16				264	139		
Suctobelbella falcata	31		73		15	15			77		
Suctobelbella perforata		31	119	60	16	103					
Carabodes ornatus	16	16	61						16		
Carabodes rugosior	47			30		31		62			
Ceratoppia bipilis	78	280	•	15				31			
Cultroribula bicultrata					16	152	132	154	•		
Edwardzetes edwardsi		93	306					16			
Euzetes globulus		•	16		16		16	16			
Parachipteria punctata	2057			16	62			16			
Sellnickochthonius honestus	31	31	73		319						
Brachychthonius impressus					31		45	15	•		
Carabodes areolatus				31				1398	31		
Chamobates cuspidatus		47		31		279					
Conchogneta dalecarlica				1175	47		218				
Damaeus riparius				47		78	171				
Eulohmannia ribagai				31			16	15			
Galumna lanceata		78				16			16		
Pantelozetes paolii				726			16	16			
Sellnickochthonius cricoides	16		29					15			
Sellnickochthonius jacoti			16			•	29	•	15		
Suctobelba sorrentensis				90			15		147		
Tritegeus bisulcatus			16	30	16						
Oribatida spec.	90	47	136	46	•	60	91	62	367		

Zusätzlich (zwei Untersuchungsflächen): Banksinoma lanceolata (3:16; 4:216), Brachychthonius berlesei (1:16; 5:170), Damaeus (A.) onustus (2:16; 7:154), Liebstadia longior (2:16; 6:16), Liebstadia similis (7:446; 8:31), Liochthonius evansi (1:31; 9:47), Minunthozetes pseudofusiger (6:15; 8:3338), Oppiella (M.) keilbachi (7:29; 8:92), Phthiracarus borealis (4:47; 9:16), Phthiracarus montanus (4:16; 5:16), Poecilochthonius spiciger (5:16; 6:15), Subiasella quadrimaculata (7:16; 9:102), Suctobelba altvateri (4:30; 7:15)

Zusätzlich (eine Untersuchungsfläche): Acrogalumna longipluma (4:15), Amerus polonicus (7:78), Berniniella exempta (8:75), Berniniella serratirostris (1:16), Camisia spinifer (2:31), Carabodes coriaceus (8:16), Carabodes reticulatus (8:16), Carabodes willmanni (9:2433), Ceratoppia sexpilosa (1:47), Ceratozetes minutissimus (9:15), Chamobates subglobulus (6:31), Damaeus (P.) clavipes (4:31), Dissorhina signata (9:78), Gymnodamaeus bicostatus (7:213), Liacarus nitens (7:78), Liochthonius hystricinus (2:31), Liochthonius simplex (5:15), Micreremus herevipes (3:15), Neobrachychthonius marginatus (9:61), Oppiella (O) acuminata (7:16), Oribatella calcarata (2:16), Oribatella quadricornuta brevipes (3:15), Neobrachychthonius marginatus (9:61), Oppiella (O.) acuminata (7:16), Oribatella calcarata (2:16), Oribatella quadricornuta (9:47), Oribatula longelamellata (8:166), Palaeacarus hystricinus (6:15), Phthiracarus bryobius (9:16), Phthiracarus compressus (8:31), Phthiracarus crinitus (9:16), Pilogalumna tenuiclava (4:77), Quadroppia hammerae (6:16), Quadroppia longisetosa (7:154), Rhysotritia ardua (2:16), Scheloribates pallidulus (8:30), Sellnickochthonius immaculatus (6:15), Sellnickochthonius suecicus (5:15), Steganacarus (A.) striculus (2:16), Steganacarus (S.) herculeanus (5:16), Suctobelba granulata (7:16), Suctobelba lapidaria (7:31), Suctobelba reticulata (4:16), Suctobelbella diffissa (3:248), Suctobelbella forsslundi (4:59), Suctobelbella hamata (431), Suctobelbella prominens (4:15), Trichoribates trimaculatus (6:15), Zygoribatula exilis (9:15)

Tab. 16: Oribatiden-Arten der Biotoptypen Fichtenforst, Buchenwald und trockener Eichenwald, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) \leq 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
44.04.01.02	Fichtenforst			
Autogneta parva	1,00	0,04	1,00	1,00
Nanhermannia dorsalis	1,00	0,04	1,00	1,00
Chamobates borealis	0,99	0,04	0,99	1,00
Nanhermannia elegantula	0,95	0,04	0,95	1,00
Scheloribates initialis	0,94	0,04	0,94	1,00
Phthiracarus longulus	0,88	0,04	0,88	1,00
Hermannia gibba	0,81	0,04	0,81	1,00
43.07.04.03	Buchenwald			
Liacarus xylariae	1,00	0,04	1,00	1,00
Liochthonius horridus	1,00	0,04	1,00	1,00
Phthiracarus ferrugineus	1,00	0,04	1,00	1,00
Quadroppia maritalis	1,00	0,04	1,00	1,00
Phthiracarus anonymus	0,87	0,04	0,87	1,00
Ceratozetes gracilis	0,87	0,10	0,87	1,00
43.08.05.01	trockener Eichenv	wald		
Liebstadia humerata	1,00	0,04	1,00	1,00
Xenillus tegeocranus	1,00	0,04	1,00	1,00
Ramusella insculpta	1,00	0,04	1,00	1,00
Oppiella splendens	1,00	0,08	1,00	1,00
Microppia minus	0,97	0,04	0,97	1,00
Liacarus coracinus	0,94	0,04	0,94	1,00
Tectocepheus minor	0,80	0,08	0,80	1,00

auch mit Hilfe der ISA nicht als Indikatorarten ermittelt wurden. Der Status ihrer synökologischen Zugehörigkeit sollte in zukünftigen Untersuchungen geprüft werden.

Aufgrund des Vergleichs der im Nationalpark Eifel gefangenen Oribatiden-Arten mit denen der Länderstudien in Sachsen, Bayern und Sachsen-Anhalt (siehe Kap. 6.4.1, 7.4.1, 8.4.1) wurden einige Arten, die in der Indikatorartenanalyse als Indikatoren errechnet wurden, in der sortierten Kreuztabelle an anderer Stelle einsortiert, wie z. B. Scheloribates initialis. Diese Art, eine Indikatorart für die Fichtenforste, wurde aufgrund des überregionalen Vergleichs als Art wechselfeuchter Standorte in der Feuchtegruppe gewertet. Grundsätzlich liegen die Unterschiede der beiden Analysen vorwiegend an der verschiedenen Gewichtung der Individuenzahlen. Indikatorartenanalyse reagiert stärker Unterschiede in der Abundanz der Tiere. Darüber hinaus flossen in die Sortierung der Kreuztabelle weitergehende Kenntnisse zum Auftreten der Arten ein.

Auswertung der Daten Hilfe mit der Trennung der Biotoptypen anhand der zugrundeliegenden Oribatidendaten (Abb. 23). Die durch die ISA ermittelten Indikatorarten sind dabei um die Standorte gruppiert und zeigen damit ebenfalls die Trennung der Artenspektren an. Mit Hilfe einer vorangegangenen Kanonischen Korrespondenzanalyse (CCA) konnten die beiden Umweltparameter "Stickstoffgehalt", abgeleitet aus den Ellenberg-Zahlen, und der gemessene pH-Wert als statistisch signifikant (p < 0,05) für die Verteilung der Arten errechnet werden. Entsprechend Tab. 8 und Tab. 10 sind die Fichtenforst-Flächen durchweg saurer als die Laubwald-Standorte, und die trockenen Eichenwälder besonders mager. Dies ist in der CA durch die Auftrennung der Biotoptypen in Verbindung mit der größten Änderung der Umweltparameter-Werte sichtbar. Es ist jedoch zu berücksichtigen, dass nur die gemessenen Umweltparameter in die CCA eingegangen sind. Eventuelle Korrelationen mit nicht gemessenen Faktoren sind nicht auszuschließen.

großer Anteil der Individuenzahlen Korrespondenzanalyse (CA) zeigt eine deutliche nachgewiesenen Oribatiden entfällt auf die Begleitarten

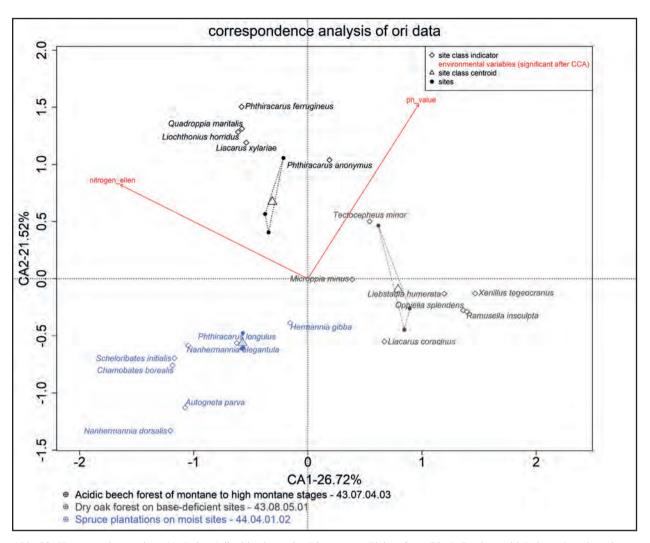


Abb. 23: Korrespondenzanalyse (CA) der Oribatidendaten der Biotoptypen Fichtenforst (blau), Buchenwald (schwarz) und trockener Eichenwald (grau) sowie die mit der Kanonischer Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart aus der Indikatorartenanalyse; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 17: Stetigste Oribatidenarten der Biotoptypen 44.04 Nadel(misch)forste (einheimischer Baumarten), 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 43.08 Laub(misch)wälder trocken-warmer Standorte (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 05.12.2017); Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps.

Biotoptyp	44.04	43.07	43.08	
Anzahl Standorte	19	81	3	
Tectocepheus velatus	1,0	0,8	1,0	
Oppiella (Oppiella) nova	0,7	1,0	1,0	
Suctobelbella subcornigera	0,7	0,9	1,0	
Oppiella (Rhinoppia) subpectinata	0,7	0,8	1,0	
Dissorhina ornata	0,7	0,7	1,0	
Hypochthonius rufulus	0,6	0,7	1,0	
Suctobelbella sarekensis	0,5	0,7	1,0	
Microppia minus	0,5	0,6	1,0	
Oribatula tibialis	0,8	0,7	0,7	
Cultroribula bicultrata	0,5	0,6	1,0	

mit hoher Stetigkeit. Eine Abfrage der Datenbank Edaphobase mit Hilfe des Statistik-Tools Edaphoclass am 05.12.2017 ergab, dass ein Großteil dieser stetigen Begleitarten auch in anderen Untersuchungen zu den 10 häufigsten Arten gehört (vgl. **Tab. 17**). Obgleich die Datenabfrage auf einer übergeordneten Biotoptypebene vorgenommen wurde, zeigt dieser Vergleich, dass die stetigen Begleitarten auch überregional und biotoptypübergreifend einen großen Anteil des Spektrums der Waldarten ausmachen.

Die Fichten- und Buchenwaldflächen wurden bereits Jahr 2009 hinsichtlich ihrer Hornmilbenfauna untersucht (Willius 2010). Auch in dieser Arbeit wurden Kennarten für die beiden Biotoptypen identifiziert. Im Wesentlichen decken sich diese Arten mit denen dieser Untersuchung, wie z. B. Ceratozetes gracilis, die Willius (2010) innerhalb ihrer Untersuchung als Hauptart der Buchenwälder identifizierte und die in der vorliegenden Studie eine statistisch signifikante Indikatorart (Buche) darstellt (vgl. Tab. 16), oder Hermannia gibba und Scheloribates initialis, Hauptarten der Fichtenforste bei Willius (2010) und statistisch signifikante Indikatorarten (Fichte) der vorliegenden Untersuchung. Die auftretenden Unterschiede liegen daran, dass Willius (2010) einen kleineren Stichprobenumfang gewählt, häufig auftretende Artengruppen (Oppioidea, Phthiracaroidea) nicht artgenau berücksichtigt hat und die trockenen Eichenwälder nicht beprobt wurden. Letzteres führte bei einigen Arten zu einer anderen Bewertung: Porobelba spinosa, Hauptart der Fichtenstandorte (Willius 2010), ist hier eine Art der trockenen, zeitweise austrocknenden Streu-/ Bodenschichten (Fichte und Eiche). Auch können statistische Schwankungen, die durch die unterschiedlichen Beprobungsjahre entstehen, nicht ausgeschlossen werden. Demzufolge sind für derartige Auswertungen die Stichprobengrößen, die ausgewerteten taxonomischen Gruppen, die Anzahl der untersuchten Biotoptypen und das Beprobungsjahr Faktoren, die zu berücksichtigen sind.

Der Vergleich mit bestehender Literatur (Weigmann & Kratz 1981, Weigmann 2006) sowie mit Funddaten aus der Datenbank Edaphobase (Edaphostat, Hausen et al. 2017, unter Ausschluss der in dieser Studie untersuchten Standorte) zeigt, dass die in der Länderstudie nachgewiesenen und in eine der relevanten Gruppen (Kennarten, edaphische Grundarten der Gruppen, Laubwälder) einsortierten Oribatidenarten eine deutliche Präferenz für Waldstandorte aufweisen. Die ökologische Amplitude scheint jedoch grundsätzlich breiter zu sein und die Arten wurden auch aus anderen Biotoptypen, insbesondere Wald-Biotoptypen, gemeldet. Es ist bei der Bewertung der Literaturdaten zu bedenken, dass dabei eine genaue Standortklassifizierung ebenso wie eine Bewertung der jeweiligen Arten in der gesamten Zönose

(als Begleitart, Kennart, Grundart etc.) im Nachhinein nicht möglich ist. In der vorliegenden Studie zeigen die Arten ein deutliches Muster entsprechend ihres Vorkommens, das die charakteristischen Lebensgemeinschaften der Oribatiden in den untersuchten Biotoptypen kennzeichnet. Zudem konnten Umweltparameter identifiziert werden, die mit dieser Verteilung statistisch signifikant korrelierten. Das Verständnis der relevanten Faktoren, die für die Zusammensetzung der Artengemeinschaften bedeutsam sind, bedarf daher zukünftig weiterer intensiver Forschung.

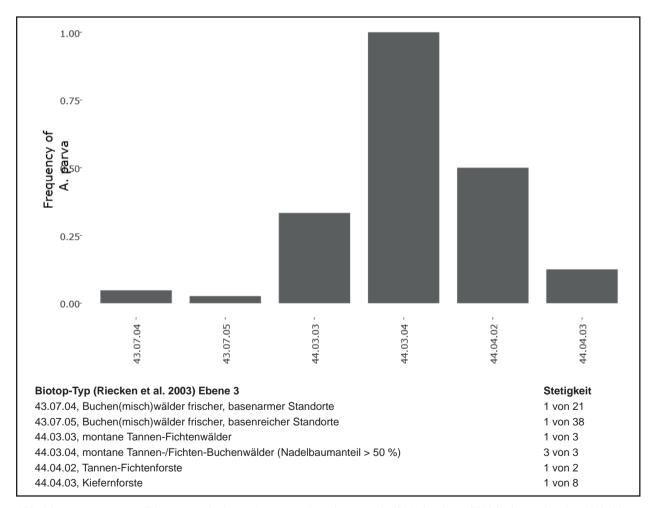
5.4.1.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Fichtenforst frischer Standorte (Biotoptyp 44.04.01.02)

Die Lebensgemeinschaft der Oribatiden auf den untersuchten Fichtenstandorten im Nationalpark Eifel ist positiv, d. h. durch das Auftreten fünf verschiedener Artengruppen, gekennzeichnet. Die Vertreter der Kennartengruppe der Fichtenforste sind innerhalb des gesamten Länderstudien-Datensatzes fast ausschließlich in diesem Biotoptyp vorzufinden. Insbesondere die mit beiden Methoden ermittelten Kenn-/Indikatorarten Autogneta parva, Nanhermannia dorsalis und Nanhermannia elegantula weisen eine deutliche Bindung an diesen Biotoptyp auf.

Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 21.03.2018 zeigt, dass die allgemein eher seltene Art Autogneta parva (Nachweis in acht von 170 in der Analyse abgefragten Untersuchungsflächen) auch in anderen Untersuchungen schwerpunktmäßig in montanen Tannen-/Fichtenwäldern bzw. montanen Nadel(misch)-Wäldern sowie in Tannen-/ Fichtenforsten vorkommt (siehe Abb. 24). Die Kennarten Nanhermannia dorsalis, N. elegantula und Cepheus grandis dagegen wurden in anderen Untersuchungen in einem breiteren Biotoptypen-Spektrum gefangen, wie z. B. in verschiedenen Laubwaldtypen, häufig aber auch in montanen Nadel(misch)gehölzen. Alle Kennarten weisen eine deutliche Präferenz für Waldstandorte auf. Obgleich diese Kennarten nicht generell an die hier untersuchten Biotoptypen gebunden sind, zeigen sie trotz der räumlichen Nähe der neun Untersuchungsflächen zueinander eine eindeutige ökologische Einnischung. Um die dahinterliegenden Faktoren genauer zu verstehen, wären weitergehende Datenerhebungen mit standardisierten und vergleichbaren Methoden hilfreich.

Als zweite Gruppe kennzeichnet die Gruppe um *Scheloribates initialis* die wechselfeuchten Standortverhältnisse in den montanen Fichtenforsten. Der Wechsel von Feuchte und Trockenheit wird durch


die Gruppe um *Porobelba spinosa* angezeigt, die zumindest zeitweise trockene Bedingungen benötigt. In den Fichtenforsten bewohnen die Arten dieser Gruppe hauptsächlich die oberflächennahe Streuschichtauflage, die zur Austrocknung tendiert. Hinzu kommen zwei weitere Artengruppen, die sich hinsichtlich des Säuregehalts verteilen: Eine Gruppe um *Suctobelbella similis* (frisch & saure Standorte) und eine um *S. serratirostrum*, die allgemein saure (< ph4 /basenarm) Waldtypen kennzeichnet.

Bodensaurer Buchenwald der montanen bis hochmontanen Stufe (Biotoptyp 43.07.04.03)

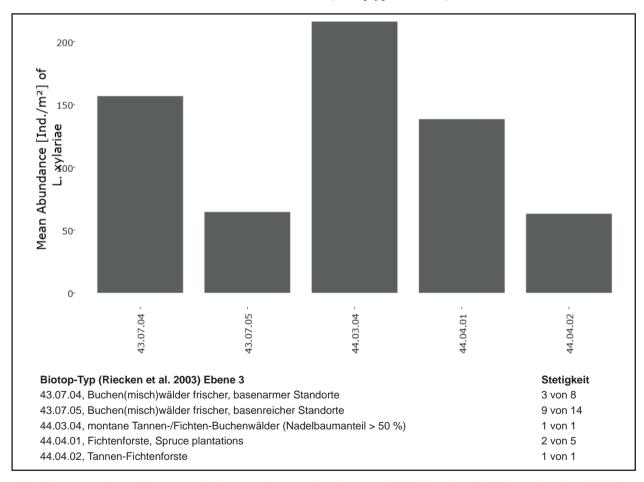
Auch die Buchenwald-Standorte weisen verschiedene bereits in Edaphobase existierenden Daten zu *Liochthonius* biotoptypenspezifische Artengruppen auf. Die horridus und Phthiracarus ferrugineus zeigen, dass Kennarten des sauren Buchenwalds, Liacarus xylariae, Liochthonius horridus, Phthiracarus ferrugineus angewiesen sind und auch in basenreichem Buchenwald und Quadroppia maritalis, wurden in der gesamten Edaphobase-Länderstudie nahezu ausschließlich in Abfrage vom 18.01.2018). Trotz ihrer generell weiter

diesem Biotoptyp nachgewiesen und auch durch die Indikatorartenanalyse als Buchenwaldarten bestätigt.

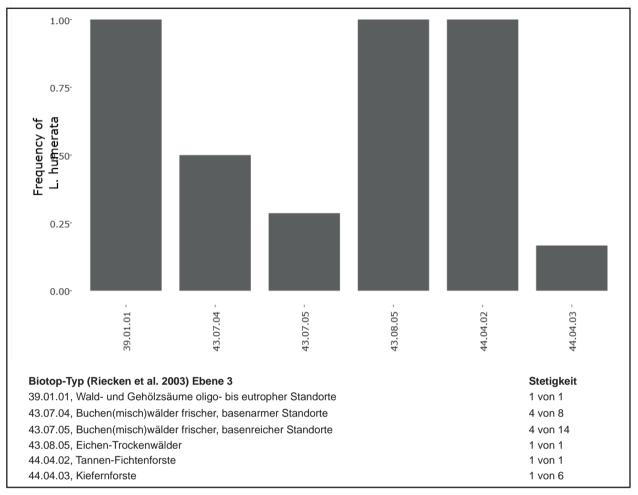
Die Art Liacarus xvlariae wurde auch in anderen Untersuchungen relativ häufig in Buchen(misch)Wäldern gefunden, ist jedoch nicht auf saure Standorte beschränkt: Sie wurde auf 3 von 8 untersuchten basenarmen und auf 9 von 14 basenreichen frischen Buchen(misch)wald-Flächen nachgewiesen. Beim Vergleich der Abundanzen zeigt sich jedoch, dass diese auf den basenarmen Buchenwald-Flächen mit durchschnittlich etwa 150 Individuen/m² deutlich über denen der basenreichen (ca. 50 Individuen/m²) liegen (siehe Abb. 25, Edaphostat-Abfrage vom 21.03.2018, Hausen et al. 2017). Auch die bereits in Edaphobase existierenden Daten zu Liochthonius horridus und Phthiracarus ferrugineus zeigen, dass diese Arten nicht auf saure Buchenwaldstandorte angewiesen sind und auch in basenreichem Buchenwald oder in Nadelwäldern vorkommen können (Edaphostat-

Abb. 24: Autogneta parva: Biotoptypen, in denen A. parva nachgewiesen wurde (8 Nachweise auf 170 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 13.03.2018).

gefächerten Standortansprüche und der räumlichen Nähe der untersuchten Flächen zueinander weisen die o. g. Buchenwald-Kennarten innerhalb dieser Untersuchung eine enge Habitatbindung auf und sind daher als charakteristische Arten der untersuchten Buchenwälder zu bewerten. Des Weiteren ist zu beachten, dass die einzigen Oribatidendaten zu dem Biotoptyp vierter Ebene (bodensaurer Buchenwald der montanen bis hochmontanen Stufe, 43.07.04.03, Riecken et al. 2003) in Edaphobase aus der vorliegenden Studie stammen. Um eine genauere standortökologische Einordnung dieses Biotoptyps anhand der Oribatidenfauna vornehmen zu können, bedarf es daher zukünftig weiterer Untersuchungen.


Die Feuchtebedingungen in den Buchenwald-Flächen werden durch die Artengruppe wechselfeuchter Standorte um *Scheloribates initialis* angezeigt. Das Auftreten aller drei in dieser Untersuchung vorkommenden Säuregruppen, d. h. der sauren Laubwaldstandorte um *Ophidiotrichus tectus*, der frischen und sauren Standorte um *Suctobelbella similis* sowie der allgemein sauren (< ph4 /basenarm) Standorte um *S. serratirostrum* weisen auf die sauren

Standortbedingungen auf den Untersuchungsflächen hin. Des Weiteren kommen Vertreter der Grundartengruppe der Laubwälder um *Phthiracarus laevigatus* in den Buchenwald-Flächen vor.


Eichen-Trockenwald basenarmer Standorte (Biotoptyp 43.08.05.01)

Die trockenen Eichenwälder sind ebenfalls durch das Auftreten biotoptypenspezifischer Arten gekennzeichnet. Insbesondere die Kennarten, die auch durch die ISA als Indikatoren ermittelt wurden, d. h. *Liebstadia humerata*, *Xenillus tegeocranus*, *Ramusella insculpta* und *Oppiella splendens*, zeigen eine deutliche Bindung an diesen Biotoptyp.

Alle ermittelten Kennarten dieses Biotoptyps kommen auch in anderen, vor allem Wald- Lebensraumtypen vor, wie z. B. *Liebstadia humerata* (siehe **Abb. 26**, Edaphostat-Abfrage vom 21.03.2018, Hausen et al. 2017). Diese Art wurde, neben anderen Biotoptypen, auch in dem einzigen weiteren trockenen Eichenwald (Biotoptyp 43.08.05), zu dem Oribatidendaten in

Abb. 25: *Liacarus xylariae*: Biotoptypen, in denen *L. xylariae* nachgewiesen wurde (16 Nachweise auf 93 in der Analyse berücksichtigten Standorten). Angegeben ist die mittlere Abundanz (Individuen/m2) innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 21.03.2018).

Abb. 26: *Liebstadia humerata*: Biotoptypen, in denen *L. humerata* nachgewiesen wurde (12 Nachweise auf 93 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 21.03.2018).

Edaphobase vorliegen, nachgewiesen. Dessen Standort-Einstufung ist jedoch hinsichtlich der Basenversorgung defizitär, d. h. es kann nicht nachvollzogen werden, ob es sich hierbei um einen basenreichen oder basenarmen Standort handelt. Daher bedarf ein genaueres Verständnis der Gründe für die in dieser Studie deutlich erkennbare ökologische Einnischung der Oribatiden-Arten weitergehender überregionaler und biotoptypenübergreifender Untersuchungen.

Die edaphische Gruppe "trockene, zeitweise austrocknende Streu-/Bodenschichten" um *Porobelba spinosa* weist auf die Trockenheit der Eichenwald-Flächen hin. Die basenarmen Standortbedingungen sind durch die Artengruppe "saure Laubwaldstandorte" mit *Ophidiotrichus tectus* und die Gruppe allgemein saurer Habitate (ph<4/basenarm) um *Suctobelbella serratirostrum* gekennzeichnet. Die Ellenberg-Stickstoffzahlen der Standorte EB_NW32 und -33 zeichnen diese beiden Untersuchungsflächen als

besonders magere Standorte aus (siehe **Tab. 10**). Dies korreliert mit der edaphischen Gruppe sehr nährstoffarmer Wälder um *Ceratozetes minimus*, die nur in diesen beiden Untersuchungsflächen vorkommt. Wie in den Buchenwäldern tritt auch in den Eichenwald-Flächen die Gruppe der Grundarten der Laubwälder um *Phthiracarus laevigatus* auf.

5.4.2 Collembola 5.4.2.1 Individuen- und Artenzahlen

Im Nationalpark Eifel wurden im Untersuchungsjahr 2014 insgesamt auf den untersuchten Flächen 32.778 Individuen aus 48 Arten nachgewiesen (**Tab. 18**, **Tab. Anhang 2**, **10-12**, vgl. Erfassung der Collembola Kap. 4.4.1).

Der individuenreichste Biotoptyp war der Fichtenforst mit insgesamt 12.961 Individuen auf den drei Replikaten, der Buchen- und der Eichenwald unterschieden sich

kaum in den summierten Individuenzahlen ihrer 5.4.2.2 Faunistische Anmerkungen und jeweils drei untersuchten Standorte (Buche: insgesamt 9.976 Individuen, Eiche: insgesamt 9.841 Individuen). Verantwortlich für die hohen Individuenzahlen im Fichtenforst war vermutlich die höhere Streuauflage und das geringere Störungsregime, d. h. die Bioturbation durch Regenwürmer. Die höchsten Individuenzahlen an den Fichtenforst-Standorten erreichten sowohl zahlreiche epedaphische Arten ("Oberflächenbewohner", z. B Lepidocyrtus lignorum) als auch hemiedaphische ("Streubewohner", z. B Folsomia quadrioculata) und euedaphische Arten ("Bodenbewohner", z. B. Mesaphorura macrochaeta) (Tab. Anhang 10-12).

Hinsichtlich der Artenzahlen ergab sich ein gegensätzliches Bild: Der artenreichste Biotoptyp war mit insgesamt 42 Arten der Eichenwald, gefolgt vom Buchenwald (37 Arten) und Fichtenforst (32 Arten) (Tab. 18).

Die häufigste in dieser Studie nachgewiesene Art war die hemiedaphische Art Folsomia quadrioculata mit 16.033 Individuen - sie machte damit knapp die Hälfte aller nachgewiesenen Individuen aus (49%), was für mitteleuropäische Wälder nicht ungewöhnlich ist (Salamon et al. 2008, Salamon & Alphei 2009). Danach folgten drei Arten, deren Individuenzahlen auf einem ähnlichen Niveau lagen: Isotomiella minor (2.641 Individuen), Parisotoma notabilis (2.641 Individuen) und Lepidocyrtus lignorum (2.318 Individuen).

kritische Arten

Protaphorura eichhorni wurde bislang innerhalb Deutschlands vorwiegend in einigen westdeutschen Waldgebieten (Saarland, Hunsrück) sowie in Belgien und Luxemburg nachgewiesen (Gisin 1960, Ponge 2000, Hüther 2009) (Abb. 27). In den Edaphobase-Länderstudien (vgl. Kap. 6, 7, 8) trat die Art zudem ausschließlich im Nationalpark Eifel in allen drei Bestandstypen auf (Fichte, Buche, Eiche) und kann deshalb als Kennart für atlantisch/westeuropäische Wälder eingestuft werden (siehe auch Tab. 19).

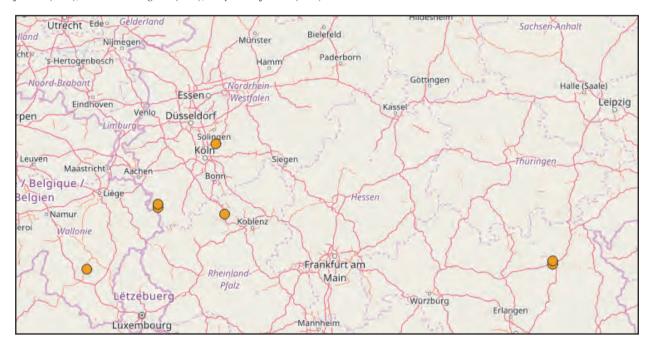
5.4.2.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Waldtypen des Nationalparks

Kennarten

Es konnten in der vorliegenden Untersuchung im Nationalpark Eifel nur zwei Kennarten innerhalb der Collembolen für die untersuchten Biotoptypen identifiziert werden (Tab. 19), was vermutlich daran liegt, dass viele der nachgewiesenen Collembolenarten Ubiquisten sind, die in verschiedensten Lebensräumen vorkommen und teilweise weltweit verbreitet sind

Tab. 18: Arten- und Individuenzahlen der Collembolen auf den Untersuchungsflächen des Nationalparks Eifel.

			Individu	enzahlen		Artenza	hlen	
	NIXV11	Frühjahr	1783	4004		19	22	
	NW11	Herbst	2311	4094		18	22	
Fichte	NW12	Frühjahr	2391	4433	12961	23	28	32
Fichte		Herbst	2042	4433	12901	20	28	32
		Frühjahr	2479	4434		23	26	
	NW13	Herbst	1955	4434		17	20	
NW21	NIW/21	Frühjahr	1273	3385		21	28	,
	IN W 2 I	Herbst	2112	3363		25	20	37
Buche	NW22	Frühjahr	1333	2756	9976	19	27	
Buche	IN W 22	Herbst	1423	2730	9970	22	21	
	NW23	Frühjahr	1384	3835		25	30	
	IN W 25	Herbst	2451	3633		24	30	
	NW31	Frühjahr	973	1972		26	30	
	14 44 51	Herbst	999	1972		23	30	
Eiche	NW32	Frühjahr	1931	4577	9841	21	28	42
Elclie	IN W 32	Herbst	2646	4377	9041	24	20	42
	NIWIZZ	Frühjahr	1556	2202		22	27	
	NW33	Herbst	1736	3292		19	21	
Nationalpark Eifel 20		2014	Individu	enzahl gesamt:	32778	Artenza	hl gesamt:	48


Tab. 19: Sortierte Kreuztabelle der Springschwänze (Collembola); Angaben in Individuen/m²; Punkte: kein Tier gefunden; durchgezogene Rahmen: kennzeichnende Artengruppen.

	lfd. Nr. lfd. Nr.	Ifd. Nr. 1: Tereno Ifd. Nr. 2: Fichte Süd Ifd. Nr. 3: Langerscheid 1			lfd. Nr. 4: Wächterbuche lfd. Nr. 5: Langenscheid 2 lfd. Nr. 6: Naturwald Nord			lfd. Nr. 7: B 265 Gemünd lfd. Nr. 8: Schlitterley lfd. Nr. 9: Weiersheld		
Plant to the transfer	EB	hte 44.04. EB	01.02 EB	EB	che 43.07. EB	04.03 EB	EB Ei	che 43.08. EB	05.01 EB	
Flächenkürzel Edaphobase lfd. Nr.	NW11	NW12 2	NW13	NW21 4	NW22 5	NW23 6	NW31	NW32 8	NW33	
Kennartengruppen	-									
Kennarten Buchenwälder							_			
Neelides minutus				62		15].			
Kennarten Luzulo-Quercetum					•					
Ceratophysella armata								93	155	
Kennarten atlantisch/westeuropäische	Wälder									
Protaphorura eichhorni		124	1738	2190	1582	2552	798	762	311	
Nährstoffgruppe										
nährstoffarme Wälder										
Schoettella ununguiculata						31	93	1850		
Begleitarten										
Begleiter mit hoher Stetigkeit										
Isotomiella minor	4247	7275	5422	5070	5448	5291	2148	2512	3128	
Lepidocyrtus lignorum	4340	4739	7784	3271	3310	7457	1241	1024	2490	
Lepidocyrtus juvenil	653	1163	258	123	219	352	15	75	556	
Mesaphorura macrochaeta	3454	793	139	218	154	354	653	29	249	
Mesaphorura spec.	233	637	855	16	249	124	104	16	232	
Parisotoma notabilis	3186	5640	5544	5748	7174	4547	2377	3515	2584	
Folsomia quadrioculata	37059	32422	27668	18294	15766	28998	15918	41135	29050	
Friesea mirabilis	3274	1711	5993	4192	1671	29	1007	448	1030	
Protaphorura armata	901	2127	168	4363	1261	610	614	5954	3031	
Sminthurinus aureus	217	1064	1264	31	228	168	1050	935	427	
Lepidocyrtus lanuginosus	544	16	233	398	504	729	324	1586	277	
Protaphorura juvenil	78	434	357	154	618	473	656	1133	1323	
Desoria violacea	1944	634	3453	93	321	60	124	2839	1487	
Paratullbergia callipygos	92	16	171	399	249	528	399	92	92	
Protaphorura quadriocellata	801	2629	1950	2720	644	3726	295	3041	746	
Isotomidae juvenil	560	2440	1845	31	30	482	61	161	90	
Pseudosinella alba		62	29	550	246	243	187	470	522	
Sphaeridia pumilis	93	290	140	93	62	78	294	31		
sonstige Begleiter					~-		•		•	
Neanura muscorum	109	139	140		31	78		61	187	
Megalothorax minimus	247	558	338	278	435	274	31			
Entomobrya juvenil	31	140	155	31			16	121	16	
Pogonognathellus flavescens	342	451	340	31	62	15		121	31	
Lipothrix lubbocki	31	59	426	60		179	690	•	1103	
Pogonognathellus juvenil	62	420	249		171	31	47	31		
Supraphorura furcifera		1084	ムマク	1847	513	1368	419	187	233	
Suprapnorura jurcijera Dicyrtomina minuta	16	1084	165	31	16	61	717	16	233	
							•			
Entomobrya nivalis	92	16	15		31	16		62	•	
Ceratophysella denticulata	•	•	15	31	16	58	88	•	·	

	lfd. Nr. lfd. Nr.	lfd. Nr. 1: Tereno lfd. Nr. 2: Fichte Süd lfd. Nr. 3: Langerscheid 1		1fd. Nr. 4: Wächterbuche 1fd. Nr. 5: Langenscheid 2 1fd. Nr. 6: Naturwald Nord			lfd. Nr. 7: B 265 Gemünd lfd. Nr. 8: Schlitterley lfd. Nr. 9: Weiersheld Eiche 43.08.05.01		
Flächenkürzel Edaphobase Ifd. Nr.	EB_ NW11 1	hte 44.04. EB_ NW12 2	EB_ NW13 3	EB_ NW21 4	che 43.07. EB_ NW22 5	EB_ NW23 6	EB_ NW31 7	EB_ NW32 8	EB_ NW33 9
Ceratophysella spec.				254		16	15	124	62
Willemia denisi	62	16			73		74		16
Xenyllodes armatus			15	216	1007		31		46
Sminthuridae juvenil		16					30	15	15
Entomobryidae juvenil	77	155						164	170
Allacma fusca			377		15	62	135		
Neanuridae juvenil					16		93	16	60
Brachystomella parvula		31					47	373	16
Desoria juvenil	62	29	61					726	
Dicyrtomina ornata	16		61	47		16			
Dicyrtomina juvenil		47	31	46	16				
Micranurida forsslundi		16	196				29	16	
Arrhopalites caecus				16	31			16	
Arrhopalites cochlearifer						45	62	16	
Anurophorus laricis				16				16	435
Arrhopalites juvenil	•			16	62		31		•
Folsomia spinosa	•			1056			16	684	•
Hypogastruridae juvenil	•			16				16	249
Isotoma viridis group	152	373	311		47				135

Zusätzlich (zwei Untersuchungsflächen): Arrhopalites pseudoappendices (6:16; 7:16), Arrhopalites pygmaeus (4:47; 7:16), Folsomia juvenil (2:93; 9:31), Neanura juvenil (4:16; 8:16), Orchesella flavescens (1:31; 2:16), Willemia anophthalma (5:93; 9:16)

Zusätzlich (eine Untersuchungsfläche): Hypogastrura burkili (6:29), Isotoma anglicana (9:78), Isotoma juvenil (2:31), Isotomurus palustris (8:44), Lepidocyrtus cyaneus (2:15), Orchesella cincta (9:16), Pogonognathellus juvenil (2:16), Pseudachorutes juvenil (8:102), Pseudachorutes parvulus (2:15), Pseudisotoma monochaeta (9:78), Schaefferia juvenil (4:15), Sminthurinus niger (7:16), Tomoceridae juvenil (8:15), Tomocerus vulgaris (9:16), Xenyllodes juvenil (4:16)

Abb. 27: Fundorte von *Protaphorura eichhorni* in Deutschland und angrenzenden Ländern. (Abfrage der Datenbank Edaphobase vom 17.04.2018, Kartendarstellung: Edaphobase).

(z. B. Parisotoma notabilis). Zu diesen ubiquitären Arten gehören, außer der bereits genannten Parisotoma notabilis, Folsomia quadrioculata (auf den Untersuchungsflächen die häufigste Art, siehe Kapitel 5.4.2.1), Lepidocyrtus lanuginosus, Protaphorura armata und Megalothorax minimus, die in kaum einer Faunenliste innerhalb Europas fehlen (Salamon et al. 2008, Salamon & Alphei 2009). Die übrigen auf den Untersuchungsflächen gefundenen Arten können größtenteils als typisch für mitteleuropäische Wälder gelten (vgl. Dunger 1972, Schleuter 1984, Wolters 1985, Salamon et al. 2008).

ZumindestfürdieBiotoptypenBuchen-undEichenwald konnte jeweils eine Kennart innerhalb der Collembolen identifiziert werden (**Tab. 19**). Neelides minutus trat innerhalb des Untersuchungsgebiets ausschließlich in zwei Buchenbeständen auf, Ceratophysella armata

wurde nur in zwei Eichenbeständen nachgewiesen. Eine Kennart für die Fichtenforste konnte in dieser Untersuchung nicht ermittelt werden. Als Kennart für atlantisch/westeuropäische Wälder (Ponge 2000, Hüther 2009, Salamon 2015) konnte *Protaphorura eichhorni* in allen 9 Untersuchungsflächen nachgewiesen werden.

Innerhalb der Korrespondenzanalyse (CA) trennten sich die drei Biotoptypen (Fichtenforst, Buchenund Eichenwald) anhand der zugrundeliegenden Collembolendaten deutlich voneinander (Abb. 28). Signifikante Umweltvariablen (p < 0,05), die mit Hilfe einer vorangegangenen Kanonischen Korrespondenzanalyse (CCA) identifiziert und in das Ordinationsdiagramm integriert wurden, waren der pH-Wert (ph-value) und der Stickstoffgehalt (abgeleitet aus den Ellenberg-Zahlen). Der pH-Wert korrelierte dabei positiv mit der Artenzusammensetzung der

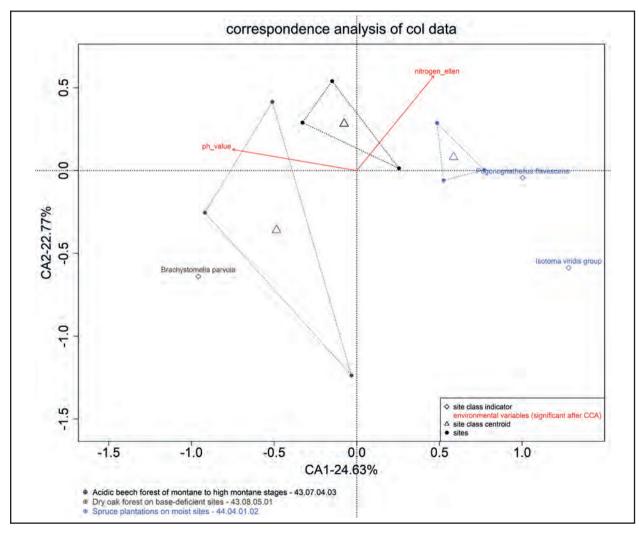


Abb. 28: Korrespondenzanalyse (CA) der Collembolendaten der Biotoptypen Fichtenforst (blau), Buchenwald (schwarz) und trockener Eichenwald (grau) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Eichenwaldstandorte, wohingegen der Stickstoffgehalt eher mit der Artenzusammensetzung der Buchenwaldund Fichtenforststandorte korreliert war (Abb. 28).

Im Rahmen der Indikatorartenanalyse (ISA) konnte die Collembolenart *Brachystomella parvula* als Indikatorart für trockene Eichenwälder ermittelt werden (Indikatorwert = 0,93; Irrtumswahrscheinlichkeit = 0,05; relative Abundanz = 0,93; relative Frequenz = 1), was sich auch in dem Ordinationsdiagramm der CA widerspiegelt. Als deutliche Kennart trockener Eichenwälder (Tab. 19) wurde *Brachystomella parvula* zwar nicht identifiziert, da sie z. B. auch in Kiefernforsten in Sachsen nachgewiesen wurde (Salamon, unpubliziert), trotzdem trat sie innerhalb des Untersuchungsgebiets im Nationalpark Eifel vorwiegend in den Eichenwäldern auf.

Indikatorart bzw. Indikatorgruppe für die Fichtenforste waren *Pogonognathellus flavescens* und die *Isotoma viridis*-Gruppe (*Pogonognathellus flavescens*: Indikatorwert = 0,89; Irrtumswahrscheinlichkeit = 0,05; relative Abundanz = 0,89; relative Frequenz = 1; *Isotoma viridis*-Gruppe: Indikatorwert = 0,82; Irrtumswahrscheinlichkeit = 0,05; relative Abundanz = 0,82; relative Frequenz = 1). Auch die Korrespondenzanalyse ergab eine Präferenz beider Taxa für diesen Biotoptyp (**Abb. 23**).

Als typische Kennart bzw. -gruppe (**Tab. 19**) lassen sich beide Taxa zwar nicht identifizieren, da sie auch in den beiden anderen Biotoptypen auftreten - Ihren Verbreitungsschwerpunkt haben sie aber eindeutig in den Fichtenforsten, was auch Literaturdaten belegen (siehe Kapitel 5.4.2.4).

Vorangegangene intensive Untersuchungen der Collembolengemeinschaften von Fichtenund Buchenwäldern in Mitteleuropa fanden u. a. im Solling (Fichte und Buche) (Albers 1996, Salamon et al. 2008, Salamon & Alphei 2009) und im Göttinger Wald (Buche) (Wolters 1985) statt. Aufgrund des ähnlichen Boden-pH-Werts, der für Collembolengemeinschaften eine wichtige Steuergröße darstellt (Hågvar 1984, Salamon 2001, Salamon et al. 2008), sind speziell die Ergebnisse aus dem Solling gut mit den Ergebnissen aus dem Nationalpark Eifel vergleichbar (pH-Werte Solling: Fichte=3,48; Buche=3,81; pH-Werte Eifel: Fichte=2,92; Buche=3,29). Die Collembolen- und Umweltparameterdaten aus der Untersuchung von Salamon & Alphei (2009) wurden in Edaphobase importiert und bilden somit einen wichtigen Vergleichsdatensatz.

Generell bleibt festzuhalten, dass bei den Untersuchungen im Solling als Fragestellung nicht die Identifizierung von Kenn- bzw. Indikatorarten im Vordergrund stand, sondern eher die Analyse der Verteilungsmuster häufiger Arten (z. B. Folsomia quadrioculata) zwischen den Bestandstypen (Buchen-

und Fichtenreinbestände, Mischbestände aus Fichte und Buche). Nichtsdestotrotz gibt es durchaus eine starke Überlappung im Artenspektrum zwischen beiden Untersuchungsräumen, so dass auch unter Hinzuziehung anderer Literaturdaten (Hågvar 1982, Wolters 1985, 1987, Pflug 2001) die drei untersuchten Biotoptypen im Folgenden charakterisiert werden sollen.

5.4.2.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

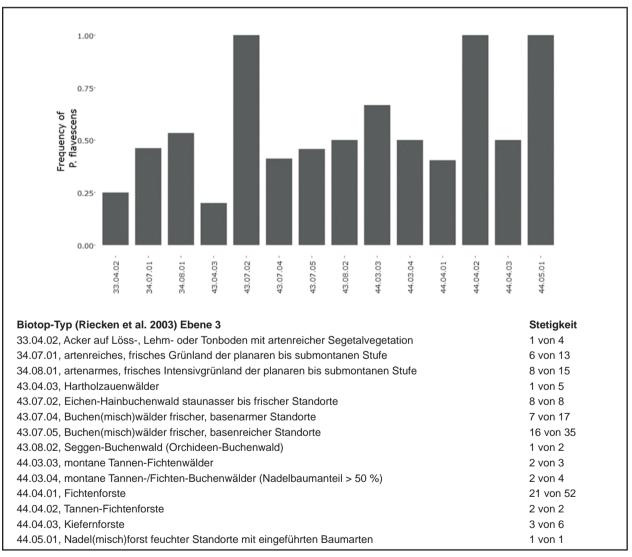
Wie in anderen Untersuchungen (Christiansen 1964, Curry & Tuohy 1978, Hågvar 1982, Salamon et al. 2008) hatten auch bei der vorliegenden Studie im Nationalpark Eifel die Pflanzengesellschaften/Biotoptypen nur einen relativ geringen Einfluss auf die Zusammensetzung der Collembolengemeinschaft, was dazu führt, dass nur relativ wenige Kenn- bzw. Indikatorarten für die drei untersuchten Biotoptypen (Fichtenforste, Buchen- und Eichenwälder) identifiziert werden konnten.

In allen drei Biotoptypen dominierten neben Folsomia quadrioculata Arten wie Parisotoma notabilis, Isotomiella minor und Lepidocyrtus lignorum, die in verschiedenen Wald- und Offenlandbiotoptypen häufig anzutreffen sind und z. B. auch im Solling zu den häufigsten Arten gehören (Albers 1996, Salamon et al. 2008, Salamon & Alphei 2009); im Fokus der Beschreibung der untersuchten Biotoptypen stehen daher die differenzierenden Kenn- und Indikatorarten.

Fichtenforst frischer Standorte (Biotoptyp 44.04.01.02)

Auffallend bei den untersuchten Fichtenbeständen im Nationalpark Eifel sind die relativ geringen Abundanzen und Artenzahlen der euedaphischen Collembolengattung *Mesaphorura* (lediglich *Mesaphorura macrochaeta* konnte nachgewiesen werden), die in anderen bodensauren Nadelwaldbeständen Europas zu den individuen- und artenreichsten Taxa der Collembolengemeinschaften zählt (siehe z. B. Hågvar 1982, Salamon et al. 2008).

Indikatorart bzw. Indikatorgruppe **Fichtenforste** konnten dieser Untersuchung Pogonognathellus flavescens und die Isotoma-viridis Gruppe identifiziert werden. Übereinstimmend mit diesen Ergebnissen konnte Pogonognathellus flavescens auch im Solling vorwiegend in Fichtenrein- bzw. in Mischbeständen aus Fichte und Buche nachgewiesen werden (Albers 1996, Salamon 2001, Salamon et al. 2008, Salamon & Alphei 2009). Speziell die Auflichtungen in älteren Fichtenbeständen wirken sich positiv auf die Diversität und den Deckungsgrad der Bodenvegetation aus (Salamon 2001), wovon z. B. Arten der Familie


Tomoceridae, zu der auch *Pogonognathellus flavescens* gehört, profitieren könnten, da diese epedaphischen Arten krautige Pflanzen (inklusive Pollen) als Nahrungsressource nutzen (Kevan & Kevan 1970, Wolters 1987).

Auch in der Untersuchung von Pflug (2001) entlang eines europäischen Transektes von Schweden bis Frankreich trat *Pogonognathellus flavescens* regelmäßig in Waldbeständen auf, in denen die Fichte als Baumart dominierte.

Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 10.04.2018 zeigt, dass *Pogonognathellus flavescens* bezogen auf Waldökosysteme sowohl in Fichten(misch)wäldern als auch in verschiedenen Laub(misch)wäldern vorkommt (**Abb. 29**).

Bodensaurer Buchenwald der montanen bis hochmontanen Stufe (Biotoptyp 43.07.04.03)

konnte in der vorliegenden Neelides minutus Untersuchung als Kennart für "saure" Buchenwälder identifiziert werden, wurde allerdings in den sauren Moderhumus-Buchenwäldern des Sollings nachgewiesen (Albers 1996, Salamon 2001). In der Untersuchung von Wolters (1985) trat Neelides minutus in Buchenbeständen des Göttinger Waldes auf, wobei sich diese Versuchsflächen auf einem basischen Muschelkalkplateau befanden und nur eingeschränkt mit Moderhumus-Buchenwäldern zu vergleichen sind. Buchenstreu könnte für diese Art allerdings eine wichtige Nahrungsquelle darstellen. Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 10.04.2018 zeigt, dass Neelides minutus einen

Abb. 29: Pogonognathellus flavescens: Biotoptypen, in denen P. flavescens nachgewiesen wurde (79 Nachweise auf 167 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 10.04.2018).

Verbreitungsschwerpunkt in Buchen(misch)wäldern hat (basenreiche- und basenarme Standorte), aber auch in anderen Wald-Biotoptypen (z. B. montane Tannen-Fichtenwälder) durchaus vorkommt (Abb. 30).

Eichen-Trockenwald basenarmer Standorte (Biotoptyp 43.08.05.01)

Auffällig für die untersuchten Eichenbestände sind die vergleichsweise hohen Artenzahlen der Collembolen im Vergleich zu den Fichten- und Buchenbeständen (Tab. 18).

Ceratophysella armata und Brachystomella parvula konnten als Kenn- bzw. Indikatorart für Eichenwälder in der vorliegenden Untersuchung identifiziert werden. Gisin (1960) beschreibt als Verbreitungsschwerpunkt für Ceratophysella armata allgemein Wälder. Pilze könnten ein wichtiges Mikrohabitat für diese Art darstellen (Thibaud et al. 2004).

Brachystomella parvula gilt eher als Offenlandart, die z. B. in Wiesen auftritt (Gisin 1960, Fjellberg 1998),

Eichenbestände von einem günstigen Mikroklima profitieren.

Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 10.04.2018 zeigt, dass Ceratophysella armata auch in trockenen Laubwaldstandorten (ähnlich den Eichenbeständen im Nationalpark Eifel) nachgewiesen wurde (Seggen-Buchenwald, Code: 43.08.02), aber auch z. B. auch in Schlucht-Hangschuttwäldern und **Fichten forsten** (Abb. 31).

5.4.3 Diplopoda 5.4.3.1 Individuen- und Artenzahlen

Insgesamt wurden in der Länderstudie im Nationalpark Eifel 739 Diplopoda mit Hilfe der Bodenfallen erfasst (Tab. 20, Tab. Anhang 3, 13, vgl. Erfassung der Myriapoda Kap. 4.4.2). Davon wurden 603 Individuen könnte aber eventuell in aufgelichteten Bereichen der bis zur Art determiniert. Diese verteilen sich auf

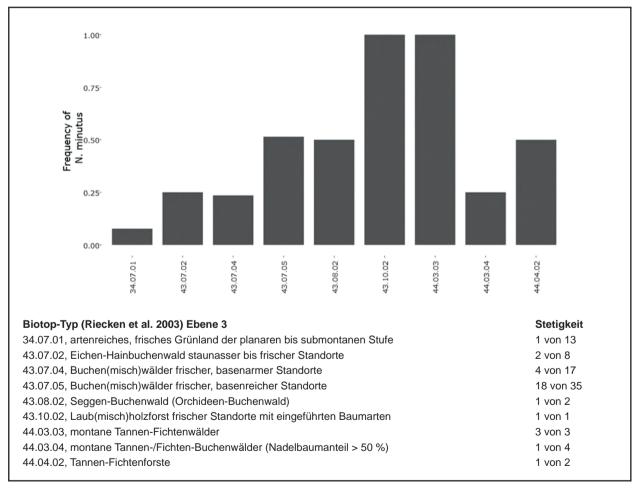


Abb. 30: Neelides minutus: Biotoptypen in denen N. minutus nachgewiesen wurde (32 Nachweise auf 85 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 10.04.2018).

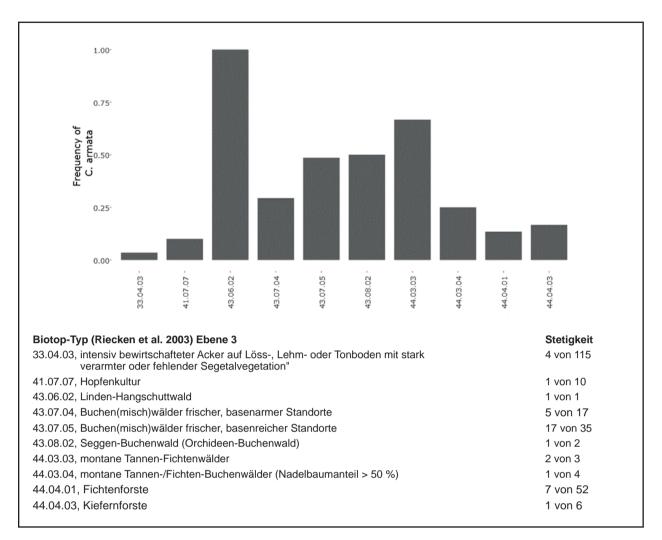


Abb. 31: Ceratophysella armata: Biotoptypen, in denen C. armata nachgewiesen wurde (40 Nachweise auf 245 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 10.04.2018).

15 Arten aus sechs Familien. Dabei ist die Familie der Tieren, größtenteils Individuen der Art Glomeris Schnurfüßer (Julidae) mit 6 Arten am zahlreichsten vertreten. Der Großteil der gefangenen Individuen konnte den beiden Saftkuglern Glomeris intermedia und Glomeris marginata zugeordnet werden. Bei den nicht auf Artniveau identifizieren Tieren handelt es sich um Weibehen und juvenile Exemplare der Familie Julidae, für deren Bestimmung bisher kein Schlüssel vorliegt. Zudem konnten einige wenige Jungtiere der Gattungen Glomeris und Polydesmus nicht sicher identifiziert werden (Hauser & Voigtländer 2009).

Mittels Bodenstecher konnten an keinem der Standorte weitere Arten und insgesamt nur 10 bis zur Leptoiulus simplex subsp. glacialis (Verhoeff, 1908) -Art determinierbare Individuen nachgewiesen werden.

Besonders individuenreich im Vergleich zu den Bei den Funden von Leptoiulus simplex subsp.

intermedia. Dementgegen war der ebenfalls von Fichten bestandene Standort EB NW11 mit nur vier Arten und 12 Individuen der arten- und individuenärmste der Studie. Mit 10 erfassten Arten ist der Buchenwaldstandort EB NW23 bezüglich der Diplopoda die artenreichste Fläche der Untersuchung.

5.4.3.2 Faunistische Anmerkungen und kritische Arten

neu für NRW!

anderen Standorten waren die beiden Fichtenflächen glacialis (Verhoeff, 1908) handelt es sich um EB NW12 und EB NW13 mit je über 100 gefundenen Erstnachweise der Art in Nordrhein-Westfalen

15

			Individu	enzahlen		Artenza	hlen	
	NW11	Falle	12	12		4	4	
	IN W 11	Stecher	0	12		0	4	
Fichte	NW12	Falle	183	104	314	8	8	8
ricite in	IN W 12	Stecher	1	184		1	0	0
	NW13	Falle	118	118		5	5	
	IN W 13	Stecher	0	110		0	3	
	NW21	Falle	42	43		7	7	
	IN W 2.1	Stecher	1	73		1	/	12
	NW22	Falle	29	32	159	8	8	
	IN W 22	Stecher	3			1	0	
	NW23	Falle	84	84		10	10	
	IN W 23	Stecher	0	04		0	10	
	NW31	Falle	62	65		7	7	
	IN W 31	Stecher	3	03		1	/	
Eiche	NW32	Falle	45	47	140	6	6	10
Eiche	IN W 32	Stecher	2	47	140	2	U	10
	NW33	Falle	28	28		7	7	
	1N W 33	Stecher	0	20		0	/	
			Individu	enzahl Fallen:	603	Artenza	hl Fallen:	15
Nationalpark Eifel 2014		Individu	Individuenzahl Stecher:		Artenza	Artenzahl Stecher:		

Individuenzahl gesamt:

Tab. 20: Arten- und Individuenzahlen der in der Länderstudie nachgewiesenen Diplopoda (nur bis auf Artniveau identifizierte Tiere).

(Decker et al. 2015). Aufgrund von Meldungen aus der Südeifel (Schubart 1934, Thiele 1968) wurden Vorkommen in der Nordeifel bereits vermutet (Decker & Hannig 2011). Die Art hat eine dealpine Verbreitung mit Verbreitungsschwerpunkt in den Westalpen bis in Höhen von 2700 m und zerstreuten Vorkommen außerhalb der Alpen (Abb. 32, Edaphobase 2018). Nach Spelda (1993) präferiert die Art Tannenwälder, in der Eifel und dem Saarland wurde sie außerdem in Blockhalden nachgewiesen (Thiele 1968). Ähnlich wie bei Sahli (1955) in Belgien, konnte Leptoiulus simplex subsp. glacialis in der vorliegenden Untersuchung sowohl in den Fichtenforsten als auch den bodensauren Buchenwäldern nachgewiesen werden, wobei sie in allen Replikaten gefunden wurde (Tab. 21).

5.4.3.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Waldtypen des Nationalparks

Die geordnete Kreuztabelle der Diplopoden basiert zur Bewahrung der Übersichtlichkeit nur auf den Daten der für diese Tiergruppe relevanten Bodenfallenfängen (vgl. **Tab. 21**, Kap. 5.4.3.1). Zudem wurden bei der Sortierung

der Kreuztabelle, im Gegensatz zu den anderen Tiergruppen, ausschließlich die in der Länderstudie im NP Eifel erhobenen Daten berücksichtigt. Dies war vor dem Hintergrund sinnvoll, dass die Ökologie der Diplound auch der Chilopoden teilweise arealspezifische Unterschiede aufweist (Voigtländer 1987, 2005). Auch ergaben diese beiden taxonomischen Gruppen beim Vergleich des gesamten Länderstudien-Datensatzes (vgl. Kap. 6, 7, 8) keine Kennarten, die überregional weitgehend auf einen Biotoptyp beschränkt waren (siehe Kap. 4.5). Die Kennarten sind somit eher als charakteristische Arten für die untersuchten Biotoptypen zu bewerten. Trotz ihrer vergleichsweise geringen Diversität (siehe Kap. Oribatida und Collembola) zeigen die Diplopoden eine erkennbare Differenzierung der Biotoptypen an. Deutlich lassen sich z. B. Chordeuma sylvestre (Buche) oder Tachypodoiulus niger (Eiche) einem Habitat zuordnen. Die Fichtenforste bleiben bezüglich Doppelfüßer kennartenlos, wobei Glomeris intermedia eine starke Tendenz in Form von sehr hohen Aktivitätsdichten in diesem Biotoptyp aufweist. Das völlige, nicht geklärte Fehlen dieser Art im Fichtenforst Tereno und das Auftreten in allen anderen Wäldern führten allerdings zur Einordnung zu den Grundarten der Wälder. Eine weitere differenzierende Gruppe ist

Artenzahl gesamt:

die der wechselfeuchten Standorte (Fichte + Buche). Hinzu kommen einige charakteristische Waldarten sowie als eurytop geltende Begleiter, die teils nur durch Einzelfunde bestätigt wurden.

Die Indikatorartenanalyse stimmt weitgehend mit der sortierten Kreuztabelle überein (**Tab. 21** und **22**). Insgesamt erreichen 5 Arten einen Indikatorwert von über 0,8, wobei jedem Waldtyp mindestens eine Indikatorart zugeordnet wurde. *Mycogona germanica* wurde, anders als in der Kreuztabelle, als Charakterart der Fichtenforste detektiert, da die Analyse stärker auf Differenzen der Aktivitätsdichten reagiert.

Die CA zeigt eine relativ deutliche Aufteilung der Biotoptypen anhand der Doppelfüßer-Gemeinschaften (Abb. 33). Große Ähnlichkeit haben dabei die drei Eichenstandorte untereinander. Unterschiede in der zusätzlichen Präsenz bzw. größeren Aktivitätsdichte einiger Arten führen zur Aufsplittung der Buchenwald-Flächen (Ausreißer: EB_NW23, Naturwald Nord). Das Fehlen von Glomeris intermedia verschiebt den Standort EB_NW11 (Tereno) außerdem weg von den Fichtenforsten in Richtung der beiden anderen

Buchenwaldflächen. Der am stärksten die Verteilung der Lebensgemeinschaften beeinflussende Faktor ist der aus den Ellenberg'schen Zeigerwerten abgeleitete Boden-Nährstoffgehalt. Demnach haben die Buchenund Fichtenstandorte eine höhere mediale Nährstoffzahl als die Eichenwälder. Dieser Faktor könnte die große Abweichung des Standorte EB NW23 gegenüber den anderen Buchenstandorten erklären. Die stark mit der N-Zahl korrelierte Höhe über NHN der Standorte wurde durch die CCA-Selektierung ebenfalls signifikant erklärende Variable ausgegeben. Dieser Faktor trennt die Buchenwälder sowie die Fichtenwälder von den Eichenwäldern, wobei diese Trennung innerhalb der Länderstudie vermutlich keinen Erklärungsgehalt aufweist und eher die Lage der Flächen im Untersuchungsgebiet widerspiegelt (Abb. 20). Von den erhobenen Umweltparametern hat laut CA zuletzt auch die Lichtzahl einen Einfluss auf die Artenzusammensetzung. Generell sollte berücksichtigt werden, dass weitere, nicht erhobene Umweltvariablen einen signifikanten Einfluss auf die Variabilität der Zönosen haben könnten.

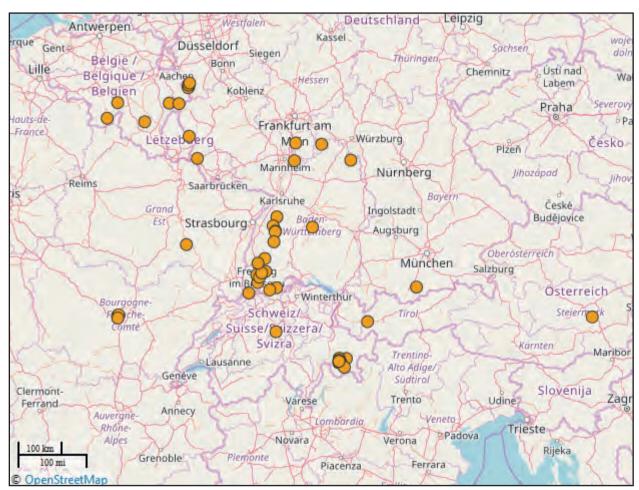


Abb. 32: Fundpunkte von Leptoiulus simplex subsp. glacialis (71 Beobachtungen an 55 Orten, Abfrage von Edaphobase am 07.02. 2018).

Tab. 21: Sortierte Kreuztabelle der in den Bodenfallen nachgewiesenen Doppelfüßer (Diplopoda); Angaben in Individuen/ Untersuchungsfläche; Punkte: keine Tiere gefunden; durchgezogene Rahmen: kennzeichnende Artengruppen.

	lfd. Nr. lfd. Nr.	lfd. Nr. 1: Tereno lfd. Nr. 2: Fichte Süd lfd. Nr. 3: Langerscheid 1		lfd. Nr.	lfd. Nr. 4: Wächterbuche lfd. Nr. 5: Langerscheid 2 lfd. Nr. 6: Naturwald Nord			lfd. Nr. 7: B 265 Gemünd lfd. Nr. 8: Schlitterley lfd. Nr. 9: Weiersheld		
	Fichte 4	14.04.01.02	2	Buche 4	13.07.04.03	3	Eiche 43	Eiche 43.08.05.01		
Flächenkürzel Edaphobase	EB_ NW11	EB_ NW12	EB_ NW13	EB_ NW21	EB_ NW22	EB_ NW23	EB_ NW31	EB_ NW32	EB_ NW33	
lfd. Nr.: Kennarten	1	2	3	4	5	6	7	8	9	
Kennarten Kennarten saurer Bu	ıchenwald									
Chordeuma sylvesi				2	2	3	٦.			
Polydesmus denticulatus		2		2	7	9	.			
Kennarten saurer Ei	chentrockenw	ald					_			
Tachypodoiulus niş	ger .						13	17	10	
Cylindroiulus punctatus			•	•		1	2	8	5	
Feuchtegruppe (bodensaure Wäld	der)									
wechselfeuchte Stand	lorte									
Leptoiulus simplex glacialis	ssp. 5	4	5	5	1	1].			
Melogona gallica	1	2	1		4	1				
Mycogona german	ica 5	2	5		2	1				
Grundarten der Laubwälder							_			
Glomeris marginat	ta .				1	37	27	16	9	
Allaiulus nitidus				20	8		6			
Grundarten der bodensauren Wä	ilder									
Glomeris intermed	lia .	164	105	9	4	8	11	1	1	
Polydesmus angus	tus 1	3	2			19		2	1	
Begleitarten		,		•	,		•			
Craspedosoma rawlinsii		4		3		4	1			
Julus scandinavius		2		1			2		1	
Proteroiulus fuscu.	s .							1		
Cylindroiulus caeruleocinctus									1	
Artengruppen										
Julidae	2	54	5	4		1	20	36	4	
Glomeris				1	1	4				
Polydesmus		2			1	1				

Tab. 22: Diplopoden-Arten der Biotoptypen Fichtenforst, Buchenwald und trockener Eichenwald, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
44.04.01.02		·	Fichtenforst	,
Mycogona germanica	0,82	0,09	0,82	1,00
43.07.04.03			Buchenwald	
Chordeuma sylvestre	1,00	0,03	1,00	1,00
Polydesmus denticulatus	0,90	0,07	0,90	1,00
43.08.05.01		1	rockener Eichenwald	
Tachypodoiulus niger	1,00	0,04	1,00	1,00
Cylindroiulus punctatus	0,96	0,04	0,96	1,00

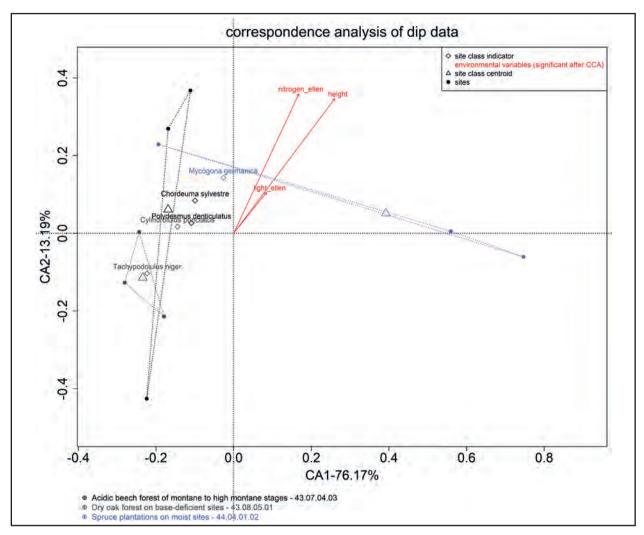


Abb. 33: Korrespondenzanalyse (CA) der Diplopodendaten der Biotoptypen Fichtenforst (blau), Buchenwald (schwarz) und trockener Eichenwald (grau) sowie die mit der Kanonischer Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart aus der Indikatorartenanalyse; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Mittels Abfrage der Datenbank Edaphobase via Edaphoclass konnten die zehn häufigsten in bestimmten Waldtypen (44.04 Nadel(misch)forste (einheimischer Baumarten), 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 43.08 Laub(misch)wälder trocken-warmer Standorte (nach Riecken et al. 2003)) erfassten Diplopodenarten ausgegeben werden (Tab. 23). Fünf dieser Arten konnten auch im Nationalpark Eifel nachgewiesen werden und gelten demnach als Wald-Grundart (Polydesmus angustus) oder Begleitarten mit breiter ökologischer Amplitude (Glomeris marginata, Allaiulus nitidus, Julus scandinavius). Tachypodoiulus niger, eine als Kennart der Eichen-Trockenwälder identifizierte Art, kommt schwerpunktmäßig in trockenwarmen Laubwäldern vor, wird aber auch relativ stetig in frischen bis feuchten Laubwäldern bestätigt. Einige der nicht in der Untersuchung erfassten Arten werden

zwar regelmäßig in Wäldern aufgefunden, allerdings verläuft deren Verbreitungsgrenze östlich des NP Eifel (Strongylosoma stigmatosum, Unciger foetidus, Megaphyllum projectum) oder sind in Nordrhein-Westfalen nur sporadisch anzutreffen (Glomeris undulata) (Decker & Hannig 2011, Edaphobase 2018).

Die Länderstudie gilt als erste systematische Erhebung der Diplopoden-Fauna im Nationalpark Eifel. Eine sehr ähnliche Untersuchung im Niederbergischen Land wurde jedoch durch Thiele (1956) publiziert, der unterschiedliche Artengruppen in der Streuschicht verschiedener Waldassoziationen analysierte und dabei besonderen Wert auf die Vergesellschaftung der Bodentiere und deren ökologische Differenzierung legte. Er untersuchte u. a. Diplopoden und Chilopoden in Edellaubwäldern (basenreiche Buchenwälder), bodensauren Buchenwäldern, Erlenbruchwäldern und einigen Fichtenforsten auf

potentiellen sauren Buchenwaldstandorten. Im Gegensatz zur Länderstudie erhob er keine Daten in bodensauren Eichenwäldern. Generell haben beide Untersuchungen große Gemeinsamkeiten bezüglich des vorgefundenen Artenspektrums und der strengen Bindung einiger Arten an bestimmte Pflanzengesellschaften. Die als Begleiter definierten Arten stimmen weitgehend miteinander überein. Entsprechend der Länderstudie listet Thiele (1956) Glomeris intermedia und Mycogona germanica als Grundarten für die bodensauren Wälder auf. Tachypodoiulus niger wurde dementgegen als Differentialart der (im NP Eifel nicht untersuchten/ vorhandenen) basenreichen, eher kühlen Buchenwälder definiert, wobei die Art im NP Eifel eine Bindung an die xerothermen Eichenwälder aufweist. Als weitere Trennarten der Edellaubwälder des Niederbergischen Landes werden Allaiulus nitidus und Chordeuma sylvestre aufgeführt. Im Gegensatz zu diesen Ergebnissen wurden die beiden Arten in der vorliegenden Studie stetig und mit teils hoher Aktivität in den bodensauren Laubwäldern nachgewiesen, C. sylvestre wurde dabei als Indikatorart der bodensauren Buchenwälder detektiert. Dass sich diese Art in ihrem Lebensraum von Mycogona germanica ausschließt, wie von Thiele (1956) beschrieben, kann in der Länderstudie somit nicht bestätigt werden.

Systematische Untersuchungen zu den Diplopodengemeinschaften in der Eifel wurden außerdem von Becker (1975) durchgeführt, wobei der Schwerpunkt dieser auf xerothermen Offenland- und Saumstandorten lag und nur wenige Wälder beprobt wurden. Im Allgemeinen lassen sich die Ergebnisse sehr gut mit der Länderstudie vergleichen. Dementsprechend wurden hier fast ausschließlich Arten erfasst, die bei Becker (1975) ihren

Tab. 23: Stetigste Diplopodenarten der Biotoptypen 44.04 Nadel(misch)forste (einheimischer Baumarten), 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 43.08 Laub(misch) wälder trocken-warmer Standorte (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 26.01.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps).

Biotoptyp	44.04	43.07	43.08
Anzahl Standorte	113	63	7
Glomeris marginata	0,2	0,6	1,0
Tachypodoiulus niger	0,2	0,5	1,0
Julus scandinavius	0,5	0,4	0,9
Glomeris undulata	0,0	0,4	0,9
Strongylosoma stigmatosum		0,0	0,7
Allajulus nitidus	0,1	0,6	0,1
Polydesmus angustus	0,1	0,3	0,6
Ommatoiulus sabulosus	0,1	0,1	0,6
Unciger foetidus	0,1	0,2	0,6
Megaphyllum projectum	0,1	0,2	0,4

Verbreitungsschwerpunkt ebenfalls in den Wäldern hatten. Diejenigen Arten der Trockenrasen wurden im NP Eifel nicht nachgewiesen. Eine Ausnahme dabei ist *Polydesmus denticulatus*, die im NP Eifel eine große Bindung an die bodensauren Buchenwälder aufzeigt, bei Becker (1975) aber als Art mit Schwerpunkt in Trockenrasen charakterisiert wurde. Thiele (1956) ordnet sie aufgrund stetiger Vorkommen in allen Biotoptypen als Begleiter ein.

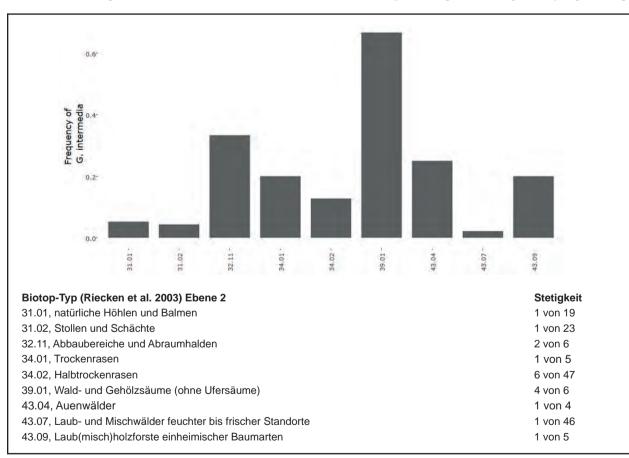
5.4.3.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Fichtenforst frischer Standorte (Biotoptyp 44.04.01.02)

Die Doppelfüßer-Gemeinschaften der untersuchten Fichtenforste werden fast ausschließlich durch das Auftreten der Artengruppe wechselfeuchter Wälder bzw. durch Grundarten der Wälder gekennzeichnet. Zu letzteren gehören die weit verbreiteten Arten Craspedosoma rawlinsii und Polydesmus angustus. Beide Arten wurden in anderen Untersuchungen in einem breiten Spektrum an Biotoptypen nachgewiesen, haben ihre Schwerpunktvorkommen Laubwäldern (Schubart 1934, Hauser & Voigtländer 2009, Edaphobase 2018). Die ebenfalls weit verbreitete Art Mycogona germanica wurde durch die ISA als Charakterart der Fichtenforste detektiert. Auch wenn sie innerhalb der vorliegenden Untersuchung eine Verbreitungs-Tendenz durch erhöhte Aktivität in den Fichtenforsten aufzeigt und laut Hauser (1996) in sehr sauren Wäldern die einzige vorkommende Diplopodenart ist, so verweist die Präsenz in den Buchenwäldern dieser Untersuchung und das stetige Auftreten in vielen anderen mesophilen Wäldern (Edaphobase 2018) auf ein breiteres Habitatspektrum mit Schwerpunkt auf feuchten bis frischen Waldstandorten. Die in zwei Fichtenstandorten klar dominierende Art Glomeris intermedia wurde außerhalb der vorliegenden Studie noch nie in Nadelwäldern erfasst (Abb. 34, Hausen et al. 2017). Die selten nachgewiesene Art bevorzugt in anderen Untersuchungen Waldsäume und wurde mit niedriger Frequenz auch auf Trocken- und Halbtrockenrasen gefunden.

Bodensaurer Buchenwald der montanen bis hochmontanen Stufe (Biotoptyp 43.07.04.03)

Ähnlich den Fichtenforsten werden auch die Buchenwälder durch die Gruppen der Wald-Grundarten und der wechselfeuchten Waldarten geprägt. Zudem wurden die beiden Arten *Chordeuma sylvestre* und


Polydesmus denticulatus durch die ISA und auch in der Kreuztabelle als Buchenwald-Kennarten charakterisiert. Außerhalb der Untersuchung konnten beide in einem relativ breiten Spektrum an Biotoptypen erfasst werden. Insbesondere *Polydesmus denticulatus* tritt in der Regel schwerpunktmäßig in offenen Kulturformationen auf (Haacker 1968, Thiele 1968, Hauser & Voigtländer 2009). Auffällig sind relativ große Unterschiede in der Artenzusammensetzung zwischen den beiden Buchenwäldern EB NW21/EB NW22 sowie dem Standort Naturwald Nord EB NW23 (Abb. 33). Diese Unterschiede kommen insbesondere durch das völlige Fehlen von Allaiulus nitidus auf der einen sowie dem sehr verstärkten Auftreten von Glomeris marginata und Polydesmus angustus auf der anderen Seite zustande. Wie aus den Ellenberg'schen Zeigerwerten abzulesen, deuten die Pflanzen von EB NW23 auf etwas nährstoffärmerer Zustände hin, die diesen Unterschied hervorrufen könnten. Andere im Rahmen der Untersuchung nicht aufgenommene Umweltfaktoren, wie z. B. Lichteinfall oder Verfügbarkeit von Totholz, könnten ebenso eine zusätzliche Rolle spielen.

Eichen-Trockenwald basenarmer Standorte (Biotoptyp 43.08.05.01)

Typisch für die trockenwarmen Eichenstandorte ist das Fehlen der Artengruppe der wechselfeuchten Wälder. Hinzu treten dafür die beiden Kennarten *Tachypodoiulus niger* sowie *Cylindroiulus punctatus*. Beide Arten wurden aber außerhalb der Länderstudie in einem breiten Habitatspektrum erfasst, wobei für die erstgenannte Art trotz offensichtlicher Euryökie (Abb. 35) experimentelle Befunde auf eine Xerophilie hindeuten (Haacker 1968). Bei der ökologischen Einordnung der Arten ist zu beachten, dass xerotherme Waldstandorte hinsichtlich ihrer Diplopoden-Zönosen bisher nur selten untersucht wurden.

5.4.4 Chilopoda 5.4.4.1 Individuen- und Artenzahlen

Zusammenfassend konnten während der Länderstudie im Nationalpark Eifel 30 Chilopoda mittels Bodenfallen und 170 mit Hilfe des Bodenstechers erfasst werden (**Tab. 24**, **Tab. Anhang 4**, **14**, vgl. Erfassung der Myriapoda Kap.

Abb. 34: Glomeris intermedia: Angegeben ist die Stetigkeit des Vorkommens innerhalb der Biotoptypen zweiter Ebene von Untersuchungen innerhalb des Hauptverbreitungsgebiets (18 Nachweise auf 310 in der Analyse berücksichtigten Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 04.05.2018).

4.4.2), von denen 26 bzw. 139 Individuen bis zur Art Der Buchenwaldstandort Naturwald Nord (EB NW23) bestimmt wurden. Diese verteilen sich auf je 10 Arten (Tab. 24). Das mit den unterschiedlichen Methoden gefundene Artenspektrum unterscheidet sich dabei teilweise. So wurden je 3 Arten ausschließlich mit einem der beiden Verfahren nachgewiesen. Bei den nicht auf Artniveau identifizieren Tieren handelt es sich um iuvenile Tiere der Gattungen Lithobius und Geophilus. Viele bestimmungsrelevante Merkmale sind an sehr frühen Stadien dieser Taxa noch nicht ausgebildet (Koren 1986, 1992).

ist mit 8 Arten der artenreichste Standort bezüglich der Chilopoda. Mit zwei Arten der artenärmste Standort ist hingegen der Eichenwald EB NW33, Weiersheld.

5.4.4.2 Faunistische Anmerkungen und kritische Arten

Geophilus ribauti Brölemann, 1908 - Neu für NRW! Erwähnenswert ist der Fund von insgesamt 22 Individuen

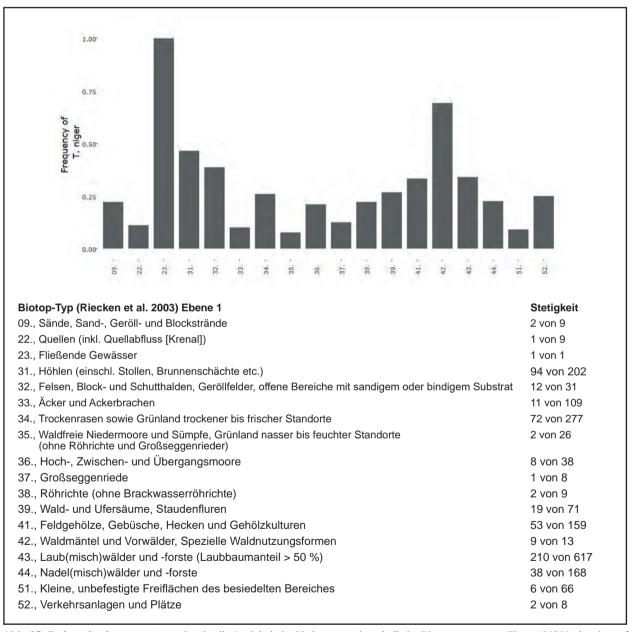


Abb. 35: Tachypodoiulus niger: Angegeben ist die Stetigkeit des Vorkommens innerhalb der Biotoptypen erster Ebene (543 Nachweise auf 1847 in der Analyse berücksichtigten Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 04.05.2018).

Tab. 24: Arten- und Individuenzahlen der in der Länderstudie nachgewiesenen Chilopoda (nur bis auf Artniveau identifizierte Tiere).

			Individ	ıenzahlen		Artenza		
	NW11	Falle	3	13		3	5	
	IN W 11	Stecher	10	13		3	3	
Fichte	NW12	Falle	2	11	30	1	4	6
Fichte	14 W 12	Stecher	9	11	30	4	7	U
	NW13	Falle	4	6		3	3	
	NW13	Stecher	2	0		1	<i></i>	
	NW21	Falle	6	16		5	6	
	IN W 21	Stecher	10	10		4	Ü	
Buche	NW22	Falle	3	16	45	2	4	10
Buche	IN W 22	Stecher	13	10	43	3	4	10
	NW23	Falle	1	13		1	8	
	IN W 23	Stecher	12	15		7	0	
	NW31	Falle	4	29		4	6	
	NW31	Stecher	25	29		3	0	
Eiche	NW32	Falle	1	16	90	1	3	6
Eiche	IN W 32	Stecher	15	10	90	2	3	U
	NW33	Falle	2	45		2	2	
	IN W 33	Stecher	43	43		2		
				ienzahl Fallen:	26 139		ahl Fallen:	10 10
Nationalpa	Nationalpark Eifel 2014			Individuenzahl Stecher:			Artenzahl Stecher:	
			Individi	ienzahl gesamt:	165 Artenzahl gesamt:		13	

der selten erfassten Art Geophilus ribauti an 5 der 9 Standorte (insgesamt nur 71 Funde an 49 Standorten, Edaphobase 2018, Abb. 36). Das Taxon wurde erst kürzlich in den Artstatus erhoben (Bonato & Minelli 2014) und wurde in der Vergangenheit als Unterart von Geophilus truncorum Bergsoe & Meinert, 1866 geführt, was die bisher wenigen Nachweise insbesondere in der Eifel erklärt. Die endogäisch lebende Art G. ribauti kommt laut Decker et al. (2015) in kühl-feuchten Wäldern der Mittelgebirge Mittel-, West- und Süddeutschlands vor.

5.4.4.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Waldtypen des Nationalparks

Für die Darstellung der Artengruppen innerhalb der Kreuztabelle (Tab. 25) wurden für die Chilopoden sowohl die Nachweise aus den Bodenkernen als auch die Funde der Bodenfallen betrachtet. Die Notwendigkeit ergibt sich aus der Lebensweise von Vertretern dieser Artengruppe, die teilweise endogäisch und teilweise epigäisch aktiv sind. Ein gutes Beispiel, welches die Problematik eingeschränkter Erfassungsmethodik gut beiden angewandten Verfahren spricht, ist der Nachweis von Lithobius macilentus. Betrachtet man bei dieser Art nur die Bodenstecherproben, würde die Art klar der Kennartengruppe der Buchenwälder zugeordnet werden, da sie hier in allen drei Standorten erfasst und in den anderen Habitaten scheinbar überhaupt nicht gefunden wurde. Die ergänzenden Bodenfallenfänge zeigen aber deutlich, dass L. macilentus auch in den Fichtenforsten aktiv ist, weshalb sie in die Artengruppe der (wechsel) feuchten Wälder einsortiert werden kann.

Wie auch bei den Diplopoden wurden für die Sortierung der Kreuztabelle ausschließlich die Daten der Länderstudie im NP Eifel berücksichtigt (vgl. Anmerkungen in Kap. 5.4.3.3). Insgesamt differenzieren die Hundertfüßer die untersuchten Biotoptypen weniger als bspw. die Doppelfüßer. Die beiden als schwache Kennarten der Buchenwälder aufgeführten Arten Lithobius curtipes und Lithobius crassipes kommen zwar ausschließlich in dem buchendominierten Biotoptyp vor, allerdings auch hier nicht in jedem der drei Standorte und nur mit geringer Häufigkeit. Schendyla nemorensis wurde dagegen stetig und in hohen Zahlen in den Eichenwäldern nachgewiesen, wohingegen sie in den anderen Wäldern zurücktritt, weshalb sie innerhalb des illustriert und für eine gleichzeitige Bearbeitung der NP Eifel als Kennart der Eichenwälder angesprochen

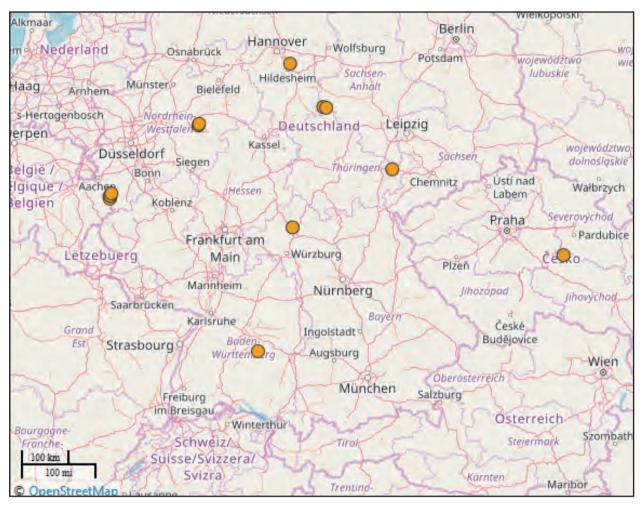


Abb. 36: Fundpunkte von Geophilus ribauti (71 Beobachtungen an 46 Orten, Abfrage von Edaphobase am 07.02.2018).

Tab. 25: Sortierte Kreuztabelle der in den Bodenstecherproben und Bodenfallen nachgewiesenen Hundertfüßer (Chilopoda); Angaben in Individuen/Untersuchungsfläche; Bodenstecher/Bodenfalle; Punkte: keine Tiere gefunden; durchgezogene Rahmen: kennzeichnende Artengruppen, gepunktete Rahmen: schwach kennzeichnende Artengruppe.

	lfd. Nr. 1: Tereno			lfd. Nr. 4: Wächterbuche			lfd. Nr. 7: B 265 Gemünd			
	lfd. Nr. 2	2: Fichte S	üd	lfd. Nr. :	lfd. Nr. 5: Langerscheid 2			lfd. Nr. 8: Schlitterley		
	lfd. Nr. 3	lfd. Nr. 3: Langerscheid 1		lfd. Nr. (lfd. Nr. 6: Naturwald Nord			lfd. Nr. 9: Weiersheld		
	Fichte 4	4.04.01.02	2	Buche 4	3.07.04.03	}	Eiche 43	Eiche 43.08.05.01		
Flächenkürzel Edaphobase	EB_ NW11			EB_ NW21	EB NW22	EB_ NW23	EB NW31	EB_ NW32	EB NW33	
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Kennarten										
Kennarten saurer Buchenwald										
Lithobius curtipes					6/0	1/0				
Lithobius crassipes				1/0	•	1/0				
Kennarten saurer Eichen	trockenwa	ald					_			
Schendyla nemorensis						2/0	23/0	14/0	40/1	
Feuchtegruppe (Wälder)										
wechselfeuchte Standorte										
Strigamia acuminata	1/0	2/0	2/1	5/1	0/2	3/0].			
Geophilus ribauti	8/0	2/0		3/1	6/0	2/0				

Tab. 25 (Forsetzung).

		101 Nt 1	T		101 NT 4	XX7:: 1 , 1	1	101 NI 7	D 265 C	1	
		lfd. Nr. 1				: Wächterb		lfd. Nr. 7: B 265 Gemünd			
			: Fichte Sü			lfd. Nr. 5: Langerscheid 2			lfd. Nr. 8: Schlitterley		
		lfd. Nr. 3	: Langersc	heid 1	lfd. Nr. 6	lfd. Nr. 6: Naturwald Nord			lfd. Nr. 9: Weiersheld		
		Fichte 44	4.04.01.02		Buche 4	3.07.04.03		Eiche 43	.08.05.01		
Flächenkürzel Eda	phobase	EB_ NW11	EB_ NW12	EB_ NW13	EB_ NW21	EB_ NW22	EB_ NW23	EB_ NW31	EB_ NW32	EB_ NW33	
1fc	l. Nr.:	1	2	3	4	5	6	7	8	9	
Li	thobius macilentus	0/1	•	0/2	1/2	1/1	2/0				
trock	ene, zeitweise austro	cknende S	treu-/Bod	enschichte	en						
Li	thobius microps	1/1	4/2].			1/1	1/0	3/1	
Begleitarten					_						
Li	thobius dentatus		•		•		0/1	0/1	0/1	•	
Li	thobius tricuspis		1/0	0/1	•		•	0/1		•	
Li	thobius aeruginosus				0/1		•	0/1			
St	rigamia crassipes		•		0/1		•	1/0		•	
G	eophilus alpinus				•		1/0				
Li	thobius forficatus	0/1			•		•				
Artengruppen											
Li	thobius spec.	2/0	1/1	2/1	4/0	4/0	13/1	1/0		1/1	
G	eophilus spec.	•	•		•	1/0	•		2/0	•	

werden kann. Daneben gibt es eine Artengruppe der wechselfeuchten Standorte um *Strigamia acuminata*, welche die Eichenstandorte meidet. *Lithobius microps* hingegen wurde sowohl unter den Fichten als auch den Eichen gefunden und wird wie bei den Oribatiden (Kap. 5.4.1) in eine Artengruppe trockener, zeitweise austrocknender Streu-/Bodenschichten eingeordnet.

Wie schon in der Kreuztabelle, konnte auch durch die Indikatorartenanalyse (**Tab. 26**) nur *Schendyla nemorensis* als differenzierende Art erkannt werden (Indikatorwert > 0,8). Mit einem Indikatorwert von 0,79 wurde *Lithobius macilentus* knapp nicht als Indikatorart für die Buchenwälder detektiert.

Die CA zeigt eine deutliche Aufteilung der Biotoptypen anhand der Hundertfüßer-Gemeinschaften (Abb. 37). Alle Standorte der einzelnen Biotoptypen besitzen dabei große Ähnlichkeiten untereinander. Zwischen den Biotoptypen sind sich die Zönosen der Fichtenwälder und der Buchenwälder relativ ähnlich. Die Hundertfüßer der Eichenstandorte bilden eine davon separierte Gruppe. Der am stärksten die Verteilung der Gemeinschaften beeinflussende Umweltparameter ist der Nährstoffgehalt des Bodens, der aus den Zeigerwerten der Pflanzen nach Ellenberg abgeleitet wurde. Dieser Faktor trennt in der CA die Eichenwälder von den Buchen- und Fichtenstandorten.

Mittels Abfrage der Datenbank Edaphobase via Edaphoclass konnten die zehn häufigsten in bestimmten Waldtypen (44.04 Nadel(misch)forste (einheimischer Baumarten), 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 43.08 Laub(misch)wälder trocken-warmer Standorte (nach Riecken et al. 2003)) erfassten Chilopodenarten ausgegeben werden (Tab. 27). Sieben dieser stetigsten Arten wurden auch im NP Eifel nachgewiesen. Die beiden als Kennarten charakterisierten Taxa Lithobius crassipes sowie Schendyla nemorensis wurden demnach mäßig frequent in jedem der drei Waldtypen nachgewiesen. Anhand der Abfrage lässt sich, im Gegensatz zur vorliegenden Studie, keine Präferenz von S. nemorensis für trockenwarmen Flächen erkennen. Die anderen Arten wurden entweder den Wald-Grundarten oder den Begleitern hinzugerechnet. Die deutschlandweit sehr häufig nachgewiesenen Arten Lithobius mutabilis und Lithobius piceus konnten innerhalb der Länderstudie im NP Eifel nicht erfasst werden. Lithobius pelidnus gilt in Nordrhein-Westfalen generell als selten (Decker & Hannig 2011). Zu beachten sind die insgesamt wenigen Erhebungen in Laub(misch)wäldern trocken-warmer Standorte.

Die Länderstudie gilt als erste systematische Erhebung der Chilopoden-Fauna im NP Eifel. Eine sehr ähnliche Untersuchung im Niederbergischen Land wurde jedoch durch Thiele (1956) publiziert, der unterschiedliche Artengruppen in der Streuschicht verschiedener Waldassoziationen analysierte und dabei besonderen Wert auf die Vergesellschaftung der Bodentiere und deren ökologische Differenzierung legte. Er untersuchte u. a. Diplopoden und Chilopoden in Edellaubwäldern (basenreiche Buchenwälder), bodensauren Buchenwäldern,

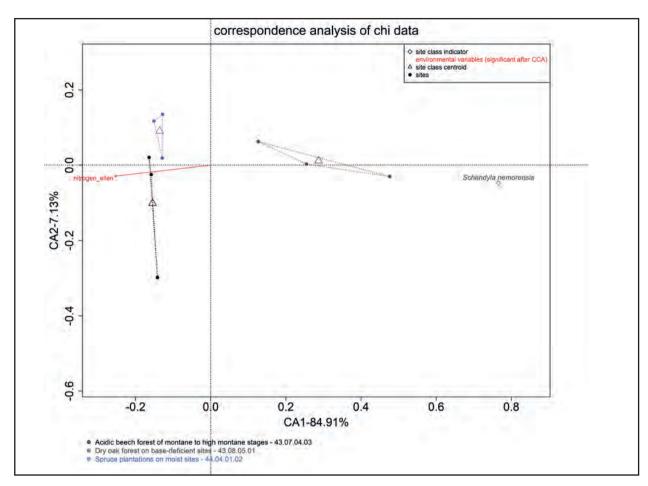
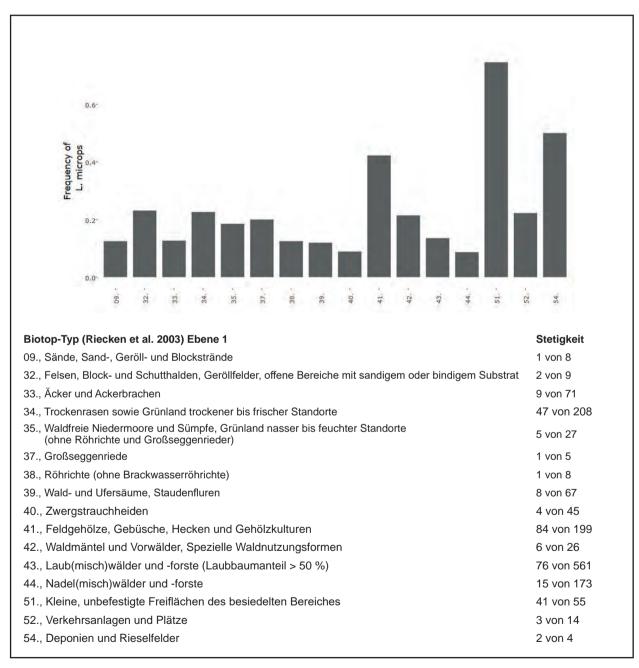


Abb. 37: Korrespondenzanalyse (CA) der Chilopodendaten der Biotoptypen Fichtenforst (blau), Buchenwald (schwarz) und trockener Eichenwald (grau) sowie die mit der Kanonischer Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart aus der Indikatorartenanalyse; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 26: Chilopoden-Arten der Biotoptypen Fichtenforst, Buchenwald und trockener Eichenwald, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).


	indicator_value	pvalue	rel_abundance	rel_frequency
44.04.01.02			Fichtenforst	
Schendyla nemorensis	0,98	0,03	0,98	1,00

Tab. 27: Stetigste Chilopodenarten der Biotoptypen 44.04 Nadel(misch)forste (einheimischer Baumarten), 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 43.08 Laub(misch)wälder trocken-warmer Standorte (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 07.02.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps).

•	•		•	1
Biotoptyp	44.04	43.07	43.08	
Anzahl Standorte	117	51	7	
Lithobius crassipes	0,26	0,43	0,71	
Lithobius forficatus	0,46	0,24	0,57	
Lithobius mutabilis	0,41	0,57	0,29	
Strigamia acuminata	0,20	0,53	0,14	
Lithobius dentatus	0,10	0,35	0,29	
Lithobius macilentus	0,14	0,24	0,29	
Lithobius microps	0,07	0,10	0,29	
Schendyla nemorensis	0,10	0,10	0,20	
Lithobius piceus	0,07	0,27		
Lithobius pelidnus	0,12	0,27		

Erlenbruchwäldern und einigen Fichtenforsten auf potentiellen sauren Buchenwaldstandorten. Im Gegensatz zur Länderstudie erhob er keine Daten in bodensauren Eichenwäldern. Auffallend ist, dass Thiele (1956) einige Taxa fand, die in der Länderstudie nicht auftraten wie bspw. Lithobius piceus, Lithobius erythrocephalus und Lithobius mutabilis. Diese Arten können nach seinen Untersuchungen als Differentialarten für basische Wälder gelten, was das Fehlen innerhalb der Länderstudie im NP Eifel erklären könnte. Wie auch in der Länderstudie

differenzierten in der damaligen Untersuchung *Lithobius* crassipes und *L. curtipes* die Buchenwälder von den restlichen Wäldern. Schendyla nemorensis wurde von Thiele (1956) nicht gefunden. Dementgegen konnte Brocksieper (1973) die Art relativ stetig und in hohen Zahlen im NSG Siebengebirge nachweisen, allerdings ohne eine biotoptypbezogene Differenzierung festzustellen. Dies gilt in der erwähnten Untersuchung auch für *Lithobius* crassipes, die im Siebengebirge u. a. in Eichen-Hainbuchenwälder gefunden wurde.

Abb. 38: *Lithobius microps*: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotoptypen erster Ebene (305 Nachweise auf 1648 in der Analyse berücksichtigten Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 04.05.2018).

5.4.4.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Fichtenforst frischer Standorte (Biotoptyp 44.04.01.02)

Die untersuchten Fichtenforste werden durch die Artengruppe der wechselfeuchten Waldstandorte geprägt. Hinzu kommt *Lithobius microps*, eine eigentlich synanthrope Art, die häufig im Kulturland gefunden wird (Eason 1964, **Abb. 38**) und in den analysierten Waldtypen schwerpunktmäßig die Standorte mit zweitweise austrocknender Streu-/Bodenschicht besiedelt. Einige wenige Begleitarten wurden mit geringen Individuenzahlen nachgewiesen. Ähnlich den Diplopoden-Gemeinschaften fehlen auch den Chilopoden differenzierende Arten, die diesen Biotoptyp klar bevorzugen.

Bodensaurer Buchenwald der montanen bis hochmontanen Stufe (Biotoptyp 43.07.04.03)

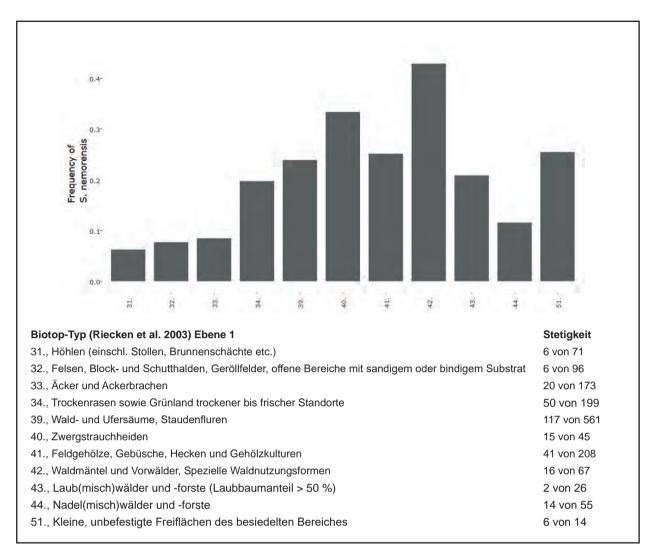
Die Buchenwälder teilen sich mit den Fichtenforsten die Kennartengruppe der (wechsel)feuchten Wälder. Trockene, temporär austrocknenden Bedingungen bietet das Habitat nicht, weswegen die dazugehörige Kennartengruppe wegfällt. Dementgegen besiedeln die Waldarten *Lithobius crassipes* und *L. curtipes* ausschließlich die Buchenbestände, wobei eine Bevorzugung spezieller Waldhabitate oder Mikroklimate in anderen Untersuchungen noch nicht beobachtet werden konnte (Eason, 1964, Hausen et al. 2017).

Eichen-Trockenwald basenarmer Standorte (Biotoptyp 43.08.05.01)

Neben dem völligen Wegfall der Artengruppe der eher wechselfeuchten Waldstandorte, werden die trockenen Eichenwälder einerseits durch das stete Auftreten von *Lithobius microps* charakterisiert. Andererseits ist vor allem das stete Vorkommen von *Schendyla nemorensis* typisch für diesen Biotoptyp. Diese hier sehr individuenreiche Art meidet in der Länderstudie die anderen Biotoptypen weitestgehend. Laut Literatur gilt die Art als euryök (Koren 1986), was durch die Funde in unterschiedlichsten Biotoptypen unterstrichen wird, ohne dass hieraus ein generelles Vorzugshabitat abgeleitet werden könnte (**Abb. 39**). Eine Abhängigkeit von anderen, bisher nur selten untersuchten Umweltfaktoren ist denkbar.

5.4.5 Lumbricidae 5.4.5.1 Individuen- und Artenzahlen

Auf den neun Standorten im Nationalpark Eifel wurden bei den beiden Probenahmen im Frühjahr und Herbst 2014 insgesamt 782 Regenwürmer aus 6 Arten bzw. 4 Gattungen gefunden (**Tab. 28**, **Tab. Anhang 5**). Eine detaillierte Darstellung, aufgeschlüsselt nach den jeweils drei Standorten pro Biotoptyp, ist in **Tab. Anhang 15-17** zu entnehmen.


Die meisten Lumbriciden wurden an den drei Buchenwald-Standorten (452) gefangen, während ihre Zahl an den beiden übrigen Waldtvpen um ca. den Faktor 2 (trockener Eichenwald: 206) bzw. den Faktor 4 (Fichtenforst: 124) niedriger lag. Die Gesamtartenzahl unterschied sich hingegen zwischen den drei Biotoptypen nicht grundlegend (Fichtenforst: 6; Buchen- und trockener Eichenwald: je 4). Die einzelnen drei Standorte eines Biotoptyps unterschieden sich hinsichtlich der Abundanz zum Teil deutlich. So betrug der Faktor zwischen der niedrigsten und höchsten Abundanz innerhalb der Fichtenforste ca. 6, bei den Buchenwäldern 57 und bei den trockenen Eichenwäldern 33. Weniger ausgeprägt waren die Unterschiede zwischen den beiden Probenahmen eines Standorts. Hier betrug am Fichtenforst EB NW13 sowie den drei Buchenwäldern der Faktor zwischen den beiden Probenahmen ca. 2 bis 3, wobei in allen Fällen im Herbst die höhere Abundanz festgestellt wurde. Die Artenzahl pro Standort war in den Fichtenforsten mit 3 bis 5 am höchsten und in den trockenen Eichenwäldern mit 1 bis 3 am niedrigsten.

5.4.5.2 Beschreibung der ermittelten Artengruppen in den drei untersuchten Waldtypen des Nationalparks

In **Tab. 29** sind die Lumbricidenarten mit ihren Abundanzen entsprechend ihres Vorkommens in den Biotoptypen geordnet. Bezogen auf die Gesamtabundanz der adulten Tiere waren die drei häufigsten Arten (in abnehmender Reihenfolge) *Lumbricus rubellus*, *Dendrobaena attemsi* und *Dendrobaena octaedra*, die zusammen 88% dieser Altersklasse bzw. 18% aller Regenwürmer stellten.

Anhand der Kreuztabelle sowie der Indikatorartenanalyse lassen sich folgende Artengruppen identifizieren:

- Dendrobaena octaedra wurde an allen drei Fichtenforststandorten sowie in einem Buchenwald gefunden. Sie zeigt sehr saure Nadelwaldstandorte an.
- Als unter den Regenwürmern einzige Grundart (für Grasland- und Waldstandorte) kann *Lumbricus* rubellus angesehen werden.
- Alle übrigen Regenwurmarten (Aporrectodea caliginosa, Dendrobaena attemsi, Dendrodrilus rubidus, Lumbricus castaneus) werden an diesen Standorten den sporadischen Begleitarten zugeordnet.

Abb. 39: *Schendyla nemorensis*: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotoptypen erster Ebene (293 Nachweise auf 1648 in der Analyse berücksichtigten Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 04.05.2018).

In der Indikatorartenanalyse (**Tab. 30**) wurde *D. octaedra* als einzige Art identifiziert, die für den Biotoptyp Fichtenforst als relevant und signifikant eingestuft wurde. Dies ist somit konsistent mit der Darstellung der Artengruppen in den sortierten Kreuztabellen. In die Indikatoranalyse ging jedoch neben der relativen Stetigkeit zusätzlich auch die relative Abundanz ein, wodurch theoretisch auch noch weitere Arten als Indikatorarten hätten auftreten können.

Mit Hilfe des in das Edaphobase-Portal integrierten Auswerte-Werkzeugs Edaphostat (Hausen et al. 2017) können die ökologischen Profile der im Datenbestand enthaltenen Arten angezeigt werden. Es wurden Daten von Standorten in Deutschland ausgewählt, an denen das Artenspektrum der Lumbriciden quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen

wurden neben den Standorten aus der vorliegenden Untersuchung auch Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Damit standen Daten von insgesamt 407 Standorten für 32 verschiedene Lumbricidenarten zur Verfügung. Für den Vergleich mit Daten von den untersuchten Standorten im Nationalpark Eifel werden beispielhaft zwei Arten hervorgehoben: Dendrobaena octaedra als die einzige Art, die an allen Standorten nur eines Biotoptyps auftrat und dort als Indikatorart identifiziert wurde sowie Lumbricus rubellus. die als einzige Art an allen neun untersuchten Standorten nachgewiesen wurde. Als Standortfaktoren werden exemplarisch zwei dargestellt, die für die vorliegende Untersuchung als besonders relevant angesehen werden können: Biotoptyp (1. Ebene) sowie Boden pH-Wert. Aus **Abb. 40** und **41** wird ersichtlich, dass die im Nationalpark Eifel gemachten Beobachtungen konsistent mit den

Tab. 28: Arten- und Individuenzahlen der Lumbriciden auf den Untersuchungsflächen des Nationalparks Eifel.

			Individu	enzahlen		Artenz	ahlen		
	NW11	Frühjahr	5	11		2	3		
		Herbst	6	11		2	3		
Fichte	NW12	Frühjahr	34	61	124	3	5	6	
Fichte		Herbst	27	01	124	4	3	O	
	NW13	Frühjahr	14	52		3	4		
		Herbst	38	32		3	4		
	NW21	Frühjahr	125	397		1	3		
		Herbst	272	397		2	3		
Buche	NW22	Frühjahr	2	7	452	1	3	4	
Duche		Herbst	5	/	432	3		4	
	NW23	Frühjahr	12	48		2	3		
		Herbst	36	48		3	3		
	NW31	Frühjahr	111	167		3	3		
		Herbst	56	107		1	3		
Eiche	NW32	Frühjahr	12	34	206	1	2	4	
Eiche		Herbst	22	34	206	2	2	4	
	NW33	Frühjahr	3	5		1	1		
		Herbst	2	3		1	1		
Nationalpa	rk Eifel 2014		Individu	Individuenzahl gesamt: 782			Artenzahl gesamt: 6		

Tab. 29: Sortierte Kreuztabelle der Lumbriciden. Angaben in Ind./m². Angabe des Biotoptyps nach Riecken et al. (2003).

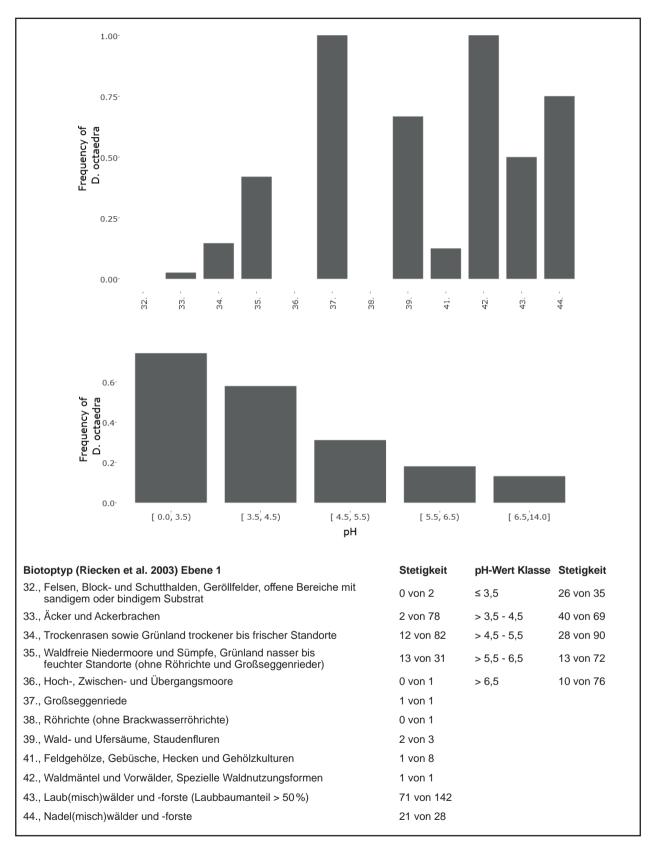
	lfd. Nr.	1: Tereno		lfd. Nr. 4: Wächterbuche			lfd. Nr. 7: B 265 Gemünd		
		: Fichte Si			lfd. Nr. 5: Langerscheid 2			8: Schlitter	-
	lfd. Nr. 3	: Langerso	heid 1	lfd. Nr. 6: Naturwald Nord			lfd. Nr. 9: Weiersheld		
	Fichte 4	4.04.01.02		Buche 4	3.07.04.03		Eiche 43	3.08.05.01	
Flächenkürzel Edaphobase	EB_ NW11	EB_ NW12	EB_ NW13	EB_ NW21	EB_ NW22	EB_ NW23	EB_ NW31	EB_ NW32	EB_ NW33
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Säuregruppe									
sehr saure Nadelwaldstand	dorte								
Dendrobaena octaedra	0,8	2,8	1,2	0,4					
Grundarten									
Grasland- und Waldstand	orte								
Lumbricus rubellus	1,2	3,2	0,4	0,4	0,8	8,8	12,4	5,2	1,2
Begleitarten					'		•		
sonstige Begleiter									
Aporrectodea caliginosa							1,2		
Dendrobaena attemsi	0,8		0,4	13,6		1,6			
Dendrodrilus rubidus		0,8	0,4		0,8	0,4			
Lumbricus castaneus		0,8						2,8	
Juvenile Lebensstadien									
<i>Aporrectodea</i> sp. sensu lato		0,4					2		
Dendrobaena sp.	0,4	7,2	6,8	138	0,8	1,6	1,2		
Lumbricus sp.	1,2	7,2	10,4	0,4		3,2	43,6	4,8	0,4
endogäische Adulte	• • • • • • • • • • • • •	••••••	••••••	••••••	••••••	••••••	1,2	••••••	•••••••
epigäische Adulte	2,8	7,6	2,4	14,4	1,6	10,8	12,4	8	1,2
Total	4,4	24,4	20,8	158,8	2,8	19,2	66,8	13,6	2
Artenzahl	3	4	4	3	2	3	2	2	1

Tab. 30: Indikatorwerte (indicator_value) der Lumbriciden-Arten der Biotoptypen Fichtenforst, Buchenwald und trockener Eichenwald sowie die entsprechenden relativen Abundanzen (rel_abundance) und Stetigkeiten (rel_frequency). Ein Indikatorwert > 0,8 wird als relevant angesehen und ist signifikant bei einer Irrtumswahrscheinlichkeit (pvalue) ≤ 0,1. Angabe des Biotoptyps nach Riecken et al. (2003).

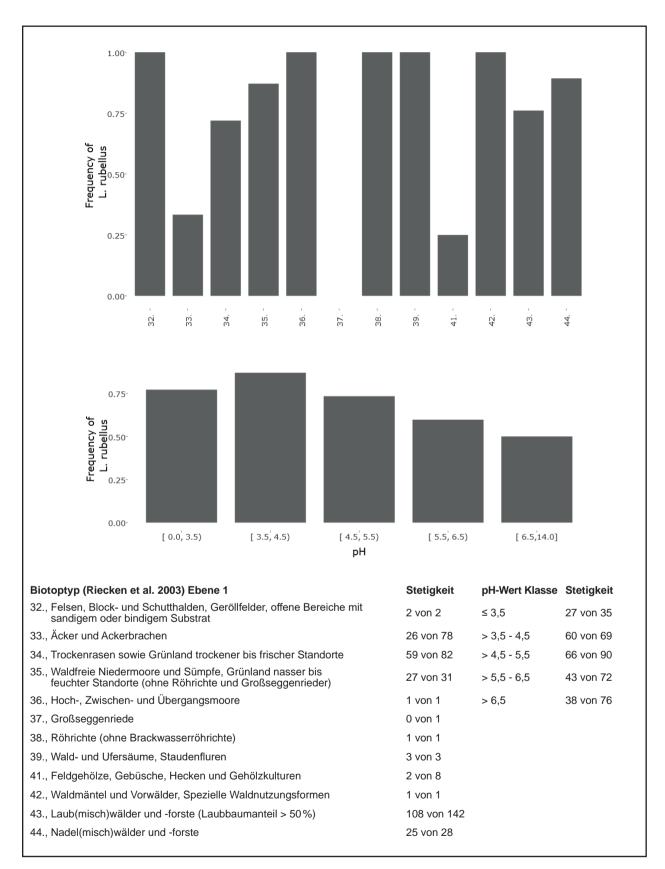
	indicator_value	pvalue	rel_abundance	rel_frequency
44.04.01.02		·	Fichtenforst	
Dendrobaena octaedra	0,92	0,04	0,92	1,00
Dendrodrilus rubidus	0,33	0,91	0,50	0,67
43.07.04.03			Buchenwald	
Dendrobaena attemsi	0,62	0,33	0,93	0,67
Dendrobaena sp.	0,90	0,41	0,90	1,00
43.08.05.01		tı	rockener Eichenwald	
Aporrectodea sp. sensu lato	0,28	1,00	0,83	0,33
Aporrectodea caliginosa	0,33	1,00	1,00	0,33
Lumbricus castaneus	0,26	1,00	0,78	0,33
Lumbricus rubellus	0,56	0,37	0,56	1,00
Lumbricus sp.	0,69	0,47	0,69	1,00

ökologischen Profilen beider Arten sind. *D. octaedra* ist eine Art, die bevorzugt an sehr sauren Nadelwaldstandorten und deutlich seltener an schwach sauren bis neutralen Offenlandstandorten auftritt. Demgegenüber dürfte *L. rubellus* unter den Lumbriciden diejenige Art mit der breitesten ökologischen Toleranz sein, die (mit Ausnahme von Ackerstandorten) an verschiedenen Biotoptypen mit unterschiedlichen Bodeneigenschaften, wie z. B. verschiedenen pH-Werten, mit hoher Stetigkeit auftritt.

Das CA-Diagramm (Abb. 42) visualisiert die Unterschiedlichkeit der drei Biotoptypen. Als einzige signifikante Umweltvariable erwies sich die Ellenberg-Stickstoffzahl. Demnach korreliert die anhand der Regenwurmgemeinschaft festgelegte Anordnung der Standorte im Diagramm mit der Nährstoffverfügbarkeit: Von links eutrophen zu rechts mageren Standorten. Es zeigt sich eine gute Trennung der drei Biotoptypen. Während die Fichtenforste durch ihre Indikatorart Dendrobaena octaedra charakterisiert werden, unterscheiden sich die beiden Laubwaldstandorte durch ihre Artenzahl, die in den Buchenwäldern etwas höher ausfällt als in den trockenen Eichenwäldern.


5.4.5.3 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Mit dem Edaphobase Auswerte-Werkzeug Edaphoclass lässt sich aus dem in Edaphobase enthaltenen Datenbestand ein Vergleich der im Nationalpark Eifel untersuchten Standorte zu anderen deutschen Standorten des gleichen Biotoptyps (2. Ebene) vornehmen (**Tab. 31**). Voraussetzung für die Vergleichbarkeit ist, dass das Artenspektrum der Lumbriciden dort quantitativ auf-


genommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung zudem Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Nach der nach diesen Kriterien erfolgten Filterung standen 23 Standorte

Tab. 31: Angaben der Stetigkeiten der Lumbricidenarten innerhalb der Biotoptypen 44.04 Nadel(misch)forste (einheimischer Baumarten), 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 43.08 Laub(misch)wälder trocken-warmer Standorte (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 25.04.2018).

Biotoptyp	44.04	43.07	43.08
Anzahl Standorte	23	87	2
Allolobophoridella eiseni		0,03	
Aporrectodea caliginosa	0,13	0,43	0,50
Aporrectodea cupulifera		0,01	
Aporrectodea handlirschi		0,09	
Aporrectodea limicola		0,05	
Aporrectodea longa		0,03	
Aporrectodea rosea	0,17	0,49	
Dendrobaena attemsi	0,09	0,03	
Dendrobaena octaedra	0,74	0,39	
Dendrobaena pygmaea		0,02	
Dendrodrilus rubidus	0,26	0,23	
Eisenia fetida		0,01	
Eiseniella tetraedra		0,07	
Lumbricus badensis		0,01	
Lumbricus castaneus	0,09	0,10	
Lumbricus meliboeus		0,01	
Lumbricus polyphemus	0,09	0,02	
Lumbricus rubellus	0,87	0,76	0,50
Lumbricus terrestris	0,09	0,28	
Murchieona minuscula	0,04	0,01	
Octolasion cyaneum		0,07	
Octolasion tyrtaeum	0,17	0,46	0,50

Abb. 40: Dendrobaena octaedra: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.04.2018).

Abb. 41: Lumbricus rubellus: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.04.2018).

des Biotoptyps 44.04: Nadel(misch)forste (einheimischer Baumarten), 87 Standorte des Biotoptyps 43.07: Laubund Mischwälder feuchter bis frischer Standorte, jedoch nur zwei Standorte des Biotoptyps 43.08: Laub(misch) wälder trocken-warmer Standorte für einen Vergleich zur Verfügung. Für diese Standorte wurde die Stetigkeit der Lumbricidenarten berechnet. Diese Stetigkeit ist somit ein Maß dafür, mit welcher Wahrscheinlichkeit eine einzelne Art an einem Standort des jeweiligen Biotoptyps erwartet werden kann.

Fichtenforst frischer Standorte (Biotoptyp 44.04.01.02)

Aus den in **Tab. 31** enthaltenen Werten ist erkennbar, dass an Standorten des Biotoptyps 44.04 zwei Arten mit einer hohen Wahrscheinlichkeit erwartet werden können: *Dendrobaena octaedra* und *Lumbricus rubellus*. Beide Arten wurden auf allen drei Flächen dieses Typs im Nationalpark Eifel nachgewiesen. Darüber hinaus wurden auf jeweils zwei dieser Flächen *Dendrobaena*

attemsi und Dendrodrilus rubidus gefunden. Diese beiden Arten sind entsprechend des Edaphobase-Datenbestands in diesem Biotoptyp (2. Ebene) generell nicht besonders häufig. Insbesondere D. attemsi wurde bislang nur selten an solchen Standorten nachgewiesen (Tab. 31). Gleiches gilt für Lumbricus castaneus, der in der vorliegenden Untersuchung nur auf einer Fläche (EB NW12, Fichte Süd) erfasst wurde. Am Standort Fichte Süd wurden zudem juvenile Individuen von Aporrectodea sp. sensu lato gefunden (d. h. entweder zur Gattung Allolobophora oder Aporrectodea gehörig, die bei Jungtieren morphologisch nicht unterscheidbar sind). Die dominanteste Art war für die Standorte Tereno und Fichte Süd L. rubellus (43 % bzw. 42 % der Adulti), am Standort Langerscheid 1 war dies D. octaedra (50%). Das Artenspektrum war zwischen den drei Standorten sehr ähnlich. Hinsichtlich der Gesamtabundanz zeigte jedoch der Standort Tereno eine erheblich niedrigere (ca. Faktor 5) Individuenzahl als die beiden anderen Standorte. Insgesamt lässt sich schlussfolgern, dass die drei Fichtenforst-Standorte keine

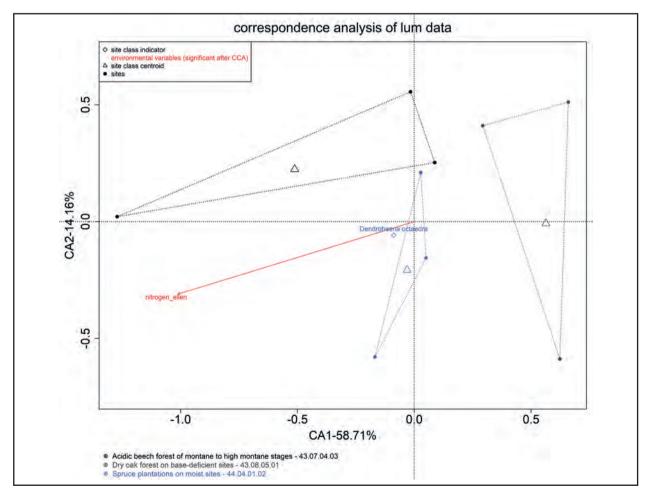


Abb. 42: Korrespondenzanalyse (CA) der Lumbricidendaten der Biotoptypen Fichtenforst (blau), Buchenwald (schwarz) und trockener Eichenwald (grau) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

besonderen Auffälligkeiten zeigten und somit als typisch für diesen Biotoptyp (2. Ebene) angesehen werden können. Die Arten, die mit hoher Wahrscheinlichkeit zu erwarten waren, wurden alle gefunden, und es wurden keine zusätzlichen Arten festgestellt, die hier überhaupt nicht zu erwarten gewesen wären.


Bodensaurer Buchenwald der montanen bis hochmontanen Stufe (Biotoptyp 43.07.04.03)

Im Vergleich zu den in Tab. 31 angegeben Stetigkeiten der verschiedenen Arten kann zunächst festgestellt werden, dass Lumbricus rubellus, der mit der höchsten Wahrscheinlichkeit in diesem Biotoptyp zu erwarten war, auch an allen drei Standorten erfasst wurde. Das Auswerte-Werkzeug Edaphoclass erlaubt, Standortfaktoren in die Analyse aufzunehmen und die Ergebnisse grafisch darzustellen. In Abb. 43 ist daher die Stetigkeit der Arten an Standorten des Biotoptyps 43.07 bei einem pH-Wert ≤ 3,5, wie für die drei Buchenwälder im Nationalpark Eifel zutreffend, dargestellt (11 Standorte). L. rubellus erreicht hier eine Stetigkeit von 91%, und als weitere Art mit einer hohen Stetigkeit von 64% kristallisiert sich Dendrobaena octaedra heraus. Letztere wurde allerdings nur an einem der drei Buchenwald-Standorte im Nationalpark Eifel nachgewiesen. Außerdem wurden noch Dendrobaena attemsi und Dendrodrilus rubidus an jeweils zwei Buchenwald-Standorten gefunden (Tab. 29). Für D. rubidus ist dies nicht überraschend, für D. attemsi hingegen schon. Diese Art wurde entsprechend des in Edaphobase enthaltenen Datenbestands an keinem anderen Standort mit dieser Faktorenkombination (Biotoptyp 43.07, pH-Wert \leq 3,5, vgl. Abb. 43) nachgewiesen. Am Standort Wächterbuche ist D. attemsi zudem die mit Abstand dominanteste Art (94% aller Adulti), unter Berücksichtigung der Anzahl

iuveniler Individuen der Gattung Dendrobaena scheint hier eine regelrechte Massenvermehrung stattgefunden zu haben. Dieses Phänomen ist bei dieser auch als Kulturfolger eingeschätzten Art bereits von anderen Standorten in Nordrhein-Westfalen bekannt (Haag et al. 2009) und schlägt sich auch in den Unterschieden in der Gesamtabundanz zwischen den drei Standorten nieder. Der Standort Wächterbuche zeigte eine ca. 8-fach höhere Gesamtindividuenzahl als der Standort Naturwald Nord und sogar eine um den Faktor 57 höhere Abundanz als der Standort Langerscheid 2. Das Artspektrum war hingegen zwischen den Standorten sehr ähnlich. Mit Ausnahme des massenhaften Auftretens juveniler Exemplare der Gattung Dendrobaena, vermutlich überwiegend zu D. attemsi gehörig, sind die drei Buchenwald-Standorte im Nationalpark Eifel für diesen Biotoptyp (2. Ebene) als typisch anzusehen.

Eichen-Trockenwald basenarmer Standorte (Biotoptyp 43.08.05.01)

Für diesen Biotoptyp stand in Edaphobase keine ausreichende Anzahl weiterer Standorte für einen Vergleich zur Verfügung (2 Standorte). Vermutlich aufgrund der Kombination von Trockenheit und niedrigem pH-Wert an diesem Standort fand sich hier eine sehr niedrige Artenzahl von nur 1 bis 2 Taxa pro Standort. *Lumbricus rubellus* wurde an allen drei Standorten nachgewiesen, was sich mit dem oben dargestellten ökologischen Profil dieser Art deckt (Abb. 41). Zusätzlich wurden an jeweils einem Standort *Aporrectodea caliginosa* und *Lumbricus castaneus* gefunden sowie am Standort B 265 Gemünd (EB_NW31) juvenile Individuen der Gattung *Dendrobaena*. Dieser Standort wich somit teilweise vom Artenspektrum der beiden übrigen Standorte ab. Dies zeigte sich auch bei der Gesamtabundanz, die hier um

Abb. 43: Stetigkeiten der Lumbricidenarten innerhalb des Biotoptyps 43.07 Laub- und Mischwälder feuchter bis frischer Standorte (nach Riecken et al. 2003) und einem Boden-pH ≤ 3,5 (11 Standorte) (Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 25.04.2018). Regenwurmarten (von oben nach unten): *L. rubellus*, *D. octaedra*, *D. rubidus*, *A. eiseni*, *A. caliginosa*, *A. rosea*, *L. terrestris*, *L. castaneus*, *E. fetida*.

ca. den Faktor 5 höher als am Standort Schlitterley (EB_NW32) war. Der Standort Weiersheld (EB_NW33) war insgesamt mit nur einer Art mit sehr niedriger Abundanz stark verarmt. Insgesamt kann festgestellt werden, dass dieser Biotoptyp aufgrund seiner Eigenschaften wenig günstige Bedingungen für Lumbriciden stellt. Eine Beurteilung ist aufgrund fehlender Vergleichsdaten jedoch schwer möglich. Der Standort B 265 Gemünd zeigt in seinem Artspektrum Unterschiede zu den übrigen Standorten, was jedoch aktuell keinem kausalen Faktor zugeschrieben werden kann.

5.4.6 Enchytraeidae 5.4.6.1 Individuen- und Artenzahlen

Insgesamt wurden auf allen untersuchten Flächen 43.443 Individuen aus 36 Arten und 13 Gattungen nachgewiesen (**Tab. 32**, **Tab. Anhang 6**, **18-20**). Darunter sind fünf noch nicht beschriebene neue Arten und die Art *Enchytronia pygmaea* wurde erst im letzten Jahr gültig beschrieben (Graefe & Schmelz 2017). Die hohe Zahl von noch unbeschriebenen, d. h. potentiell neuen Arten ist bei Enchytraeiden generell nicht ungewöhnlich – die taxonomische Durcharbeitung dieser Gruppe ist noch immer unzureichend. Auffallend ist aber, dass selbst an relativ gut untersuchten Standorten

wie mitteleuropäischen bodensauren Böden von 39 nachgewiesenen Arten fast 20 % unbeschrieben sind.

Alle drei Biotoptypen waren ähnlich individuenreich; die Gesamtindividuenzahlen lagen zwischen 12.095 (Buchenwald) und 16.754 (Fichtenforst). Auch zwischen den Replikaten eines Biotoptyps sowie zwischen Frühjahrs- und Herbstbeprobung waren die Unterschiede gering, ein individuenarmer Buchenwaldstandort ausgenommen (EB NW21).

Die Artenzahlen der Fichtenforste und der Eichenwälder unterschieden sich kaum (summiert: 18-19, je Replikat: 10-15). Deutlich höher lagen die Artenzahlen der Buchenwälder (summiert: 29, je Replikat: 22-23). Die fünf häufigsten Arten waren (in abnehmender Reihenfolge) Cognettia chlorophila, Marionina clavata, Oconnorella cambrensis, Achaeta affinis und Enchytronia parva. Sie machten 82,8% aller gefangenen Individuen aus.

5.4.6.2 Faunistische Anmerkungen und kritische Arten

Cognettia chlorophila entspricht weitgehend der bekannten und in sauren Wäldern dominanten Art Cognettia sphagnetorum. Die Änderung des Artnamens geht auf eine taxonomische Aufspaltung von C. sphagnetorum in mehrere Arten zurück (Martinsson

Tab. 32: Arten- und Individuenzahlen der Enchytraeiden auf den Untersuchungsflächen des Nationalparks Eifel.

			Individue	enzahlen		Artenza	hlen	
	NW11	Frühjahr	2505	4630		10	10	
	1N WV 11	Herbst	2125	4030		8	10	
Fichte	NW12	Frühjahr	2595	5829	16754	14	15	18
Fichte	IN W 12	Herbst	3234	3029	10/34	13	13	10
	NIW/12	Frühjahr	3313	6205		12	13	
	NW13	Herbst	2982	6295		10	13	
	NW21	Frühjahr	967	1288		20	23	
	IN W 2 I	Herbst	321	1200		19	23	
Buche	NW22	Frühjahr	3829	6227	12095	21	23	29
Bucile	1 N W 22	Herbst	2398	0227	12093	18	23	29
	NW23	Frühjahr	3006	4580		17	22	
	IN W 25	Herbst	1574	4360		20		
	NW31	Frühjahr	3016	5404		15	15	
	IN W 31	Herbst	2388	3404		11	13	
Eiche	NW32	Frühjahr	1544	3521	14594	9	15	19
Eiche	IN W 32	Herbst	1977	3321	14394	14	13	19
	NW33	Frühjahr	2913	5660		12	12	
	1N W 33	Herbst	2756	5669		10	12	
Nationalpar	k Eifel 2014		Individue	enzahl Fallen:	43443	Artenza	hl Fallen:	36

et al. 2015). Eine davon behielt, den Nomenklaturregeln entsprechend, den Namen *sphagnetorum*, eine andere erhielt den Namen *chlorophila*. Beide Arten wurden hier nachgewiesen; sie wären vor der Artaufspaltung als nur *eine* Art, *C. sphagnetorum*, identifiziert worden. Um Missverständnissen vorzubeugen, wird im Folgenden zwischen "*C. sphagnetorum* s.s." (= sensu stricto) und *C. sphagnetorum* s.l. (= sensu lato) unterschieden. Erstere bezeichnet die Art *nach* der Artaufspaltung, letztere bezeichnet den Artenkomplex *vor* der Artaufspaltung, der auch *C. chlorophila* beinhaltet.

5.4.6.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Waldtypen des Nationalparks

Der Einteilung in Kennarten, Grundarten und Begleitarten (**Tab. 33**, siehe auch Kap. 4.5) liegt der gesamte Datensatz aller vier Länderstudien zugrunde (vgl. Kap. 3.1.4). Außerdem wurden Arten ohne besondere Biotopbindung, aber mit spezifischer pH-Präferenz, in sog. Säuregruppen eingeteilt. So wurden übergeordnete Muster erkennbar gemacht, die aus der isolierten Betrachtung des Datensatzes aus dem Nationalpark Eifel nicht erkennbar wären. Beispiele hierfür sind die Kennartengruppen der drei Waldtypen oder die Säuregruppe der Buchenwälder. Anhand der Kennarten lassen sich die drei Waldtypen gut unterscheiden:

- Der Fichtenwald ist durch die Art Achaeta bifollicula charakterisiert.
- In der vorliegenden Untersuchung wurden C. sphagnetorum s.s., Enchytronia pygmaea sowie zwei Arten der Gattung Mesenchytraeus (M. armatus und M. glandulosus) als Kennarten des Buchenwalds identifiziert.
- Im Eichenwald fällt auf, dass jede der vier Kennarten dieses Biotoptyps (*Achaeta bibulba*, *Fridericia bisetosa*, *F. dura* und *F. monochaeta*) nur an jeweils zwei der drei Standorten gefunden wurde.

Die Arten- und Individuenzahlen liegen am oberen Rand oder oberhalb der Erwartungswerte, wie sie bereits für ähnliche Biotope in Norddeutschland ermittelt wurden (Beylich & Graefe 2009, für bodensaure Wälder: 3-14 Arten, 21.000-155.000 Individuen/m²).

Bezugnehmend auf die in **Tab. 34** (Indikatorartenanalyse) aufgeführten Indikatorwerte und deren Signifikanz erfüllen im Fichtenforst A. bifollicula und im Buchenwald C. sphagnetorum s.s. sowie M. armatus die genannten Kriterien. Im Eichenwald dagegen erfüllt keine Art diese Kriterien, allerdings wird hier das Signifikanzniveau bei Enchytronia parva und Oconnorella tubifera nur knapp verfehlt. Damit entspricht diese Art der Auswertung im Fall des Fichtenforsts der Information der Kreuztabelle (**Tab. 33**), die A. bifollicula als Kennart ausweist. Im Fall der Buchenwälder ist das Ergebnis ähnlich, denn drei der vier in der

Tab. 33: Sortierte Kreuztabelle der Enchytraeiden. Angaben in Ind./m². Angabe des Biotoptyps nach Riecken et al. (2003).

	lfd. Nr.	1: Tereno		lfd. Nr. 4: Wächterbuche			lfd. Nr. 7: B 265 Gemünd			
	lfd. Nr.	2: Fichte S	Süd	lfd. Nr.	1fd. Nr. 5: Langerscheid 2			8: Schlitte	-	
		3: Langers		lfd. Nr.	lfd. Nr. 6: Naturwald Nord			lfd. Nr. 9: Weiersheld		
	Fichte 4	44.04.01.0	2	Buche 43.07.04.03			Eiche 43.08.05.01			
Flächenkürzel Edaphobase	EB_ NW11	EB_ NW12	EB_ NW13	EB_ NW21	EB_ NW22	EB_ NW23	EB_ NW31	EB_ NW32	EB_ NW33	
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Kennarten										
Fichtenwald										
Achaeta bifollicula	528	223	345].						
Buchenwälder (sauer)							_			
Cognettia sphagnetorum s.s.				162	2578	20].			
Enchytronia pygmaea				41		102				
Mesenchytraeus armatus			61	1353	974	1807				
Mesenchytraeus glandulosus				1326	690	284	305			
Eichen Trockenwälder										
Achaeta bibulba			81					4852	142	
Fridericia bisetosa							102	61		
Fridericia dura							487	61		
Fridericia monochaeta								1624	305	

	lfd. Nr. 1: Tereno		lfd. Nr.	4: Wächte	rbuche	lfd. Nr. 7: B 265 Gemünd			
		2: Fichte S		lfd. Nr.	5: Langer	scheid 2	lfd. Nr. 8: Schlitterley		
		3: Langers			6: Naturw			9: Weiersl	
	EB	EB	EB	EB	43.07.04.0 EB	EB	Eiche 4 EB	3.08.05.01 EB	EB
Flächenkürzel Edaphobase	NW11	NW12	NW13	NW21	NW22	NW23	NW31	NW32	NW33
lfd. Nr.:	1	2	3	4	_ 5	6	7	8	9
Grundarten									
Buchenwälder				F		-	7		
Fridericia benti	•			501	223	•	•	•	•
Stercutus niveus				34	102	•].		
Säuregruppen									
frisch & sauer							7		
Cognettia cognettii	2477	11246	528	2159	15225	4344	-		
Mesenchytraeus flavus	81	244	264		244	122].		
sauer, bevorzugt Wald									
Achaeta camerani	5542	2172	4344	3972	8303	5704		61	81
Marionina clavata	19793	17032	26228	487	4141	2883	1583	17499	58993
sauer									
Achaeta affinis	6070	13723	17499	832	9095	2517	4486	9013	2639
Cognettia chlorophila	52436	48802	67032	6293	55704	58973	22371	16768	42529
Enchytraeus norvegicus		345		1320	284	1563	4283		2335
Enchytronia parva		4385		5231	406	1015	35485	19651	3147
Enchytronia sp. (TENU)				162	284	1035	1929	81	2822
Fridericia striata		244	61	169	244	264	41	41	
Oconnorella cambrensis	6334	15956	9155	643	17743	9480	19021	20	
Oconnorella tubifera		345		453	142	142	19427	1117	264
Begleitarten	• • • • • • • • • • • • • • • • • • • •	••••••	••••••						1
Begleitarten mit hoher Stetigk	eit								
Enchytraeus buchholzi		1583	1827	609	3248	122			
Enchytraeus sp. (GRAN)				1624	1868	102	20	568	
Enchytronia parva		4385		4649	406	1015	35485	19651	3147
Mesenchytraeus pelicensis	589	386	365		2822	2213	142	61	1523
sonstige Begleiter									
Achaeta aberrans									305
Achaeta abulba					81				
Achaeta bibulba			81					4852	142
Achaeta sp.						20			
Achaeta sp. (BUUS)				162			20		
Achaeta sp. (NW23)						183			
Achaeta sp. (PAFU)	142	•	•	•	•		•	•	•
Bryodrilus ehlersi		•	•	•	61		•	•	•
Buchholzia appendiculata		1644	•	2172	1949	20	•	•	•
Enchytronia sp. 2VII		1077	•		1/7/	61	•	•	•
Hemifridericia parva	•	•	•	20	•	01	•	•	•
	•	•	•		•	•	•	•	•
Marionina deminuta	•	•	•	20	•	•	•	•	·

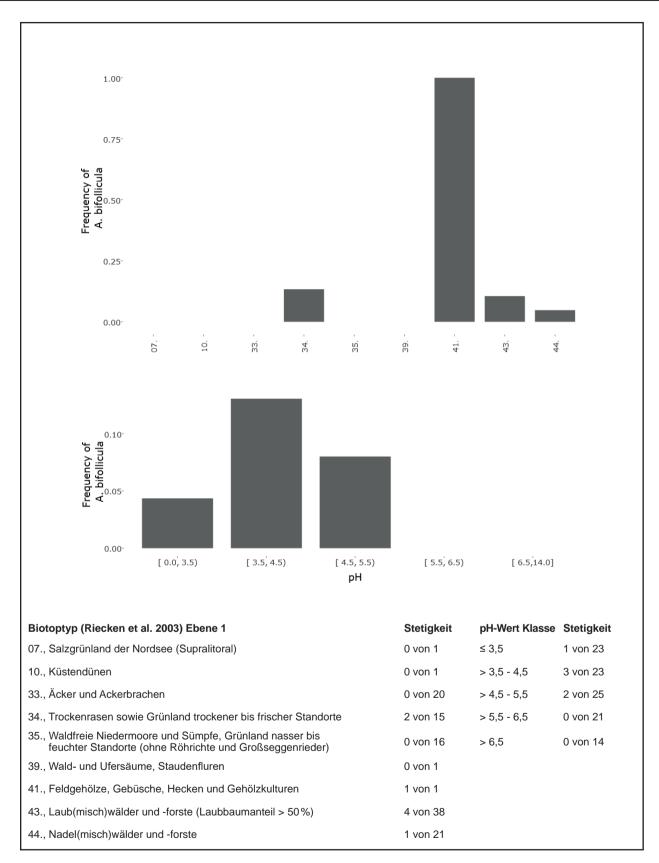
Tab. 34: Indikatorwerte (indicator_value) der Enchytraeiden-Arten der Biotoptypen Fichtenforst, Buchenwald und trockener Eichenwald sowie die jeweiligen relativen Abundanzen (rel_abundance) und Stetigkeiten (rel_frequency). Ein Indikatorwert > 0,8 wird als relevant angesehen und ist signifikant bei einer Irrtumswahrscheinlichkeit (pvalue) $\leq 0,1$. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
44.04.01.02		Fiel	ntenforst	
Achaeta affinis	0,57	0,11	0,57	1,00
Achaeta bifollicula	1,00	0,03	1,00	1,00
Achaeta sp. PAFU	0,33	1,00	1,00	0,33
Cognettia chlorophila	0,45	0,24	0,45	1,00
Mesenchytraeus flavus	0,62	0,19	0,62	1,00
Oconnorella cambrensis	0,40	0,78	0,40	1,00
43.07.04.03		Buc	henwald	
Achaeta abulba	0,33	1,00	1,00	0,33
Achaeta camerani	0,60	0,14	0,60	1,00
Achaeta sp.	0,33	1,00	1,00	0,33
Achaeta sp. BUUS	0,30	1,00	0,90	0,33
Achaeta sp. NW23	0,33	1,00	1,00	0,33
Bryodrilus ehlersi	0,33	1,00	1,00	0,33
Buchholzia appendiculata	0,73	0,07	0,73	1,00
Cognettia cognettii	0,60	0,21	0,60	1,00
Cognettia sphagnetorum s.s.	1,00	0,03	1,00	1,00
Enchytraeus buchholzi	0,55	0,24	0,55	1,00
Enchytraeus sp. GRAN	0,87	0,08	0,87	1,00
Enchytronia pygmaea	0,67	0,28	1,00	0,67
Enchytronia sp. 2VII	0,33	1,00	1,00	0,33
Fridericia benti	0,67	0,22	1,00	0,67
Fridericia striata	0,64	0,09	0,64	1,00
Hemifridericia parva	0,33	1,00	1,00	0,33
Marionina deminuta	0,33	1,00	1,00	0,33
Mesenchytraeus armatus	0,99	0,03	0,99	1,00
Mesenchytraeus glandulosus	0,88	0,05	0,88	1,00
Mesenchytraeus pelicensis	0,41	0,73	0,62	0,67
Stercutus niveus	0,67	0,22	1,00	0,67
43.08.05.01		trockene	er Eichenwald	
Achaeta aberrans	0,33	1,00	1,00	0,33
Achaeta bibulba	0,66	0,21	0,98	0,67
Enchytraeus norvegicus	0,44	0,47	0,65	0,67
Enchytronia parva	0,84	0,11	0,84	1,00
Enchytronia sp. TENU	0,77	0,13	0,77	1,00
Fridericia bisetosa	0,67	0,27	1,00	0,67
Fridericia dura	0,67	0,27	1,00	0,67
Fridericia monochaeta	0,67	0,21	1,00	0,67
Marionina clavata	0,53	0,69	0,53	1,00
Oconnorella tubifera	0,95	0,11	0,95	1,00

Kreuztabelle identifizierten Arten (*C. sphagnetorum* s.s., *M. glandulosus* und *M. armatus*) werden in **Tab. 34** als relevant und signifikant aufgeführt – nur im Fall der Art *Enchytronia pygmaea* gibt es keine Übereinstimmung. Dies ist aller Wahrscheinlichkeit nach auf die deutlich niedrigere Abundanz dieser Art im Vergleich zu den anderen Arten sowie auf das Vorkommen in nur zwei der drei untersuchten Flächen zurückzuführen. Generell ist festzuhalten, dass es eine gute Übereinstimmung zwischen den Kreuztabellen und der statistischen Auswertung gibt.

Mit Hilfe des in das Edaphobase-Portal integrierten Auswerte-Werkzeugs Edaphostat (Hausen et al. 2017) können die ökologischen Profile der im Datenbestand enthaltenen Arten angezeigt werden. Dabei wurden Daten von Standorten in Deutschland ausgewählt, an denen das Artenspektrum der Enchytraeiden quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung auch Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen.

Damit standen Daten von insgesamt 119 Standorten für 95 verschiedene Enchytraeidenarten zur Verfügung. Zwei Arten werden hier exemplarisch dargestellt: Achaeta bifollicula als eine Art, die als Kennart für den Fichtenforst nur auf den drei zu diesem Biotoptyp gehörenden Flächen vorkam und Cognettia sphagnetorum s.l., die als charakteristische Art (bzw. Artenkomplex, vgl. Kap. 5.4.6.2) saurer Wälder und Moore im nördlichen und zentralen Europa gilt. Im NP Eifel war C. sphagnetorum s.s. eine der Kennarten der Buchenwälder und C. chlorophila wurde in eine Säuregruppe für saure Standorte eingruppiert. Als Standortfaktoren wurden in Analogie zu der Darstellung der Regenwürmer (vgl. Kap. 5.4.5.2) der Biotoptyp (1. Ebene) sowie der Boden-pH-Wert verwendet. In Abb. 44 und 45 zeigt sich, dass die im NP Eifel gemachten Beobachtungen weitgehend konsistent mit den ökologischen Profilen beider Arten sind. Demnach scheinen die Nachweise von A. bifollicula nur bedingt mit ihrem Vorkommen in der Eifel übereinzustimmen, was aber vor allem daran liegt, dass diese Art bisher selten identifiziert worden ist. Deutlich besser ist die Übereinstimmung bei der pH-Präferenz, denn demnach ist sie acidophil mit einem Schwerpunkt im Bereich von sauren Böden (pH 3,5-4,5). Nachweise von Standorten mit einem pH > 4,5 fehlen bisher vollständig. Weitaus besser, allerdings auch mit einer deutlich höheren Anzahl von Nachweisen, stimmen die Angaben zum ökologischen Profil bzw. ihrem aktuellen Vorkommen in der Eifel bei der zweiten Art, C. sphagnetorum s.l., überein: Hierbei handelt es sich zweifelsohne um einen Artenkomplex acidophiler Arten.


Das CA-Diagramm (**Abb. 46**) visualisiert die Unterschiedlichkeit der drei Biotoptypen. Als signifikante Faktoren für diese Trennung wurde vor allem der Stickstoffgehalt identifiziert, d. h. zwischen dem eher eutrophen Buchenwald und mageren Eichenwald zeigen sich deutliche Unterschiede, während der Fichtenwald zwischen den beiden anderen Biotoptypen einzuordnen ist. Schwierig zu interpretieren ist, dass die Temperatur, ermittelt aus den Ellenbergzahlen der Pflanzen, als zweiter signifikanter Umweltparameter identifiziert.

5.4.6.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Mit dem Edaphobase Auswerte-Werkzeug Edaphoclass lässt sich ein Vergleich zwischen den im Nationalpark Eifel untersuchten Standorten und anderen deutschen Standorten des gleichen Biotoptyps (2. Ebene) aus dem in Edaphobase enthaltenen Datenbestand vornehmen, indem die Frequenzen ausgewähler Biotoptypen abgefragt und dann mit den beprobten Standorten auf Übereinstimmungen hin untersucht werden können (Tab. 35). Voraussetzung für die Vergleichbarkeit war, dass das Artenspektrum der Enchytraeiden dort quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung zudem Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Nach der nach diesen Kriterien

Tab. 35: Stetigste (> 50%) Enchytraeidenarten innerhalb der Biotoptypen 44.04 Nadel(misch)forste (einheimischer Baumarten), 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 43.08 Laub(misch)wälder trocken-warmer Standorte (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 25.04.2018).

Biotoptyp	44.04	43.07	43.08
Anzahl Standorte	12	20	2
Achaeta abulba	0,33	0,30	0,50
Achaeta bibulba			0,50
Achaeta brevivasa	0,33	0,30	0,50
Cognettia sphagnetorum s.l.	1,00	1,00	1,00
Enchytraeus buchholzi	0,25	0,55	
Enchytronia parva	0,25	0,60	
Marionina clavata	0,75	0,70	1,00
Mesenchytraeus glandulosus	0,50	0,80	
Mesenchytraeus pelicensis	0,58	0,20	
Oconnorella cambrensis	0,42	0,65	0,50
Stercutus niveus		0,50	

Abb. 44: *Achaeta bifollicula*: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 03.07.2018).

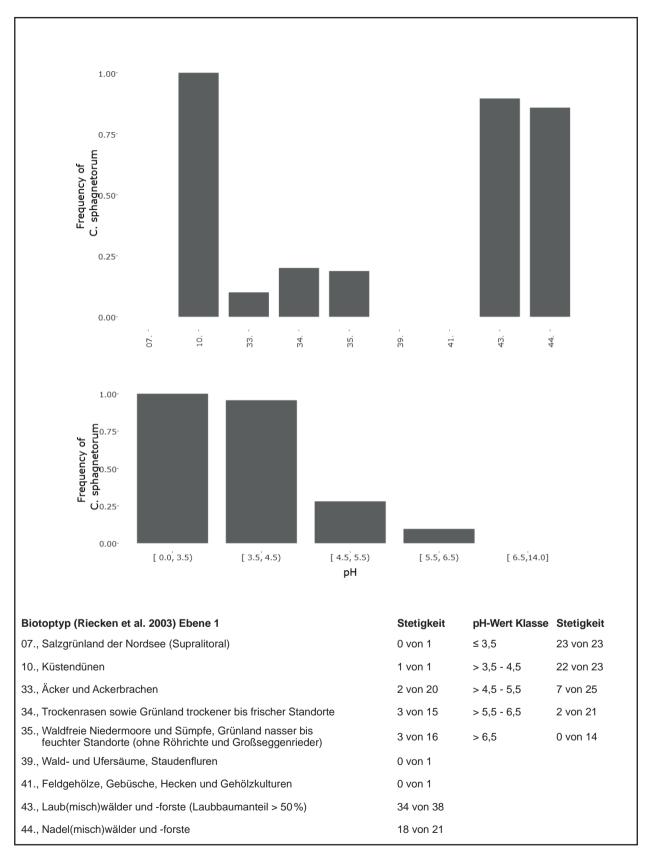


Abb. 45: Cognettia sphagnetorum s.l.: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 03.07.2018).

erfolgten Filterung standen 12 Standorte des Biotoptyps 44.04: Nadel(misch)forste (einheimischer Baumarten), 20 Standorte des Biotoptyps 43.07: Laub- und Mischwälder feuchter bis frischer Standorte, jedoch nur zwei Standorte des Biotoptyps 43.08: Laub(misch) wälder trocken-warmer Standorte für einen Vergleich zur Verfügung. Für diese Standorte wurde die prozentuale Stetigkeit der Enchytaeidenarten berechnet. Diese prozentuale Stetigkeit ist somit ein Maß dafür, mit welcher Wahrscheinlichkeit eine einzelne Art an einem Standort des jeweiligen Biotoptyps erwartet werden kann.

Fichtenforst frischer Standorte (Biotoptyp 44.04.01.02)

Aus den in **Tab. 35** enthaltenen Werten ist erkennbar, dass an Standorten des Biotoptyps 44.04 (Nadel(misch) forste (einheimischer Baumarten)) vier Arten mit einer hohen Wahrscheinlichkeit erwartet werden können: Cognettia sphagnetorum s.l., Marionina clavata,

Mesenchytraeus glandulosus und Mesenchytraeus pelicensis. Mit Ausnahme von M. glandulosus wurden alle diese Arten an allen drei Standorten dieses Typs im Nationalpark Eifel nachgewiesen (C. sphagnetorum s.l. hier als C. chlorophila, vgl. Kap. 5.4.6.2.), womit die Standorte den Erwartungswerten entsprechen. Der bodensauerste Biotoptyp (d. h. die Fichtenforste, pH ≤ 3) ist auch der artenärmste. Er ist in dieser Untersuchung nur durch eine Kennart von den anderen beiden Typen (Eichen- und Buchenwald) abgesetzt. Ansonsten unterscheiden sich die Fichtenforste vom bodensauren Buchenwald lediglich durch das Fehlen von Arten. Die faunistische Nähe dieser beiden Biotoptypen zueinander wird auch durch die Fläche EB_NW12 unterstrichen, die mit den Buchenwaldflächen vier Arten gemeinsam hat (Buchholzia appendiculata, Enchytraeus norvegicus, Enchytronia parva, Oconnorella tubifera). Faunistisch ist also EB NW1 als eine verarmte Version von EB NW2 anzusprechen.

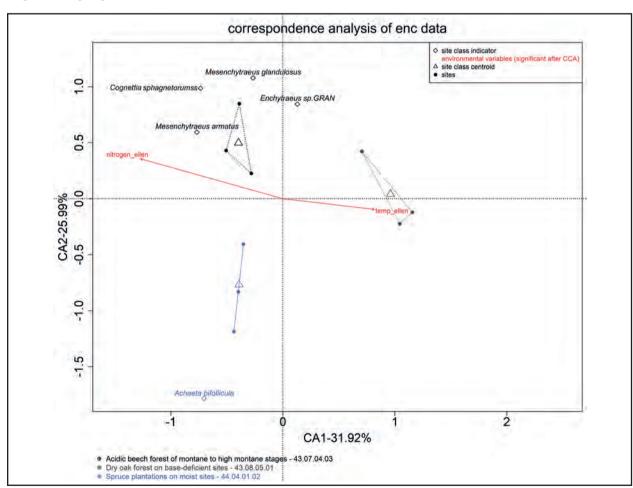


Abb. 46: Korrespondenzanalyse (CA) der Enchytraeidendaten der Biotoptypen Fichtenforst (blau), Buchenwald (schwarz) und trockener Eichenwald (grau) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Bodensaurer Buchenwald der montanen bis hochmontanen Stufe (Biotoptyp 43.07.04.03)

Gemäß **Tab. 35** sind an Standorten des Biotoptyps 43.07 sieben Arten mit hoher Wahrscheinlichkeit zu erwarten: Cognettia sphagnetorum s.l., Enchytraeus buchholzi, Enchytronia parva, Marionina clavata, Mesenchytraeus glandulosus, Oconnorella cambrensis und Stercutus niveus. Mit Ausnahme von S. niveus am Standort Naturwald Nord wurden alle diese Arten in allen drei Buchenwäldern nachgewiesen. Somit entsprechen diese Standorte praktisch vollständig den Erwartungswerten. Der in der vorliegenden Studie untersuchte starksaure Biotoptyp (pH \leq 3,4) ist ungewöhnlich artenreich. Dies könnte an der Humusqualität liegen, angezeigt durch die Streubewohner B. appendiculata und Mesenchytraeus-Arten, und auch an der vergleichsweise hohen Bodenfeuchte (Kennarten Cognettia sphagnetorum s.s. und Mesenchytraeus armatus). C. sphagnetorum s.s. ist die dominante Art in feuchtnassen Koniferenwäldern, während das Hauptvorkommen von M. armatus nach Graefe & Schmelz (1999) in nassen, pH-neutralen Böden zu suchen ist, z. B. in feuchtnassen Uferbereichen (Schmelz, unveröffentlicht).

Eichen-Trockenwald basenarmer Standorte (Biotoptyp 43.08.05.01)

Für diesen Biotoptyp stand in Edaphobase keine ausreichende Anzahl weiterer Standorte für einen Vergleich zur Verfügung (2 Standorte). Dieser starksaure Biotoptyp (pH < 3,4) ist durch vier Arten mit geringer Stetigkeit vom bodensauren Buchenwald abgesetzt, und ansonsten durch das Fehlen von Arten ihm gegenüber gekennzeichnet. Es fehlen Feuchtezeiger und Streubewohner, was auf eine starke Austrocknung der humosen Oberschicht im Sommer hindeutet.

Zusammenfassend lässt sich feststellen, dass die drei hier untersuchten Biotoptypen sich mithilfe der Artengemeinschaft der bodenlebenden Enchytraeiden charakterisieren und voneinander abgrenzen lassen. Hervorzuheben ist aber ebenfalls – mit Blick auf die in den anderen Länderstudien untersuchten Biotoptypen (vgl. Kap. 6, 7, 8) – ihre Gemeinsamkeit, angezeigt durch Säurezeiger ohne spezifische Biotopbindung, die in hoher Abundanz und Stetigkeit auftreten.

5.5 Taxonübergreifende Charakterisierung der Lebensgemeinschaften der einzelnen Biotoptypen

Die meisten ausgewerteten taxonomischen Gruppen zeigten anhand ihres Vorkommens innerhalb dieser Untersuchung ein Muster sowohl aus Kennarten für die verschiedenen Waldtypen als auch aus unterschiedlichen Grundartenund mehreren edaphischen Gruppen (siehe Kap. 4.5). Einige dieser Kennarten-, Grundarten- und edaphischen Gruppen ließen sich in der Artenverteilung mehrerer Organismengruppen erkennen, wie beispielsweise die Kennartengruppen des Buchen- und des Eichenwalds. Diese beiden Kennartengruppen wurden durch die Oribatiden, die Enchytraeiden, die Collembolen, die Diplopoden sowie, in schwacher Ausprägung zumindest in den Eichenwäldern, die Chilopoden gebildet. Kennarten für die Fichtenforste kamen dagegen nur bei den Oribatiden und den Enchytraeiden vor. Eine Zusammenfassung der verschiedenen Artengruppen sowie der zugrundeliegenden taxonomischen Gruppen ist Tab. 36 zu entnehmen.

Bei der Untersuchung der drei Waldtypen Fichtenforst, Buchen- und Eichenwald wurden insgesamt 112.411 Bodentier-Individuen bestimmt und dabei 274 Arten nachgewiesen (**Tab. 37**). Artenreichster Biotoptyp bei vergleichbarer Beprobungsintensität war dabei der Eichenwald mit insgesamt 193 Arten. Obgleich der Fichtenforst mit 153 verschiedenen Taxa den artenärmsten Biotoptyp darstellte, wurden hier mit 44.827 Tieren die meisten Individuen gefangen.

Die Individuen- und Artenzahlen der verschiedenen Tiergruppen unterschieden sich teilweise deutlich (siehe **Tab. 37**). Die artenreichste Tiergruppe der untersuchten Waldtypen waren die Oribatiden mit Artenzahlen zwischen 83 (Fichtenforst) und 112 (Eichenwald), gefolgt von den Collembolen mit Zahlen zwischen 32 (Fichte) und 42 (Eiche). Die Artenzahlen der Myriapoda und Lumbricidae fielen mit Werten zwischen 4 (Lumbricidae: Buche, Eiche) und 12 (Diplopoda: Buche) deutlich geringer aus.

Die höchsten Individuenzahlen erreichten die Enchytraeiden mit 12.095 (Buchenwald) bis 16.754 (Fichtenforst) Tieren, gefolgt von den Oribatiden und Collembolen. Insgesamt sind somit die Arten- und Individuenzahlen der Tiergruppen, die aufgrund ihrer Größe der Mesofauna zugerechnet werden (vgl. **Tab. 2**), größer als die der Makrofauna. Hierbei ist jedoch insbesondere beim Vergleich der Individuenzahlen zu berücksichtigen, dass die Tiere mit unterschiedlichen Methoden nachgewiesen wurden (siehe Kap. 4.4). Es

Tab. 36: Übersicht über die Tiergruppen, die Kennarten(gruppen), Grundarten(gruppen) sowie verschiedene edaphische Gruppen für die Biotoptypen Fichtenforst, Buchen- und Eichenwald aufwiesen.

		Fichte	Buche	Eiche
Kennarten				
		Oribatida Enchytraeidae	Oribatida Enchytraeidae	
			Diplopoda (Chilopoda) Collembola	Oribatida
				Enchytraeidae Diplopoda Chilopoda Collembola
Feuchtegruppe	en			
	wechselfeuchte Standorte	Oribatida Diplopoda Chilopoda	Oribatida Diplopoda Chilopoda	
	trockene, zeitweise austrocknende Streu-/	Oribatida		Oribatida
	Bodenschichten	Chilopoda		Chilopoda
Säuregruppen				
	frisch & saure Standorte	Oribatida Enchytraeidae	Oribatida Enchytraeidae	
	saure Laubwaldstandorte		Oribatida	Oribatida
	sauer im Mittel < ph4 /basenarm	Oribatida Enchytraeidae	Oribatida Enchytraeidae	Oribatida Enchytraeidae
	sehr saure Nadelwaldstandorte	Lumbricidae		
Nährstoffgrupp				
	sehr nährstoffarme Wälder			Oribatida Collembola
Kennarten atla	intische/westeuropäische Wälder			
		Collembola	Collembola	Collembola
Grundarten de	r Laubwälder			
			Oribatida Diplopoda	Oribatida Diplopoda
Grundarten de	r Buchenwälder			
			Enchytraeidae	
Grundarten de	r bodensauren Wälder			
		Diplopoda	Diplopoda	Diplopoda
		Enchytraeidae	Enchytraeidae	Enchytraeidae
Grundarten de	er Grasland- und Waldstandorte			
		Lumbricidae	Lumbricidae	Lumbricidae

Tab. 37: Übersicht über die Individuen- und Artenzahlen der untersuchten Tiergruppen, die in den Fichtenforsten, den Buchen- und den Eichenwäldern nachgewiesen wurden.

	Fichte		Buche	Buche Eiche				
	Individuen	Artenzahl	Individuen	Artenzahl	Individuen	Artenzahl	Individuen	Artenzahl
Oribatida	14.644	83	7.299	95	12.687	112	34.630	156
Collembola	12.961	32	9.976	37	9.841	42	32.778	48
Diplopoda	314	8	159	12	140	10	613	15
Chilopoda	30	6	45	10	90	6	165	13
Lumbricidae	124	6	452	4	206	4	782	6
Enchytraeidae	16.754	18	12.095	29	14.594	19	43.443	36
gesamt	44.827	153	30.026	187	37.558	193	112.411	274

verwundert nicht, dass schon aufgrund der geringeren Charakteristische Bodentierarten Artenzahlen in einigen Tiergruppen weniger Kennartenoder edaphische Gruppen gebildet werden konnten als in artenreicheren Tiergruppen (vgl. Kap. 5.4).

Montaner Fichtenforst (Ersatzgesellschaft des Luzulo-Fagetums)

Biotoptyp: 44.04.01.02 Fichtenforst frischer Standorte (Riecken et al. 2003) / G3.F21 Highly artificial coniferous plantations (EUNIS-Klassifikation 2016)

Schutzstatus: Nationalpark

Kurzcharakterisierung: Die untersuchten montanen Fichtenforste weisen Fichtenbestände mit einem Alter von 50-90 Jahren auf, die auf ursprünglichen Buchenwald-Standorten angelegt wurden. Die auf einer Höhenlage zwischen 577 und 632 m ü. NHN gelegenen Untersuchungsflächen sind durch einen sauren pH-Wert (pH = 2,87-3,00) und teilweise wechsel-feuchte (EB NW11) Standortbedingungen gekennzeichnet. Das Untergrundgestein besteht aus devonischem, stark geschieferten Tonstein, teilweise in Verbindung mit (quarzitischem) Sandstein. Darauf haben sich Braunerden gebildet, auf Untersuchungsfläche EB NW11 teilweise auch Pseudogley-Braunerde. Der Humus wird als feinhumusreicher rohhumusartiger Moder eingestuft, die Bodenart ist, je nach Fläche, unterschiedlich stark lehmiger, steiniger, sandiger Schluff bis schluffiger Lehm. Mit einer Hangneigung zwischen 0° und 2° weisen die untersuchten Fichtenforste wenig Gefälle auf. Die Ellenbergzahlen aus den Vegetationsdaten ergaben saure, frische, eher helle Standortbedingungen, einen mäßigen Stickstoffgehalt sowie mäßig warme Temperaturen.

Charakteristische Pflanzenarten

Baumarten: Picea abies (Naturverjüngung) Bodenvegetation/charakteristische Artengruppen

- Kennart des Luzulo-Fagetums: Luzula luzuloides
- Kennarten Verband-Klasse (Fagion-Querco-Fagetea): Dryopteris carthusiana, Oxalis acetosella, Festuca altissima, Deschampsia flexuosa, Milium effusum, Dryopteris filix-mas, Dryopteris dilatata, Poa chaixii
- Störzeiger: Digitalis purpurea, Mycelis muralis, Galeopsis tetrahit, Epilobium angustifolium
- Säurezeiger: Teucrium scorodonia, Vaccinium myrtillus, Galium saxatile, Cytisus scoparius, Lonicera periclymenum
- Begleitarten

Kennarten				
Oribatida	Enchytraeidae			
Nanhermannia dorsalis	Acheata bifollicula			
Autogneta parva				
Cepheus grandis				
Nanhermannia elegantula				

Kennzeichnende Artengruppen

- Feuchtegruppen: 1) Wechselfeuchte Standorte 2) trockene, zeitweise austrocknende Streu-/ Bodenschichten
- Säuregruppen: 1) frisch & saure Standorte 2) sauer im Mittel < 4/basenarm 3) sehr saure Nadelwaldstandorte
- Kennarten atlantisch/westeuropäischer Wälder
- Grundarten der bodensauren Wälder
- Grundarten der Grasland- und Waldstandorte

Flattergras-Hainsimsen-Buchenwald (Luzulo-Fagetum milietosum)

Biotoptyp: 43.07.04.03 Bodensaurer Buchenwald der montanen bis hochmontanen Stufe (Riecken et al. 2003)/ G1.6122 Western medio-European montane woodrush beech forests (EUNIS-Klassifikation 2016)

Schutzstatus: Nationalpark

Kurzcharakterisierung: Die Bestände der auf einer Höhe zwischen 508 und 560 m ü. NHN gelegenen Buchenwaldflächen sind zwischen 125 (EB NW22) und 190 (Naturwald Nord, EB NW23) Jahre alt. Die Flächen weisen mit 2° bist 5° ein leichtes Gefälle auf. Das Untergrundgestein besteht aus stark geschiefertem Tonstein, teilweise mit (quarzitischem) Sandstein oder Schluffstein, auf dem sich teilweise pseudovergleyte (EB NW22) Braunerden gebildet haben. Die Bodenart wird als unterschiedlich stark steinig-grusiger, mittel bis stark toniger Schluff, teilweise in Verbindung mit schluffigem Lehm, bezeichnet, und die Humusauflage als feinhumusarmer bzw. feinhumusreicher rohhumusartiger Moder (EB NW23) eingestuft. Die gemessenen pH-Werte zwischen 3,19 und 3,38 zeigen saure Standortbedingungen an. Die Ellenbergzahlen der Vegetation weisen auf saure bis neutrale (EB NW23), mäßig (EB NW23) bis stickstoffreiche, frische, schattige und mäßig warme Bedingungen auf den Flächen hin.

Charakteristische Pflanzenarten

Baumarten: Fagus sylvatica (Acer pseudoplatanus, Fraxinus excelsior, Sorbus aucuparia: Naturverjüngung)

Bodenvegetation/charakteristische Artengruppen

- Kennart des *Luzulo-Fagetums*: *Luzula luzuloides*
- Kennarten Verband-Klasse (Fagion-Querco-Fagetea): Dryopteris carthusiana, Oxalis acetosella, Festuca altissima, Milium effusum, Anemone nemorosa, Dryopteris filix-mas, Polygonatum multiflorum
- Begleitarten

Charakteristische Bodentierarten

	Kennarten						
Oribatida	Enchytraeidae	Diplopoda	Collembola				
Liacarus xylariae	Cham. sphag- netorum s.s	Chordeuma sylvestre	Neelides minutus				
Liochthonius horridus	Enchytronia pygmaea	Polydesmus denticulatus					
Quadroppia maritalis	Mesenchytraeus armatus	Chilopoda					
Phthiracarus ferrugineus	Mesenchyt. glandulosus	(Lithobius curtipes)					
		(Lithobius crassipes)					

Kennzeichnende Artengruppen

- Feuchtegruppe: Wechselfeuchte Standorte
- Säuregruppen: 1) frisch & saure Standorte 2) saure Laubwaldstandorte 3) sauer im Mittel < 4/basenarm
- Kennarten atlantisch/westeuropäischer Wälder
- Grundarten der Laubwälder
- Grundarten der Buchenwälder
- Grundarten der bodensauren Wälder
- Grundarten der Grasland- und Waldstandorte

$\label{lem:hainsimsen-(Habichtskraut)-Traubeneichenwald} \\ (\textit{Luzulo-Quercetum petraeae})$

Biotoptyp: 43.08.05.01 Eichen-Trockenwald basenarmer Standorte (Riecken et al. 2003) / G1.71 Western white oak woods and related communities (EUNIS-Klassifikation 2016)

Schutzstatus: Nationalpark Eifel, FFH-Gebiet

Kurzcharakterisierung: Das Untergrundgestein der naturnahen Eichentrockenwälder besteht aus geschiefertem bis stark geschiefertem Tonstein, teilweise in Verbindung mit Schluff- und Sandstein (EB_NW31, EB_NW32), auf dem sich Braunerden gebildet haben. Die Bodenart ist Schluff mit unterschiedlichen Stein-, Lehm-, Ton- und Sandanteilen, die Humusauflage ist nur sehr schwach ausgebildet (feinhumusarmer, teilweise rohhumusartiger Moder). Die Flächen liegen auf einer Höhe zwischen 340 (EB_NW33) und 445 m ü. NHN (EB_NW31) und weisen

entweder eine deutliche Hanglage (15° bis 17°) mit Südbis Südwestexposition auf (EB_NW31, EB_NW33) oder sind auf einer Kuppe gelegen. Mit pH-Werten zwischen 3,18 und 3,37 sind die Standortbedingungen aller drei Flächen als sauer einzustufen. Kalkungen oder der Einsatz von Pflanzenschutzmitteln sind in den 75 bis 110 Jahre alten Beständen nicht bekannt. Die Ellenbergzahlen der Vegetation zeigen insbesondere trockene, saure und magere Bedingungen an.

Charakteristische Pflanzenarten

Baumarten: Quercus petraea

Strauchschicht u. Verjüngung: Cytisus scoparius, Sorbus aria, Quercus petraea, Sorbus aucuparia, Fagus sylvatica, Corylus avellana, Begleitarten (Teucrium scorodonia-Vikariante)

Bodenvegetation

- Teucrium scorodonia-Vikariante: Teucrium scorodonia, Genista pilosa, Lonicera periclymenum
- Luzulo-Quercetum: Poa nemoralis, Hieracium glaucinum (schmidtii-murorum), Campanula rotundifolia
- Quercion-Quercetalia roboris: Melampyrum pratense, Calluna vulgaris, Anthoxanthum odoratum, Hypericum pulchrum, Deschampsia flexuosa, Luzula luzuloides, Vaccinium myrtillus, Veronica officinalis, Agrostis capillaris, Carex pilulifera
- Oppiella splendens: Stellaria holostea, Holcus mollis, Anemone nemorosa
- Begleitarten

Charakteristische Bodentierarten

	Kennarten						
Oribatida	Enchytraeidae	Diplopoda	Collembola				
Oppiella	Achaeta	Tachypodoiulus	Ceratophysella				
splendens	bibulba	niger	armata				
Ramusella	Fridericia	Cylindroiulus					
insculpta	bisetosa	punctatus					
Xenillus tegeocranus	Fridericia dura	Chilopoda					
Liebstadia	Fridericia	Schendyla					
humerata	monochaeta	nemorensis					

Kennzeichnende Artengruppen

- Feuchtegruppe: trockene, zeitweise austrocknende Streu-/Bodenschichten
- Säuregruppen: 1) saure Laubwaldstandorte 2) sauer im Mittel < 4/basenarm
- Nährstoffgruppe: sehr nährstoffarme Wälder
- Kennarten atlantische/westeuropäische Wälder
- Grundartengruppen: 1) Laubwälder 2) bodensaure Wälder 3) Grasland- und Waldstandorte

5.6 Auswertung der Fragestellungen und Empfehlungen für den Nationalpark Eifel

Auf der Basis des Leitgedankens "Natur Natur sein lassen" wird angestrebt, dass sich die Natur im Nationalpark Eifel spätestens ab dem Jahr 2034 auf 75 % der Fläche vom Menschen weitgehend unbeeinflusst entwickelt. Für die übrigen Bereiche, vor allem für naturschutzfachlich wertvolle Grünländer, ist eine extensive Bewirtschaftung und Pflege vorgesehen. Die Prozesse und durchgeführten Maßnahmen werden durch Bestandsaufnahmen von Fauna und Flora sowie verschiedene Monitorings forschend begleitet. Des Weiteren soll der Nationalpark der Bevölkerung die Möglichkeit bieten, Natur zu erleben, und trägt somit zur Umweltbildung bei (Landesbetrieb Wald und Holz NRW 2008).

Eine wichtige Aufgabe für den Nationalpark Eifel ist der Prozessschutz und die freie Entwicklung naturnaher Wälder, wie beispielsweise der Eichen-Trockenwälder oder der Buchenwälder, die im Gebiet des Nationalparks auf einem großen Teil der Fläche natürlicherweise auftreten bzw. als potentielle natürliche Vegetation gelten (vgl. Kap. 5.2). Zum Zeitpunkt der Nationalparkgründung im Jahr 2004 waren weite Teile des Gebiets, vor allem in den südlichen Bereichen, flächendeckend mit Fichte aufgeforstet (Flächenanteil Nadelwald 2004: 34%). Dies erfordert einen Umbau des Waldes von der gebietsfremden Fichte hin zu naturnahen Laubwäldern, insbesondere, da sich der Fichtenbestand natürlich verjüngt. Hierzu werden u. a. Fichtenbestände entfernt oder mit Buchen unterpflanzt. Die Auswirkungen dieser Maßnahmen auf die Vegetation werden durch die Untersuchung permanenter Flächenstichproben (PSI) intensiv erforscht (Schmiedel et al. 2016, Nationalparkverwaltung Eifel 2017). Darüber hinaus werden im Rahmen der Pflichtaufgaben der Nationalparkverwaltung Monitorings verschiedener Indikatoren (z. B. Wildtiermonitoring) durchgeführt. Der Nationalpark dient dabei auch überregional als Referenzstandort für anthropogen wenig beeinflusste Lebensräume (Landesbetrieb Wald und Holz NRW 2008).

wenn bereits verschiedene, teilweise Auch stichprobenhafte Untersuchungen unterschiedlicher taxonomischer Gruppen (u.a. verschiedene Käferfamilien, Spinnen, Libellen oder Oribatiden, vgl. Landesbetrieb Wald und Holz NRW 2008, Willius 2010) durchgeführt wurden, ist zum Vorkommen und zur Verteilung von Bodentieren im Nationalpark Eifel bisher insgesamt wenig bekannt. Zu Beginn der vorliegenden Studie stellten sich die Fragen, inwieweit (1) Bodenorganismen für die Bewertung des Bodenzustands im Rahmen von Monitorings verwendet werden können, insbesondere (2) für eine Ergebniskontrolle des Waldumbaus und (3) inwieweit sie sich in Form eines praktikablen Indikatorsystems einsetzen lassen (vgl. Kap. 5.1).

Zu (1): Im Rahmen der vorliegenden bodenzoologischen Untersuchung im Nationalpark Eifel kann gezeigt werden, dass anhand des Auftretens von Bodentieren verschiedener taxonomischer Gruppen Muster gebildet werden können, die sich auf die Standortbedingungen die verschiedenen untersuchten Biotoptypen zurückführen lassen (Kap. 5.4, 5.5). Dies ist eine grundlegende Voraussetzung dafür, Organismengruppen für die Zwecke eines Gebietsmonitorings zu nutzen, da somit Anpassungen an Standortbedingungen in der Zusammensetzung der Artengemeinschaft erkennbar sind. Es wird jedoch auch deutlich, dass diese Musterbildung, je nach betrachteter taxonomischer Gruppe, in den untersuchten Waldtypen in unterschiedlichem Maße ausgeprägt ist. Insbesondere die individuen- und artenreiche Gruppe der Oribatiden ließ Kennartengruppen für alle drei Biotoptypen sowie verschiedene Grundartenund edaphische Gruppen erkennen.

Zu (2): Bei den untersuchten Waldtypen handelt es sich um gebietsfremde Fichtenbestände, die den Ausgangszustand des Waldumbaus darstellen, naturnahe Buchenwälder, die den Endzustand bilden sowie durch die FFH-Richtlinie geschützte Eichen-Trockenwälder (vgl. Kap. 5.2). Für alle Waldtypen konnten Kennartengruppen identifiziert werden, die den entsprechenden Waldtyp von den anderen abgrenzen und auch im Vergleich mit den Daten der drei anderen Länderstudien (Kap. 6-8) schwerpunktmäßig in diesem Biotoptyp auftreten. Mit Ausnahme der artenarmen Lumbriciden konnten für alle Tiergruppen Kennartengruppen für mindestens einen der beiden Laubwaldtypen nachgewiesen werden, für die Fichtenbestände gelang dies lediglich für die Oribatiden und Enchytraeiden. Zudem sind verschiedene Grundarten- und edaphische Gruppen erkennbar, so dass die Biotoptypen durch verschiedene Artengemeinschaften charakterisiert sind. Bei weiteren Untersuchungen im Rahmen des begleitenden Gebietsmonitorings kann somit kontrolliert werden, inwieweit sich die Boden-Biozönosen in ehemaligen Fichtenforsten an die neuen Standortbedingungen anpassen, indem beispielsweise Laubwald-Arten hinzukommen und die Kennarten der Fichtenforste wegfallen.

Zu (3): Bei der Einrichtung eines praktikablen, auch unter beschränkten finanziellen Kapazitäten langfristig einsetzbaren Indikatorsystems kommt den Kennarten eine besondere Bedeutung zu, da diese in hohem Maße an die standörtlichen Gegebenheiten gebunden sind. So kann beispielsweise im Rahmen des Waldumbaus überprüft werden, ob zunehmend auch Buchenwald-Kennarten auftreten. Da die Untersuchung von Bodentieren insbesondere für die besonders aussagekräftigen

taxonomischen Gruppen zeitintensiv ist und weitgehender taxonomischer Kenntnisse bedarf, bleibt abzuwarten, inwieweit sich neue Bestimmungstechniken durch das DNA-Barcoding etablieren werden (Lehmitz & Decker 2017, Orgiazzi et al. 2015).

Die Eichen-Trockenwälder im Nationalpark Eifel sind zudem durch die FFH-Richtlinie in besonderem Maße geschützt. In der vorliegenden Untersuchung der Bodentiere zeigt sich, dass dieser Biotoptyp über die verschiedenen Tiergruppen hinweg in weiten Teilen ein charakteristisches Artenspektrum aufweist. So kommt beispielsweise die Nährstoffgruppe der "sehr nährstoffarmen Wälder" ausschließlich in diesem Biotoptyp vor, und auch die Gesamtartenzahl war dort besonders hoch (Kap. 5.5). Darüber hinaus gelang in den Eichenwäldern der Fang dreier selten gemeldeter Oribatidenarten bzw. ein Neufund für Deutschland (Oribatula longelamellata, Pseudachipteria magna, Quadroppia longisetosa, vgl. Kap. 5.4.1.2), was die Schutzwürdigkeit dieses Biotoptyps auch aus bodenzoologischer Sicht unterstreicht.

Insgesamt lassen sich in den verschiedenen Waldtypen des NP Eifel verschiedene Lebensgemeinschaften der Bodentiere feststellen, die regional als Referenzen gewertet werden können. Um zu weiteren Erkenntnissen zu gelangen, beispielsweise inwieweit sich Artenspektren innerhalb eines Biotoptyps über die Zeit verändern und welche Zönosen auch überregional in den drei betrachteten Waldtypen auftreten, wären weitere systematische Untersuchungen von Bodentieren in Verbindung mit den Habitatparametern sowie der Vegetation zu empfehlen. Die Ermittlung möglichst naturnaher Lebensgemeinschaften bzw. Referenzzustände erfordert die Untersuchung z. B. sehr alter Buchenwälder in besonderem Maße. Dabei kann Edaphobase hilfreich sein, um die Daten verschiedener, auch überregional durchgeführter Studien zusammenzuführen. Somit sind Vergleiche und Auswertungen der Artenspektren von Bodentieren verschiedener Waldtypen im Hinblick auf Gemeinsamkeiten und Unterschiede auch über die Nationalparkgrenzen hinaus möglich.

6 Die Länderstudie in Sachsen: "Bodenökologische Untersuchung von Kiefern- und Buchenwäldern sowie Sandäckern"

6.1 Problemstellung und Zielsetzung der Länderstudie im Land Sachsen

Die bodenökologischen Untersuchungen im Land Sachsen wurden durch das Sächsische Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG, T. Bräutigam †) unterstützt. Das Engagement des Anwendungspartners bestand im Wesentlichen auf dem Einbringen von aus Sicht des LfULG interessanten Fragestellungen, die im Rahmen der Fallstudie beantwortet werden sollten. Die Fragen zielten auf eine bodenökologische Biodiversitätsbewertung von Lebensräumen ab. Dazu wurden in der vorliegenden Untersuchung die im Land Sachsen erhobenen bodenökologischen Daten in einen Gesamtkontext bisheriger Erfahrungen zur Ökologie von Bodenlebensgemeinschaften gestellt.

Die Problemstellung wurde durch das LfULG wie folgt skizziert:

"Sinnvoll erscheint uns die Betrachtung von Bodenfauna zur Beurteilung ökologischer Valenz der Bodenorganismen und die Entwicklung von Bewertungsrahmen für die Ableitung von Boden-Biodiversität unter Erarbeitung von Leitbildern von Ökosystemen.

Das avisierte Forschungsvorhaben erscheint uns als sehr innovativ in Bezug auf Unterstützung des praxisbezogenen Boden- und Klimaschutzes. Insbesondere dient das angehende Nutzen der bodenzoologischen Datenbank "Edaphobase" der Beurteilung anthropogener Beeinträchtigung der Böden in ihrer Funktion als Lebensraum für Bodenorganismen.

Die Kooperation dient dem Wissenstransfer sowie Entwicklung von Standards und Verfahren im Hinblick auf eine moderne Informationstechnologie. Durch eine einheitliche Datenhaltung sowie standardisierte und an die Fragestellungen angepasste Auswertungstools bietet "Edaphobase" ein breites Spektrum an Vorteilen und Möglichkeiten in Bezug auf die regionalen und überregionalen Vergleiche, prospektiven und retrospektiven Analysen sowie GIS-basierten Darstellungen."

Die Zielsetzung im vorliegenden Bericht war somit die Erarbeitung bodenfaunistischer Leitbilder für verschiedene Biotoptypen. Daneben sollten die ökologischen Valenzen von Bodentierarten, also ihre Reaktion gegenüber verschiedenen Umweltfaktoren, dargestellt werden. Aus den generierten Informationen sollte ein Beurteilungsrahmen entwickelt werden, mit dessen Hilfe anthropogene Beeinträchtigungen von Böden beurteilt werden können.

der beispielhaften Bearbeitung Neben dieser Fragestellung sollte die Studie die Praktikabilität von Edaphobase unter Routinebedingungen belegen. Dies beinhaltete die Datenerhebung und deren Speicherung, die anwendergerechte Datenextraktion sowie die zusammenfassender Auswertungstools. Nutzung Darüber hinaus sollte der spezifische Bedarf bzgl. Standardisierungen (Untersuchungsparameter, Datenerhebung, Datenspeicherung, Datenaustausch usw.) ermittelt werden. Dabei wurden v. a. Fragestellungen bearbeitet, die mehrere Tiergruppen betrafen. Hierdurch sollte der praxisrelevante Einsatz von Edaphobase zur Untersuchung der Boden-Biodiversität erprobt werden. Die Einbeziehung mehrerer Tiergruppen erlaubte es,

- a. die in Edaphobase aufgestellten tiergruppenspezifischen Standards bei der Datenerhebung zu testen und
- b. durch die umfangreiche Datenerhebung zu überprüfen, inwieweit sich die komplexen bzw. vernetzten Datensätze (Biodiversitätsdaten und die dazugehörigen Angaben zu den Habitatparametern) nutzerfreundlich und mit geringem Aufwand in Edaphobase einspeisen und später z. B. für naturschutzfachliche Anwendungen wieder extrahieren und analysieren lassen. Dabei ging es auch um die Frage, in welchem Umfang sich die Erfassung und Beurteilung der Boden-Biodiversität auf der Art- und auf der Gemeinschaftsebene sowohl in Hinsicht auf den jeweiligen Aufwand als auch in Bezug auf den Erkenntnisgewinn unterscheiden.

6.2 Untersuchungsgebiet6.2.1 Geografische Lage

Der Freistaat Sachsen liegt im Osten der Bundesrepublik Deutschland. Sachsen ist mit einer Gesamtfläche von etwa 18.500 Quadratkilometer das zehntgrößte und mit 4.084.851 Einwohnern das sechstbevölkerungsreichste Bundesland der Bundesrepublik (http://www.stat istikportal.de, 02.11.16). Er grenzt an die Bundesländer Bayern, Thüringen, Sachsen-Anhalt und Brandenburg sowie an die Republik Polen und die Tschechische Republik. Nach Mannsfeld & Richter (1995) hat Sachsen Anteile an drei europäischen Naturregionen. Das europäisches Tiefland (Sächsisch-Niederlausitzer Heideland) als lössfreies Altmoränengebiet (18 % der Landesfläche) sowie die sächsischen Mittelgebirge (33 %) nehmen etwa die Hälfte des Landes ein.

Der größte Teil Sachsens wird demnach durch die sächsischen Lössgefilde charakterisiert (49%). Die Untersuchungsstandorte der Fallstudie liegen in den Landkreisen Görlitz und Bautzen im Osten bzw. Nordosten des Freistaates. Beide Landkreise zeichnen sich durch einen stetigen Bevölkerungsrückgang und eine relativ geringe Bevölkerungsdichte aus (Statistisches Landesamt des Freistaates Sachsen 2016).

6.2.2 Klima

Sachsens Klima ordnet sich in das gemäßigte Übergangsklima der gemäßigten Klimazone ein. Innerhalb des Freistaates wird das Klima von West nach Ost zunehmend kontinentaler. Bei den vorherrschenden Wetterlagen überwiegen zvklonalen Winde. Die Jahresmitteltemperaur beträgt 7,6 °C, die jährliche Niederschlagssumme beläuft sich auf 731 mm (Referenzperiode 1961-1990) (SMUL 2008). Die Sommer sind relativ mild, aufgrund der relativ großen Entfernung zum Atlantik allerdings auch relativ niederschlagsarm. Im Zuge des Klimawandels sind vor allem abnehmende Jahresniederschlagssummen, eine signifikante Zunahme von Starkregenereignissen in den Monaten April, Mai und Juni sowie mildere Winter zu verzeichnen (SMUL 2005). Das Makrorelief Sachsens führt zu einer deutlichen Gliederung des sächsischen Klimas (Mannsfeld & Richter 1995). Detailliertere Angaben zum Klima der untersuchten Standorte sind in der Beschreibung der Untersuchungsflächen (Kap. 6.2.3) zu finden.

6.2.3 Untersuchungsflächen

Die Untersuchungsflächen (= Standorte) in Sachsen befinden sich allesamt in der Oberlausitz, in den Landkreisen Bautzen (Sand-Kiefernwälder: EB SN1) und Görlitz (Laubwälder mittlerer Feuchte: EB SN2, Sandäcker: EB SN3) (Abb. 47). Naturräumlich betrachtet liegen die untersuchten Standorte der Sand-Kiefernwälder und der Sandäcker in der Naturregion Sächsisch-Niederlausitzer Heideland (Bodenregionen der Altmoränenlandschaften). Die Laubmischwälder werden der Naturregion des sächsischen Lössgefildes (Bodenregionen der Löss- und Sandlösslandschaften) zugeordnet (http://www.naturraeume.lfz-dresden.de/ 17.11.2016).

Die Auswahl der Flächen wurde im Fall der Wald-Standorte in enger Absprache mit dem Staatsbetrieb Sachsenforst (SBSF), Abteilung 4, Referat 43 (Standortserkundung, Bodenmonitoring, Labor)

durchgeführt. So wurden gezielt Flächen ausgewählt, die im Rahmen der Bodenzustandserhebungen (BZE) des SBSF einem Monitoring unterliegen (EB SN11-13, EB SN22). Die regelmäßige Analyse dieser Flächen führt zur genaueren Abbildung der Standorte und sollte somit eine erhöhte Interpretierbarkeit der Länderstudien-Daten gewährleisten. Mangels geeigneter, im Rahmen der BZE untersuchter Replikate des Biotoptyps "Laubwald mittlerer Feuchte", erfolgte die Festsetzung zweier Standorte unter Kenntnisnahme und Genehmigung der UNB Löbau auf Nicht-BZE-Flächen (EB SN23-24). Analog dazu wurde bei der Bestimmung der Acker-Standorte darauf geachtet, schwerpunktmäßig im Boden-Dauerbeobachtungsprogramm des LfULG integrierte Flächen zu wählen. Bodendauerflächen (BDF), die dem gewünschten Biotoptyp entsprachen, wurden in Absprache mit den Eigentümern in die Untersuchung aufgenommen (EB SN31-32). Auch hier wurde die Festsetzung einer Nicht-Monitoring-Fläche notwendig (EB SN34).

Die zur Charakterisierung der Standorte sowie der Interpretation der zoozönotischen Aufnahmen verwendeten Parameter entstammen zum größten Teil eigenen Messungen (vgl. Kap. 6.3.1). Die Angaben zu Temperatur und Niederschlag stammen aus den Angaben der Monitoringprogramme (BDF: Barth & Forberg 2013, BZE: Heintze & Andreae 2011). Das Untergrundgestein der Flächen wurde den geologischen Karten Sachsens 1:200 000 entnommen. Zuordnungen zu Biotop- und Vegetationstyp erfolgten anhand eigener vegetationskundlicher Erfassungen (vgl. Kap. 6.3.2). Die Biotoptypen folgen dabei der Biotoptypenliste Deutschlands (BTL D; Riecken et al. 2003) sowie europäischen EUNIS-Klassifikation (EUNIS-Habitatklassifikation 2016). Flächenspezifische Informationen zu allen Standorten befinden sich in den nachfolgenden Kapiteln bzw. Steckbriefen (Kap. 6.2.3.1-6.2.3.3) sowie in Kapitel 6.3 - Ergebnisse zur Standortcharakterisierung.

6.2.3.1 Sand-Kiefernwald (EB_SN1)

Die drei Replikate, die den Biotoptyp Sand-Kiefernwald repräsentieren, befinden sich in der Umgebung der Großen Kreisstadt Hoyerswerda. Den Standorten gemein ist die dominante Bestockung der podsolierten Sandböden durch die Wald-Kiefer (*Pinus sylvestris*).

Die Untersuchungsflächen EB_SN11-12 werden der Makrogeochore "Oberlausitzer Bergbaurevier" zugeordnet (http://www.naturraeume.lfz-dresden.de/, aufgerufen am 13.03.2019). Diese Bergbaufolgelandschaft wurde erst in jüngerer Zeit von der Makrogeochore

"Oberlausitzer Heide- und Teichgebiet" aufgrund der starken anthropogenen Überformung (LfULG 2014) abgegrenzt. Der dem saalekaltzeitlichen Urstromtal zugerechnete Naturraum zeichnet sich nach Mannsfeld & Richter (1995) vor allem durch die Vergesellschaftung grundwassernaher Talsande mit wenige eingesenkten Talniederungen aus. So kommen hier nicht nur trockenheitsanfällige, wenig fruchtbare Sandflächen vor, sondern auch zahlreiche Vernässungen und Vermoorungen. Auf den trockeneren, armen Sanden dominieren im ganzen Naturraum Aufforstungen der Wald-Kiefer. Klimatisch gesehen gehört der Naturraum wegen seiner kontinentalen Klimaeigenschaften zum Klimabezirk Niederlausitz. Das Teichgebiet gilt als gewitterreich, was die sommerlichen Niederschlagswerte beeinflusst. So fallen von Juni bis August ca. 35% des Jahresniederschlags.

Westlich an den Naturraum "Oberlausitzer Heideund Teichgebiet" angrenzend liegt die Makrogeochore "Königsbrück-Ruhlander Heiden" mit dem Standort EB SN13, der sich im Nordosten des Naturraumes befindet. Die Grenzregionen beiden Naturräume haben deutlichen Übergangscharakter, so dominiert auch hier der sandige Untergrund des Altmoränengebiets. Die durch weichselkaltzeitliche periglaziale Umlagerung entstandenen Treibsand-Decken wurden örtlich zu Dünen aufgeweht. Die ausgesprochen nährstoffarmen Böden sind fast ausschließlich mit Kiefer bestockt, der Laubholzanteil liegt bei unter 5%. Die Niederschläge gewährleisten bei dem sandigen Substrat keine ausreichende Wasserversorgung, weswegen regelmäßig Trockenperioden auftreten. Charakteristisch außerdem die mächtigen Niederlausitzer Braunkohlenbildungen des Miozäns. Das Gebiet ist deutlich durch den Braunkohleabbau geprägt (Mannsfeld & Richter 1995).

6.2.3.2 Laubwald mittlerer Feuchte (EB_SN2)

Die drei Standorte des Biotoptyps Laubwald mittlerer Feuchte liegen im Landkreis Görlitz und sind Bestandteile des FFH-Gebietes "Basalt- und Phonolithkuppen der Oberlausitz". Die Flächen befinden sich an den Hängen der Basaltkuppen Spitzberg bei Deutsch-Paulsdorf (EB_SN23) und Schönbrunner Berg bei Großhennersdorf (EB_SN24) bzw. auf der Kuppe des Buchberges bei Schlegel (EB_SN22). Allen drei Standorten ist die Bestockung mit verschiedenen Laubbäumen gemein, im Unterwuchs existiert eine dichte Krautschicht. Die basenreichen Böden der Untersuchungsflächen sind hinsichtlich der Feuchte mesophil. Die untersuchten landschaftsprägenden Basaltkuppen befinden sich im

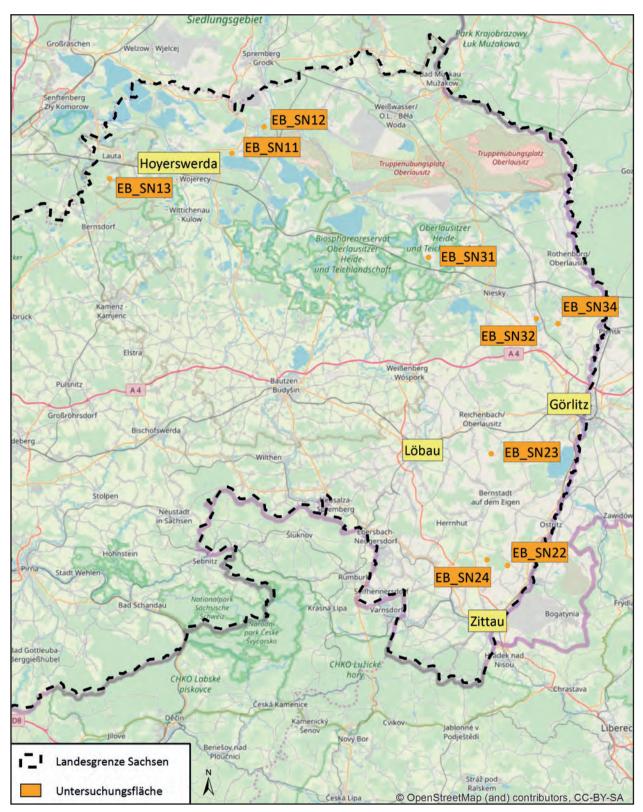


Abb. 47: Lage der Untersuchungsflächen in Sachsen.

(1): Standortname: Seidewinkel Replikat: Sand-Kiefernwald (SK) 1

Standortkennung: EB SN11

Koord. (WGS 84): 51.45855 (N); 14.32321 (O) **Standortbeschreibung**: Durch Pflanzung entstandener

Kiefernbestand mit einem Alter von ca. 110 Jahren auf podsoliertem Boden

über Dünensand (BZE 67) Oberlausitzer Bergbaurevier

Naturraum: Oberlausitzer Bergbaurevie (Johannistaler Endmoräne)

Bodenlandschaft: 04.3.2 Muskauer Heide **Vegetationseinheit:** *Leucobryo-Pinetum* Matuszkiewicz 1962

Biotoptyp: BTL D: 44.02.03.02 - trockener Sand-

Kiefernwald basenarmer Standorte EUNIS: G3.421 - Subcontinental Scots

pine forests

Potentielle Natürliche Vegetation (PNV):

Typischer Zwergstrauch-Kiefernwald

Dünensand, mächtigere Flugsanddecken

Mittl. Temperatur: 9,1 °C

Niederschlag: 618 mm/Jahr

Hangneigung: 0°
Höhe ü. NHN: 134 m
Bodentyp: Eisenpodsol
pH-Wert: 3,73

Bodenart: Sand (Su2)

Humusform: feinhumusarmer Rohhumus

Sonstige Flächeninformationen: Historischen Karten ist zu entnehmen (Messtischblatt 4552 Weißkollm 1889-1938, vgl. www.deutschefotothek.de, letzter Zugriff: 09.11.2016), dass die

www.deutschefotothek.de, letzter Zugriff: 09.11.2016), dass die Fläche seit mindestens dem späten 19. Jh. mit Nadelwald bedeckt ist. Der Standort ist im Rahmen der Bodenzustandserhebung des Staatsbetriebes Sachsenforst im forstlichen Bodenmonitoring eingegliedert (Weißkollm, Punkt 67). Kalkungen bzw. der Einsatz von Pflanzenschutzmitteln sind nicht bekannt. Starke Störung durch Wildschweine im Untersuchungsjahr.

Schutzgebiete: keine

Geologie:

(2): Standortname: Weißkollm Replikat: Sand-Kiefernwald (SK) 2

Standortkennung: EB SN12

Koord. (WGS 84): 51.49002 (N); 14.38497 (O) **Standortbeschreibung**: Durch Pflanzung entstandener

Kiefernbestand mit einem Alter von ca. 150 Jahren auf podsoliertem Boden über

Dünensand (BZE 69)

Naturraum: Oberlausitzer Bergbaurevier (Dünen-

Terrasse Spreewitzer Heide)

Bodenlandschaft: 04.3.2 Muskauer Heide

Vegetationseinheit:Peucedano-Pinetum Matuszkiewicz 1962Biotoptyp:BTL D: 44.02.03.02 - trockener Sand-
Kiefernwald basenarmer Standorte

EUNIS: G3.421 - Subcontinental Scots pine

forests

Potentielle Natürliche Vegetation (PNV):

Typischer Kiefern-Eichenwald

Mittl. Temperatur: 9,1 °C

Niederschlag: 624 mm/Jahr

Hangneigung: 0° **Höhe ü. NHN**: 121 m

Bodentyp: Braunerde-Podsol

pH-Wert: 3,85 Bodenart: Sand (Su2)

Humusform: feinhumusarmer Rohhumus

Geologie: Dünensand, mächtigere Flugsanddecken

(randlich zu Fluviatiler Kies und Sand = Tiefere Niederterrasse (Hochweichsel))

Sonstige Flächeninformationen:

Historischen Karten ist zu entnehmen (Messtischblatt 4552 Weißkollm 1889-1938, vgl. www.deutschefotothek.de, letzter Zugriff: 09.11.2016), dass die Fläche seit mindestens dem späten 19. Jh. mit Nadelwald bedeckt ist. Der Standort ist im Rahmen der Bodenzustandserhebung des Staatsbetriebes Sachsenforst im forstlichen Bodenmonitoring eingegliedert (Weißkollm, Punkt 69). Kalkungen bzw. der Einsatz von Pflanzenschutzmitteln sind nicht bekannt.

Schutzgebiete: keine

(3): Standortname: Hoyerswerda Replikat: Sand-Kiefernwald (SK) 3

Standortkennung: EB_SN13

Koord. (WGS 84): 51.49002 (N); 14.38497 (O) **Standortbeschreibung**: Durch Pflanzung entstandener

Kiefernbestand mit einem Alter von ca.
120 Jahren auf podsoliertem Boden über

fluviatilem Sand (BZE 79)

Naturraum: Königsbrück-Ruhlander Heiden
(Hoyerswerdaer Dünenterrasse)

Bodenlandschaft: 04.3.1 Westlausitzer Heide- und Kuppenland

Vegetationseinheit: Peucedano-Pinetum Matuszkiewicz 1962 **Biotoptyp**: BTL D: 44.02.03.02 - trockener Sand-

Kiefernwald basenarmer Standorte
EUNIS: G3.421 - Subcontinental Scots pine

forests

Potentielle Natürliche Vegetation (PNV):

Typischer Kiefern-Eichenwald

Mittl. Temperatur: 9,0 °C

Niederschlag: 648 mm/Jahr

Hangneigung: 0° **Höhe ü. NHN**: 134 m

Bodentyp: Braunerde-Podsol

pH-Wert: 3,89 Bodenart: Sand (Su2)

Humusform: typischer Rohhumus

Geologie: Fluviatiler Sand = Höhere Niederterrasse

bzw. Obere Talsandfolge des Lausitzer

Stromes Frühweichsel

Sonstige Flächeninformationen: Historischen Karten ist zu entnehmen (Messtischblatt 4550 Hohenbockau 1888-1937, vgl. www. deutschefotothek.de, letzter Zugriff: 09.11.2016), dass die Fläche seit mindestens dem späten 19. Jh. mit Nadelwald bedeckt ist. Der Standort ist im Rahmen der Bodenzustandserhebung des Staatsbetriebes Sachsenforst im forstlichen Bodenmonitoring eingegliedert (Hoyerswerda, Punkt 79). Kalkungen bzw. der Einsatz von Pflanzenschutzmitteln sind nicht bekannt.

Schutzgebiete: keine

(4): Standortname: Schlegeler Buchberg **Replikat**: Laubw. mittl. Feuchte (LB) 1

Standortkennung: EB SN22

Koord. (WGS 84): 50.96841 (N); 14.84632 (O)

Standortbeschreibung: Durch Pflanzung entstandener Linden-

Eschen-Bestand mit einem Alter von ca. 90 Jahren auf submontanem Buchenwaldstand-

ort einer Basaltkuppe (BZE 6)

Naturraum: Östliche Oberlausitz (Wittgendorfer

Löss-Hügelgebiet)

Bodenlandschaft: 04.3.2 Oberlausitzer Lösshügelland

Vegetationseinheit: Galio odorati-Fagetum Sougnez et Thill 1959

Biotoptyp: BTL D: 43.07.05.02 - Buchenwald

basenreicher Standorte der planaren bis

submontanen Stufe

EUNIS: G1.6312 - Medio-European woodruff and hairy sedge beech forests

Potentielle Natürliche Vegetation (PNV):

Perlgras-Waldmeister-Buchenwald

Mittl. Temperatur:7,7 °CNiederschlag:713 mm/JahrHangneigung:0°Höhe ü. NHN:385 mBodentyp:BraunerdepH-Wert:4,88

Bodenart: lehmiger Sand (Su4) Humusform: F-Mull (Of-Mull)

Geologie: Basaloid, ungegliedert, Basalt

Sonstige Flächeninformationen: Im späten 18. Jh. bestand die Bestockung des Buchberges nach Leske (1785) aus Kiefern, Fichten, Tannen, Rotbuchen, Weißbuchen, Rüstern, Birken, Aspen, Linden, Ahornen, Spitzahorn, Hartriegel, Vogelbeerbäumen und verschiedenen anderen Sträuchern. Um 1830 dominierte bereits das Nadelholz mit Fichte, Kiefer, Tanne; es gab jedoch auch reine Buchenbestände sowie einen erheblichen Niederwaldanteil. Zwischen 1830 und 1930 verschwand dieser Niederwald völlig (Vietinghoff-Riesch 1961). Der Standort ist im Rahmen der Bodenzustandserhebung des Staatsbetriebes Sachsenforst im forstlichen Bodenmonitoring eingegliedert (Löbau, Punkt 6).

Schutzgebiete: Naturdenkmal "Unterer Buchberg", FFH-Gebiet "Basalt und Phonolithkuppen der östlichen Oberlausitz"

(5): Standortname: Paulsdorfer Spitzberg **Replikat**: Laubw. mittl. Feuchte (LB) 2

Standortkennung: EB_SN23

Koord. (WGS 84): 51.09996 (N); 14.81939 (O)

Standortbeschreibung: Standortgerechter, submontaner

Buchen-Eschenbestand am Hang einer landschaftsprägenden Basaltkuppe der

Oberlausitz

Naturraum: Östliche Oberlausitz (Sohlander

Löss-Hügelgebiet)

Bodenlandschaft: 04.3.2 Oberlausitzer Lösshügelland

Vegetationseinheit: Galio odorati-Fagetum Sougnez et Thill 1959

Biotoptyp: BTL D: 43.07.05.02 - Buchenwald

basenreicher Standorte der planaren bis

submontanen Stufe

EUNIS: G1.6312 - Medio-European woodruff and hairy sedge beech forests

Potentielle Natürliche Vegetation (PNV):

Perlgras-Waldmeister-Buchenwald

Mittl. Temperatur: 8,8 °C (Görlitz)

Niederschlag: 656 mm/Jahr (Görlitz)

Hangneigung: 10°/West
Höhe ü. NHN: 343 m
Bodentyp: Braunerde
pH-Wert: 3,95

Bodenart: lehmiger Schluff (Ut2)

Humusform: L-Mull

Geologie: Gehängelehm (Fließlehm, meist solifluidal

umgelagerter Lösslehm), z. T. kiesig (randlich Basaloid, ungegliedert, Basalt)

Sonstige Flächeninformationen: Historischen Karten ist zu entnehmen (Charte des Königreichs Sachsen und der angrenzenden Länder, 1:120000, 1829-1836, Messtischblatt 4854 Kittlitz, 1933 vgl. www.deutschefotothek.de, letzter Zugriff: 09.11.2016), dass die Fläche seit mindestens dem frühem 19. Jh. mit Wald bedeckt ist.

Schutzgebiete: FFH-Gebiet "Basalt und Phonolithkuppen der östlichen Oberlausitz"

(6): Standortname: Schönbrunner Berg **Replikat**: Laubw. mittl. Feuchte (LB) 3

Standortkennung: EB_SN24

Koord. (WGS 84): 50.97177 (N); 14.81134 (O)

Standortbeschreibung: Naturnaher, submontaner Buchen-

Altbestand am Südhang einer landschaftsprägenden Basaltkuppe der Oberlausitz

Naturraum: Östliche Oberlausitz (Großhennersdorfer

Kuppengebiet)

Bodenlandschaft: 04.3.2 Oberlausitzer Lösshügelland

Vegetationseinheit: Galio odorati-Fagetum Sougnez et Thill 1959

Biotoptyp: BTL D: 43.07.05.02 - Buchenwald

basenreicher Standorte der planaren bis

submontanen Stufe

EUNIS: G1.6312 - Medio-European woodruff and hairy sedge beech forests

Potentielle Natürliche Vegetation (PNV): Perlgras-Waldmeister-Buchenwald im Komplex mit Waldgersten-Buchenwald und

Eschen-Ahorn Schutt- und Schatthangwald

Mittl. Temperatur: 7,7 °C (BZE6)

Niederschlag: 713 mm/Jahr (BZE6)

Hangneigung: 6°/Süd Höhe ü. NHN: 424 m Bodentyp: Braunerde pH-Wert: 3,74

Bodenart: lehmiger Schluff (Ut2) **Humusform**: F-Mull (Of-Mull)

Geologie: Fluviatiler Kies und Sand = Mittlere

Mittelterrasse

Sonstige Flächeninformationen: In der ursprünglichen Bestockung dürften mesophile Tannen-Buchenwälder, in den oberen Lagen ggf. mit Fichte, existiert haben (Hempel 1982). 1587 war der Schönbrunner Berg noch von Mischwald bedeckt, bis 1784 lässt sich diese Bestockung nachweisen (SMUL 2008). Seit Mitte des 18. Jh. wurden Teile des Oberwaldes mittelwaldartig bewirtschaftet. Auch die untersuchten Buchenbestände am Südrand des Schönbrunner Berges stellen laut MaP 030E ein Ergebnis der Mittelwaldbewirtschaftung dar. Nach der Ausweisung als Nationales Naturerbe ist die natürliche Entwicklung der Waldgesellschaften zu gewährleisten.

Schutzgebiete: NSG "Schönbrunner Berg", FFH-Gebiet "Basalt und Phonolithkuppen der östlichen Oberlausitz", seit 2015 außerdem als Nationales Naturerbe geschützt (3. Tranche)

(7): Standortname: Kreba-Neudorf Replikat: Sandacker (AS) 1

Standortkennung: EB SN31

Koord. (WGS 84): 51.33378 (N); 14.70015 (O)

Standortbeschreibung: Intensiv bewirtschafteter Sandacker bei

Kreba-Neudorf (BDF 15)

Naturraum: 04.5.3 Oberlausitzer Heide- und Teichgebiet

(Krebaer Heide- und Teichg.)

Bodenlandschaft: 04.5.3 Oberlausitzer Heide- und

Teichlandschaft

Vegetationseinheit: Stellarietea-Basalgesellgesellschaft

Biotoptyp: BTL D: 33.03.03 - intensiv bewirtschafteter

Acker auf Sandboden mit stark verarmter oder fehlender Segetalvegetation EUNIS:11.1 - Intensive unmixed crops

Potentielle Natürliche Vegetation (PNV):

Pfeifengras-(Kiefern-) Birken-Stieleichenwald

Mittl. Temperatur: 9 °C

Niederschlag: 601 mm/Jahr

Hangneigung: 0°
Höhe ü. NHN: 143 m
pH-Wert: 4,8
Bodenart: Sand (Su2)

Geologie: Fluviatiler Sand = Höhere Niederterrasse

bzw. Obere Talsandfolge des Lausitzer Stromes Frühweichsel, reiner Sand

Bewirtschaftung: Im Aufnahmejahr (2014) mit Maiskultur Sonstige Flächeninformationen: Historischen Karten zur Folge (Messtischblatt 4654 Mücka 1888-1939, vgl. www. deutschefotothek.de, letzter Zugriff: 09.11.2016) ist eine Ackernutzung seit mindestens dem späten 19. Jh. möglich. Der Standort ist im Rahmen des Bodenmonitorings als Bodendauerbeobachtungsfläche der Kategorie I ausgewiesen (Kreba-Neudorf, BDF 15).

Schutzgebiete: Biosphärenreservat "Oberlausitzer Heide- und Teichlandschaft" (Entwicklungszone), SPA "Biosphärenreservat Oberlausitzer Heide- und Teichlandschaft"

(8): Standortname: Mückenhain Replikat: Sandacker (AS) 2

Standortkennung: EB SN32

Koord. (WGS 84): 51.26112 (N); 14.90555 (O)

Standortbeschreibung: Intensiv bewirtschafteter Acker bei

Mückenhain (BDF 21)

Naturraum: Oberlausitzer Heide- und Teichgebiet

(Mückenhainer Terrassenplatte)

Bodenlandschaft: 04.3.3 Nieskyer Platten

Vegetationseinheit: Stellarietea-Basalgesellgesellschaft

Biotoptyp: BTL D: 33.03.03 - intensiv bewirtschafteter

Acker auf Sandboden mit stark verarmter oder fehlender Segetalvegetation EUNIS: 11.1 - Intensive unmixed crops

Potentielle Natürliche Vegetation (PNV):

Typischer Kiefern-Eichenwald

Mittl. Temperatur: 8 °C

Niederschlag: 657 mm/Jahr

Hangneigung: 0° Höhe ü. NHN: 178 m pH-Wert: 5,94

Bodenart: stark sand. Lehm (Slu)

Geologie: Tonschiefer, Grauwacke, Konglomerat,

Quarzit, z. T. Kieselschiefer, Diabastuff;

stark lehmiger Sand

Bewirtschaftung: im Aufnahmejahr (2014) mit Saat-Weizen

(Triticum aestivum)

Sonstige Flächeninformationen: Historischen Karten zur Folge (Messtischblatt 4755 Horka 1929, vgl. www.deutschefotothek.de, letzter Zugriff: 09.11.2016) ist eine Ackernutzung seit mindestens dem frühen 20. Jh. möglich, die Fläche könnte aber auch als Feuchtwiese genutzt worden sein. Der Standort ist im Rahmen des Bodenmonitorings als Bodendauerbeobachtungsfläche der Kategorie I ausgewiesen (Mückenhain, BDF 21).

Kategorie i ausgewiesen (Muckennain, i

Schutzgebiete: keine

(9): Standortname: Klein-Krauscha Replikat: Sandacker (AS) 3

Standortkennung: EB SN34

Koord. (WGS 84): 51.25657 (N); 14.94617 (O) **Standortbeschreibung**: Bioland zertifizierter extensiv

bewirtschafteter Sandacker bei

Klein-Krauscha

Naturraum: Oberlausitzer Heide- und Teichgebiet

(Zentendorfer Niederterrasse)

Bodenlandschaft: 04.3.3 Nieskyer Platten

Vegetationseinheit: *Stellarietea*-Basalgesellgesellschaft **Biotoptyp**: BTL D: 33.03.02 - Acker auf Sandboden

> mit artenreicher Segetalvegetation EUNIS: I1.3 - Arable land with unmixed crops grown by low-intensity agricultural

methods

Potentielle Natürliche Vegetation (PNV): Waldreitgras-Kiefern-Traubeneichenwald

Mittl. Temperatur: 8 °C (BDF 21)

Niederschlag: 657 mm/Jahr (BDF 21)

Hangneigung: 0° Höhe ü. NHN: 190 m pH-Wert: 4,23

Bodenart: lehmiger Sand (Su2)

Geologie: Fluviatiler Kies und Sand = Mittlere

Mittelterrasse

Bewirtschaftung: im Aufnahmejahr (2014) mit Buchweizen **Sonstige Flächeninformationen**: Historischen Karten zurfolge (Messtischblatt 4755, Horka 1929, vgl. www.deutschefotothek.de, letzter Zugriff: 09.11.2016) ist eine Ackernutzung seit mindestens

dem frühen 20. Jh. möglich. **Schutzgebiete**: keine

Tab. 38: Ergebnisse der bodenkundlichen Messungen; Mittelwerte von Bodenfeuchte, pH-Wert, Kohlen- und Stickstoff sowie Carbonat aller Untersuchungsflächen der Länderstudie Sachsen.

Untersuchungs-	Bodenfeuchte	pH-Wert	C/N-	Cgesamt	Ngesamt	Carbonat
fläche	/% [Masse]		Verhältnis	/% [Masse]	/% [Masse]	/g/kg
EB_SN11	16,9	3,73	25,55	6,21	0,22	0,20
EB_SN12	22,9	3,85	25,57	10,73	0,42	0,15
EB_SN13	18,8	3,89	26,73	6,90	0,24	0,43
Mittelwert	19,6	3,82	25,95	7,95	0,30	0,26
EB_SN22	40,8	4,88	13,90	14,74	1,05	0,42
EB_SN23	28,2	3,95	12,01	5,22	0,43	0,36
EB_SN24	24,35	3,74	14,74	9,32	0,63	0,47
Mittelwert	34,5	4,19	13,55	9,76	0,71	0,42
EB_SN31	10,61	4,8	15,24	4,06	0,26	0,16
EB_SN32	17,1	5,94	10,10	2,47	0,24	0,20
EB_SN34	11,26	4,23	11,98	2,29	0,19	0,27
Mittelwert	17,1	4,99	12,44	2,94	0,23	0,21

Naturraum "Östliche Oberlausitz" (Mannsfeld & Richter 1995). Dieser landschaftlich sehr abwechslungsreiche Naturraum wird durch ein Nebeneinander von Berggruppen, Einzelbergen, Platten und Becken geprägt. Löss- und lössähnliche Materialien dominieren das Ausgangsmaterial für die Bodenbildung auch an den Hängen der Berggruppen. Neben dem Vulkanfeld mit seinen zahlreichen Basalt- und Phonolithkegeln sind die heute gefluteten ehemaligen Braunkohleablagerungen sowie das im Osten befindliche Tal der Neiße typisch für die Umgebung. Auch wenn Fichtenforste dominieren, gedeihen auf den nährstoffreichen Bergen oft anspruchsvolle Buchen- oder Edellaubwälder. Diese bilden allerdings nur Inseln in einem ansonsten sehr landwirtschaftlich geprägten Gebiet, in welchem aufgrund hoher agrarischer Leistungsfähigkeit der Böden vornehmlich Ackerbau betrieben wird. Jahrelanger Abbau und die energetische Nutzung von Braunkohle vor Ort zogen massive Auswirkungen auf die Umwelt nach sich, welche im Hinblick auf die Bodenfauna auch gut dokumentiert wurden (u. a. Dunger 1968, 1972, 2006, Voigtländer et al. 1993).

6.2.3.3 Sandacker (EB_SN3)

Die Sandäcker EB_SN31, 32 & 34 liegen auf verschiedenen Sand-Terrassen des südlichen "Oberlausitzer Heide- und Teichgebietes" (Mannsfeld & Richter 1995). Bei diesem Naturraum handelt es sich um einen Teil des saalekaltzeitlichen Urstromtals, in welchem grundwassernahe Talsande mit wenigen Metern eingesenkten Talniederungen vergesellschaftet sind. Er wird von trockenheitsanfälligen und wenig fruchtbaren Sandflächen dominiert. Vernässungen und Vermoorungen zählen aber auch zu den Merkmalen der Naturausstattung.

Das Landschaftsbild bestimmen ausgedehnte Waldkomplexe und zahlreiche Wasserflächen. Ackerbau findet meist nur kleinflächig entlang der Täler in der Nähe von Siedlungen statt.

6.3 Ergebnisse zur Standortcharakterisierung

6.3.1 Bodenkundliche Angaben

Die gemessenen Habitatparameter-Werte wurden in den **Tab. 38** und **39** zusammengefasst. Die Messung der aktuellen Bodenfeuchte ergab, dass der Boden der drei Untersuchungsflächen des Biotoptyps "Laubwald mittlerer Feuchte" (EB_SN2) zum Zeitpunkt der beiden Mikroarthropoden-Probenahmetermine deutlich feuchter war als der der beiden anderen Biotoptypen. Die Messung der aktuellen Bodenfeuchte ist lediglich als Momentaufnahme zu bewerten. Ein Vergleich mit den Feuchtezahlen (siehe **Tab. 40**, Ergebnisse der Ellenbergzahlen) zeigt jedoch, dass auch die Pflanzen zumindest der Sand-Kiefernwälder trockenere Standortbedingungen anzeigen.

Der pH-Wert der neun Untersuchungsflächen lag zwischen pH = 3,73 (EB_SN11) und pH = 5,94 (EB_SN32). Die Sand-Kiefernwälder sind also erwartungsgemäß sauer. Überraschenderweise besaßen, mit Ausnahme von EB_SN22, die Laubmischwälder demgegenüber keine deutlich höheren pH-Werte. Die medialen Zeigerwerte der artenreichen Vegetation dieser Standorte verweisen jedoch auf basische Verhältnisse. Wahrscheinlich handelt es sich hierbei um eine oberflächennahe Versauerung infolge der Kraftwerk-Emissionen zu DDR-Zeiten.

Das C/N - Verhältnis als gängiger Indikator der Stickstoffverfügbarkeit ist in den Sand-Kiefernwäldern sehr weit. Die geringe Stickstoffverfügbarkeit wird sehr

Tab. 39: Ergebnisse der bodenkundlichen Messungen; Mittelwerte der relativen Anteile der einzelnen Bodenkornkompartimente sowie die Bodenart aller Untersuchungsflächen der Länderstudie Sachsen; Su2 = Sand, Su4 = lehmiger Sand, Ut2 = lehmiger Schluff, Slu = stark sandiger Lehm (Arbeitsgruppe Boden 1996).

X	Korngrößenverteilung	Bodenart		
Untersuchungsfläche	Ton /%	Schluff /%	Sand /%	
EB_SN11	1,3	11,1	87,6	Su2
EB_SN12	2,4	22,4	75,3	Su2
EB_SN13	2,6	20,8	76,6	Su2
EB_SN22	4,7	49,9	45,5	Su4
EB_SN23	8,5	71,4	20,0	Ut2
EB_SN24	11,1	74,1	14,8	Ut2
EB_SN31	2,6	14,6	82,8	Su2
EB_SN32	11,8	45,3	42,9	Slu
EB_SN34	4,1	19,0	76,9	Su2

Tab. 40: Mediane der Ellenbergzahlen für die Bodenreaktion, den Stickstoffgehalt sowie die Feuchte-, Licht- und Temperaturbedingungen auf den Untersuchungsflächen der Länderstudie Sachsen.

Untersuchungs-	Zeigerwerte nach Ellenbebrg (Median)							
fläche	Reaktion	Stickstoff	Feuchte	Licht	Temperatur			
EB_NW11	2,0	2,0	4,0	7,0	6,0			
EB_NW12	3,0	2,0	4,0	6,0	6,0			
EB_NW13	3,0	2,0	4,5	6,0	6,0			
EB_NW21	6,0	5,0	5,0	4,0	6,0			
EB_NW22	7,0	7,0	5,0	4,0	5,0			
EB_NW23	7,0	6,0	5,0	6,0	5,5			
EB_NW31	-	-	-	-	-			
EB_NW32	6,5	8,0	5,5	6,5	6,0			
EB_NW33	-	-	-	-	-			

Reaktion Stickstoff		Feuchte Licht		Licht					
sauer	0-4,0	mager	0-4,0	trocken	0-4,0	schattig	0-4,0	kühl	0-4,0
neutral	4,1-5,5	mäßig	4,1-5,5	frisch	4,1-5,5	halblicht	4,1-5,5	mäßig warm	4,1-5,5
basisch	5,6-10	eutroph	5,6-10	feucht	5,6-10	volllicht	5,6-10	warm	5,6-10

gut anhand der Pflanzen widergespiegelt, der mediale Wert für die Stickstoffzahl beträgt im Durchschnitt 2,0. Im Gegensatz dazu ist das Verhältnis sowohl der Laubwälder als auch der Sandäcker enger, d. h. die Stickstoffverfügbarkeit ist erhöht, was auch durch die entsprechenden Zeigerwertzahlen gut verdeutlicht wird. Das C/N-Verhältnis der Laubwälder und der Sandäcker ist recht ähnlich. Im Hinblick auf die Äcker korreliert die Nährstoffverfügbarkeit offenbar mit der Bodentextur (Tab. 39) – je sandärmer die Böden, desto mehr Stickstoff können sie für die Pflanzenernährung bereithalten. Der Karbonat-Anteil am Gesamtkohlenstoffgehalt aller neun Untersuchungsflächen war mit Werten von deutlich unter 1 g/kg gering (Arbeitsgruppe Boden 1996).

Die Messungen der Korngrößenverteilungen spiegeln gut die im Vorfeld getätigten Annahmen wider (Tab. 39). So besteht der Boden der Sand-Kiefernwälder zu 75,3 %-87,6 % aus Sand. Die Tonanteile sind hingegen ausgesprochen gering. Sehr ähnlich verhält es sich mit den Sandäckern: Eine Ausnahme bildet hier der Standort EB SN32, der deutlich verringerte Sand-Anteile zu Gunsten der Ton- und Schluff-Anteile aufweist. Insgesamt führt das wie oben beschrieben zu einer besseren Nährstoff- und Wasserversorgung im Vergleich mit den beiden anderen Flächen (Tab. 38). Die beiden Laubwaldflächen EB SN23 und EB SN24 sind bezüglich der Bodenart sehr gut miteinander vergleichbar, es handelt sich um lehmige Schluffe. Auf der Kuppe des Buchberges am Standort EB SN22 ist Formation: dementgegen der Sand-Anteil höher, Tone und Schluffe treten zurück.

Die Mediane der Ellenbergzahlen, die sich aus der Vegetation ergeben, konnten für die Waldstandorte sowie den Sandacker EB SN32 berechnet werden. EB SN31 beherbergte neben der Kulturart keine Pflanzen, EB SN34 wurde zum Zeitpunkt der Vegetationsaufnahmen gepflügt, wobei somit keine detaillierte Ansprache möglich war. Bei den Sand-Kiefernwäldern handelt es sich durchweg um recht trockene, ausgesprochen nährstoffarme, saure Standorte mit hohem Lichteinfall. Demgegenüber bieten Laubwälder laut vorkommenden Pflanzen mesophile Feuchtigkeitsbedingungen sowie eine hohe Bodenreaktion und ein gutes Nährstoffangebot. Das Lichtangebot ist demnach auf den Standorten EB SN22 und EB SN23 gegenüber den anderen Waldstandorten verringert. Die Segetalflora des Ackerstandortes EB SN32 zeigt einen hohen Stickstoffgehalt des Bodens an, außerdem erscheint der Standort in dieser Hinsicht feuchter als die Waldstandorte, was anhand der Bodenfeuchtemessungen nicht nachvollzogen werden kann.

6.3.2 Vegetationskundliche Aufnahmen 6.3.2.1 *Leucobryo-Pinetum* & *Peucedano-*

Pinetum Matuszkiewicz 1962 Bodensaure Sandkiefernwälder

Formation: XI. Waldgesellschaften **Klasse:** Vaccinio-Piceetea Br.-Bl. in

Br.-Bl. et al. 1939

Ordnung: *Piceetalia* Pawlowski in

Pawlowski et al. 1928, Kiefern-

Fichten Wälder

Verband: Dicrano-Pinion (Libbert 1932)

Matuszkiewicz 1962, Sand-Kiefernwälder

Assoziation: Leucobryo-Pinetum Matuszkiewicz

1962, Zwergstrauch und Moosreicher

Kiefernwald

Peucedano-Pinetum Matuszkiewicz

1962, subkontinentaler Steppen

Kiefernwald

Biotoptyp

BTL D: 44.02.03.02 trockener

Sandkiefernwald basenreicher

Standorte

EUNIS: G3.421 Subcontinantal Scots pine

forest

Innerhalb des Verbandes Dicrano-Pinion sind Sand-Kiefernwälder mit subkontinentaler Verbreitung zusammengefasst. Sie unterscheiden sich durch das Vorkommen einiger subatlantischer säurezeigender Arten von den kontinentalen Kiefernwäldern. Eine exakte Abtrennung der naturnahen Kiefernwälder von den im Gebiet ebenso vorkommenden Kiefernforsten ist nicht immer einfach möglich. Im sommertrockenen, subkontinentalen Klima Osteuropas wird das Artengefüge in den bodensauren trockenen Kiefernwäldern durch Wintergrüngewächse sowie einige wärmeliebende Saum- und Magerrasenarten ergänzt (Schmidt et al. 2002, Härdtle et al. 2008). Matuszkiewicz (1962) hat diese osteuropäischen Einheiten als Peucedano-Pineten bezeichnet und den zentral-europäischen Einheiten, Leucobryo-Pineten, ohne die genannten Artengruppen gegenübergestellt.

Der Untersuchungsstandort EB SN11 wurde dem Leucobryo-Pinetum, die Standorte EB SN12 und EB SN13 wurden dem Peucedano-Pinetum zugeordnet (Tab. 41). Die Fläche EB SN11 war standörtlich zwar den beiden anderen Kiefernwäldern sehr ähnlich, jedoch hinsichtlich des Pflanzenbestandes insgesamt artenärmer. Es fehlten hier sowohl typische Zeiger der Steppenkiefernwälder (Peucedano-Pineten), wie beispielsweise Frangula alnus und Sorbus aucuparia in der Verjüngung, als auch die kennzeichnenden Wintergrüngewächse Pyrola chlorantha, Chimaphila umbellata und Moneses uniflora, die innerhalb der Steppenkiefernwälder ihren Verbreitungsschwerpunkt besitzen (Schmidt et al. 2002). Die Untersuchungsflächen EB SN12 und EB SN13 hingegen konnten als etwas basenreichere Standorte der Peucedano-Pineten eingestuft werden, die nach Schmidt et al. (2002) typisch für die

Region um Hoyerswerda und Weißkollm sind. Innerhalb der Vegetationsaufnahmen wurden zur Abgrenzung *Chimaphila umbellata* und *Pyrola chlorantha* erfasst. In den randlichen Bereichen der Untersuchungsflächen wurde zudem *Moneses uniflora* festgestellt. Der sonstige Bestand ähnelte denen der *Leucobryo-Pineten* sehr (Schmidt et al. 2002).

6.3.2.2 *Galio odorati-Fagetum* Sougnez et Thill 1959

Formation: XI. Waldgesellschaften

Klasse: Querco-Fagetea Br.-Bl. et Vlieger in

Vlieger 1937

Ordnung: Fagetalia sylvaticae Pawlowski in

Pawlowski et al.,

Buchen- und Edellaubmischwald

Verband: Fagion sylvaticae Luquet 1926,

Buchenwälder

Unterverband: *Galio odorati-Fagenion* (R.Tx.

1955) Th. Müller 1966 em Oberd. & Th. Müller 1984, Waldmeister-Buchenwälder auf nährstoffreicheren

Standorten

Assoziation: Galio odorati-Fagetum Sougnez et

Thill 1959, Waldmeister-Buchenwald

Subassoziation: Galio odorati-Fagetum milietosum,

Perlgras-Waldmeister-Buchenwald Galio odorati-Fagetum typicum, typischer Waldmeister-Buchenwald

Biotoptyp

BTL D: 43.07.05.01 Buchenwald basenreicher

Standorte der planaren bis

submontanen Stufe

EUNIS: G1.6312 Medio-European woodruff

and hairy sedge beech forests

Innerhalb der Buchenwälder wurden Standorte auf nährstoffreicheren Böden mit optimaler Entfaltung der Rotbuche systematisch im Unterverband des *Galio-Fagenion* zusammengefasst. Hierunter fallen mäßig trockene bis feuchte Standorte mit schwach saurer bis neutraler Bodenreaktion. Kennzeichnend für die Krautschicht dieser Waldstandorte sind viele Mullbodenpflanzen, die eine Einteilung in zahlreiche Ausbildungen ermöglichen.

Nach Schmidt et al. (2002) kommen in der Oberlausitz *Galio-Fageten* in räumlichen Komplexen mit Schatthangund Schluchtwäldern vor. Dafür verantwortlich sind die auf den Basaltkuppen der Oberlausitz kleinräumig auftretenden Standortverschiebungen, so dass eine räumlich genaue Abgrenzung zuweilen schwierig ist. *Galio-Fageten* werden durch die dominante Rotbuche,

manchmal auch durch Esche (*Fraxinus excelsior*) und Berg-Ahorn (*Acer pseudoplatanus*) geprägt (Schmidt et al. 2002).

Nach Schmidt et al. (2002) konnten die Bestände der Untersuchungsflächen EB_SN22, EB_SN23 und EB_SN24 dem *Galio odorati-Fagetum* zugeordnet werden (**Tab. 42**). Es handelte sich um Bestände mit ausgeprägter Krautschicht. EB_SN22 war dabei von Fraxinus excelsior als Hauptbaumart dominiert und zeigte damit seine räumliche und standortökologische Nähe zu den Hangschuttwäldern. In den beiden anderen Untersuchungsflächen war die Rotbuche die Hauptbaumart. EB_SN22 und EB_SN24 gehörten

der Subassoziation des *G.-F. milietosum* an. Diese Subassoziation ist auf wärmebegünstigten Kuppenlagen oder exponierten Hanglagen mit stärkerer Einstrahlung und Evaporation ausgebildet (Pott 1992). Die Ausbildung war durch die beiden Perl-Gräser *Melica nutans* und *Melica uniflora* sowie *Poa nemoralis*, *Convallaria majalis* und *Lathyrus vernus* gekennzeichnet (vgl. dazu Schmidt et al. 2002). Die Untersuchungsfläche EB_SN23 konnte der Subassoziation *G.-F. typicum* zugeordnet werden. Hier fehlten die Arten der Artengruppe um Melica nutans, wobei Taxa eutraphenter Standorte, Galium aparine, Actaea spicata, Sambucus nigra, Urtica dioica und Euonymus europaeus, hinzukamen.

Tab. 41: Bodensaure Sand-Kiefernwälder, Assoziationen *Leucobryo-Pinetum* Matuszkiewicz 1962 (Sand-Kiefernwald, Fläche EB_SN11) und *Peucedano-Pinetum* Matuszkiewicz 1962 (Haarstrang-Kiefern Trockenwald, Flächen EB_SN12 und EB_SN13).

Stan	dort	EB_SN11	EB_SN12	EB_SN13
Arte	nzahl	9	16	14
Baumschicht				
Pinu	s sylvestris L.	4	4	4
Strauchschicht u. Ve	erjüngung			
Pinu	s sylvestris L.	2		2
Fran	gula alnus Mill.			1
Sorb	us aucuparia L.		1	1
Begleitarten				
Prun	us serotina Ehrh.		2	
Quer	cus petraea Liebl.	1	1	+
Quei	cus rubra L.		+	+
Krautschicht				
basenreicher	e Standorte			
Chin	naphila umbellata (L.) Barton		1	
Pyro	la chlorantha Sw.			+
bodensaure I	Kiefernwälder			
Vacc	inium myrtillus L.	2	2	2
Vacc	inium vitis-idaea L.	2	1	2
Callı	una vulgaris (L.) Hull	1	1	2
Luzu	la campestris (L.) DC.			1
Desc	hampsia flexuosa (L.) Trin.		3	
trockene näh	rstoffarme Böden			
Cala	magrostis epigejos (L.) Roth	+	1	1
Festi	uca ovina agg.	1	1	1
Mela	mpyrum pratense L.	+	+	2
Begleitarten				
Cam	panula rotundifolia agg.		+	
Care	x arenaria L.	1		
Care	x pilulifera L.			1
Hier	acium lachenalii C. C. Gmel.		+	
Rubi	us idaeus L.		1	

Tab. 42: *Galio odorati-Fagetum* Sougnez et Thill 1959 (Waldmeister Buchenwald), Subassoziationen *Galio odorati-Fagetum milietosum* (Perlgras-Waldmeister-Buchenwald, Flächen EB_SN22, EB_SN24) und *Galio odorati-Fagetum typicum* (typischer Waldmeister-Buchenwald, Fläche EB_SN23).

Standort	EB_SN22	EB_SN23	EB_SN24
Artenzahl	26	25	30
Baumschicht			
Fagus sylvatica L.		3	4
Fraxinus excelsior L.	4	3	
Begleitarten			
Betula pendula Roth			1
Carpinus betulus L.		1	2
Tilia x vulgaris	2		
Tilia platyphyllos Scop.	2		
Strauchschicht u. Verjüngung			
Fagus sylvatica L.		2	+
Sorbus aucuparia L.	+	-	+
Ulmus glabra Huds.	+	1	•
Acer pseudoplatanus L.	+	1	+
Acer platanoides L.	1	•	+
Begleitarten	1	•	+
Carpinus betulus L.		1	
•	+		+
Corylus avellana L.	•	1	2
Rubus fruticosus agg.	•	+	+
Sambucus racemosa L.		+	+
Tilia x vulgaris	2	•	•
Quercus petraea Liebl.	•	+	•
Crataegus laevigata (Poir.) DC.	•	1	•
Crataegus monogyna Jacq. s. l.	•	•	+
Daphne mezereum L.	+	•	•
Sambucus nigra L.		1	
Krautschicht			
Kennarten der Perlgras-Waldmeister Buchenwälder			
Melica uniflora Retz.	2	+	3
Melica nutans L.	1		1
Poa nemoralis L.	3		
Convallaria majalis L.	•		1
Lathyrus vernus (L.) Bernh.	+	[1
eutraphente Arten			
Galium aparine L.		+	+
Actaea spicata L.		1	
Sambucus nigra L.		1	
Urtica dioica L.		1	
Euonymus europaea L.		1	
mesophile Buchenwälder			
Mercurialis perennis L.	2	4	3
Galeobdolon montanum (Pers.) Pers. ex Rchb.	+	1	+
Polygonatum multiflorum (L.) All.	+	+	+
Dryopteris filix-mas (L.) Schott	+	+	+
Milium effusum L.	+		+
Galium odoratum (L.) Scop.	1		2
Euphorbia dulcis L.	+	•	+
Asarum europaeum L.	•	1	· _

Tab. 42 (Fortsetzung).

Standort	EB_SN22	EB_SN23	EB_SN24
Artenzahl	26	25	30
Pulmonaria officinalis L.		1	+
Anemone nemorosa L.			1
Viola reichenbachiana Boreau	+		
Bromus benekenii (Lange) Trimen	+		
Geum urbanum L.		+	
Stellaria holostea L.	1		
Impatiens noli-tangere L.		2	
Lamium maculatum L.		1	
Begleitarten			
Chaerophyllum temulum L.			+
Corydalis intermedia (L.) Mérat			+
Crataegus laevigata (Poir.)		1	
Hedera helix L.			1
Hepatica nobilis Schreb.			1
Heracleum sphondylium L.		+	
Hypericum perforatum L.	+		
Vicia sepium L.	1		
Vicia tetrasperma (L.) Schreb.	+		
Vinca minor L.			2

6.3.2.3 Stellarietea mediae-Basalgesellschaft (Ackerwildkrautflur auf Sand)

Formation: III. Therophytenreiche

Pioniervegetation (mit Ausnahme des

unmittelbaren Küstenbereiches)

Klasse: Stellarietea mediae Tx. et al. ex

von Rochow 1951 Ackerwildkrau-

fluren und ruderale

Einjährigen-Gesellschaften

Typ: Stellarietea-Basalgesellgesellschaft,

Ackerwildkrautflur

Biotoptyp

BTL D: 33.03.03 Intensiv bewirtschafteter

Acker auf Sandboden mit stark

verarmter oder fehlender

Segetalvegetation

EUNIS: I1.1 Intensive unmixed crops

systematische Trennung der Ackerunkrautgesellschaften ist heute aufgrund der nivellierenden Wirkung der Stickstoffdüngung sowie des Pestizideinsatzes auf den Ackerstandorten meist nicht mehr durchzuführen. Zudem tragen eine verbesserte Saatgutreinigung sowie ein zunehmend häufiger Fruchtwechsel zur Vereinheitlichung der Wildkrautvegetation bei (Pott 1992). Die untersuchten 516 Oribatiden gefangen. Innerhalb der Biotoptypen Flächen auf den Sandäckern in Sachsen, EB SN31, EB SN32 und EB SN34, zeigten eine sehr gering ausgeprägte hinsichtlich ihrer Individuenzahlen teilweise deutlich: Wildkrautvegetation, was auf deren intensive Bekämpfung In den Laubwäldern wurden zwischen 1.310 (EB SN23)

an zumindest zweien der Standorte zurückzuführen war (Tab. 43). Die Pflanzen des zertifizierten Bioland-Ackers (EB SN34) konnten nicht ausgewertet werden, da die Fläche zum Zeitpunkt der Vegetationsaufnahmen kürzlich bearbeitet wurde. Aufgrund des sehr spärlichen Bewuchses konnte die Vegetation der anderen beiden Sand-Äcker nur sehr allgemein als Stellarietea-Basalgesellschaft bezeichnet werden. Beeindruckend war, dass auf der Fläche EB SN31 keine einzige Wildkrautart neben der Kulturart gefunden werden konnte, was auf die Intensität der Bewirtschaftung hinwies.

Ergebnisse und Diskussion der 6.4 einzelnen Bodentiergruppen

6.4.1 Oribatida

6.4.1.1 Individuen- und Artenzahlen

Insgesamt wurden auf allen untersuchten Flächen 19.535 Individuen aus 137 Arten nachgewiesen (vgl. Tab. 44, Tab. Anhang 1, 21-23). Der individuenreichste Biotoptyp war der Sand-Kiefernwald mit insgesamt 9.658 Individuen. Ähnlich viele Individuen wurden an den drei Laubwald-Standorten nachgewiesen (9.361), auf den Sandäckern dagegen wurden insgesamt nur unterschieden sich die Untersuchungsflächen und 5.001 (EB_SN22) Hornmilben erfasst, auf den Sandäckern war der relative Unterschied noch größer. Auf der Fläche SN31 traten nur 11 Tiere auf, wohingegen auf den anderen beiden Flächen 201 (EB_SN32) bzw. 304 (EB_SN34) Tiere gezählt wurden. Beim Vergleich der Frühjahrs- und Herbstprobenahmen fällt auf, dass in den Wald-Biotoptypen meist im Frühjahr mehr Individuen gefangen wurden. Auf den Sandäckern konnten jeweils im Herbst mehr Tiere nachgewiesen werden.

Auch hinsichtlich ihrer Artenzahlen unterschieden sich die Waldstandorte deutlich von den Sandacker-Flächen. Artenreichster Biotoptyp war mit insgesamt 111 Arten der Laubwald. In den Sand-Kiefernwäldern kamen 70 Arten vor. Auf den Sandacker-Flächen dagegen wurden nur 24 Arten erfasst. Ähnlich den Individuenzahlen wurden in den Waldstandorten im Frühjahr mehr Arten gezählt, auf den Sandäckern dagegen war die Artenzahl auf zwei der drei Flächen im Herbst höher. Die häufigste in dieser Studie nachgewiesene Art war Oppiella nova mit 3.101 Individuen, gefolgt von Oppiella acuminata (1.447 Individuen) und Dissorhina signata (1.441 Individuen) (Tab. Anhang 21-23).

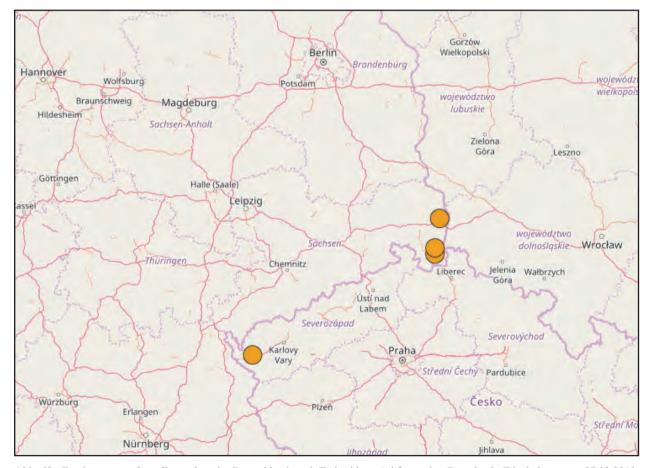
5.4.1.2 Faunistische Anmerkungen zu ausgewählten Arten

Oppiella epilata Miko, 2006

Von der erst im Jahr 2006 beschriebenen *Oppiella* epilata war bislang nur ein Fundort in Tschechien

nahe der Grenze zu Deutschland bekannt, und ein Vorkommen auch in Deutschland war zu erwarten (Weigmann 2006). Im Rahmen dieser Studie konnte diese Art in großer Zahl auf allen drei untersuchten basischen Laubwaldstandorten und mit zwei Individuen auf einem Sandacker (EB_SN32) nachgewiesen werden (siehe **Abb. 48** und **Tab. 45**). Aufgrund des stetigen und hoch abundanten Auftretens in fast ausschließlich den basischen Laubwaldstandorten wurde *O. epilata* als Kennart für diesen Biotoptyp gewertet (siehe Kap. 6.4.1.3).

Metabelba propexa (Kulczynski, 1902)

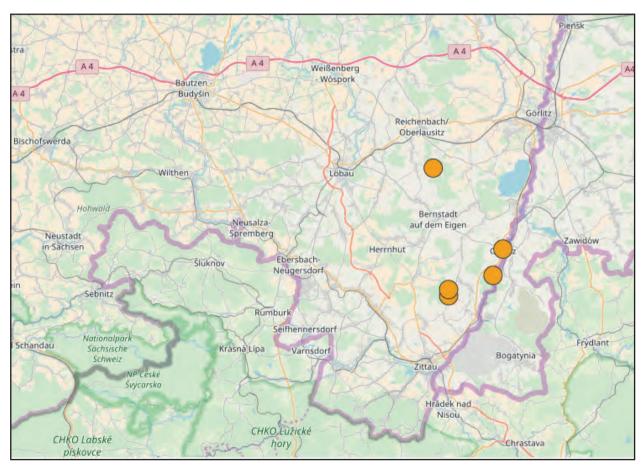

Die in Zentral-Europa (Tschechien, Polen, Slowakei, Österreich und Deutschland, vgl. Weigmann 2006) verbreitete Metabelba propexa war nach aktuellem Kenntnisstand (Abfrage von Edaphobase am 07.03.2018, Abb. 49) in Deutschland bislang nur aus dem Neiße-Tal bei Ostritz bekannt, wo am 17.08.1987 insgesamt sechs Individuen gefangen wurden (5 Expl., det. Thomas Schwalbe, Sammlungsverbleib: Senckenberg Museum für Naturkunde Görlitz; 1 Expl., det. Ludwig Beck und Steffen Woas, Sammlungsverbleib: Staatliches Museum für Naturkunde Karlsruhe). Im Rahmen der Länderstudie wurde die Art in allen drei untersuchten basischen Laubwäldern nachgewiesen und daher als Kennart für diesen Biotoptyp eingestuft (vgl. Kap. 6.4.1.3). Die neuen Fundorte schließen geografisch an die bisherigen Funde an und liegen nach derzeitigem Kenntnisstand an der westlichen Verbreitungsgrenze dieses Taxons.

Tab. 43: Stellarietea mediae-Basalgesellgesellschaft (Ackerwildkrautflur auf Sand); Sandacker ohne Wildkräuter (EB_SN31), wildkrautarmer Sandacker (EB_SN32, EB_SN34).

	Standort	EB_SN11	EB_SN12	EB_SN13
	Artenzahl	1	7	1
Kulturpflanze				
	Zea mays L.	3		
	Triticum aestivum		5	
	Fagopyrum esculentum Moench			5
Begleit	rarten			
	Apera spica-venti (L.) P. Beauv.		1	
	Avena fatua L.		+	
	Bromus sterilis L., nom. cons.		+	
	Convolvulus arvensis L.			
	Echinochloa crus-galli (L.) P. Beauv.			
	Fallopia convolvulus (L.) Å. Löve			
	Galium aparine L.		1	
	Poa annua L.		1	
	Polygonum aviculare agg.			
	Solanum tuberosum L.			
	Viola arvensis Murray		+	

Tab. 44: Arten- und Individuenzahlen der Oribatiden.

			Individuen	zahlen		Artenzahle	n	
	SN11	Frühjahr	2375	3859		40	41	
	SINII	Herbst	1484	3637		19	41	
Sand-	SN12	Frühjahr	1688	3266	9658	41	46	70
Kiefernwald	51112	Herbst	1578	3200	9036	26	40	70
	SN13	Frühjahr	1557	2533		51	52	
	51115	Herbst	976	2333		30	32	
	SN22	Frühjahr	3119	5001		61	67	
basenreicher	51122	Herbst	1882	3001		43	07	
Laubwald	SN23	Frühjahr	612	1310	9361	57	68	111
mittlerer Feuchte	51125	Herbst	698		9301	45	00	111
Feuchte	SN24	Frühjahr	1929	3050		62	72	
	511/24	Herbst	1121	3030		52	12	
	SN31	Frühjahr	2	11		2	8	
	SINST	Herbst	9	11		7	0	
Sand-Acker	SN32	Frühjahr	80	201	516	17	20	24
Sand-Acker	51132	Herbst	121	201	310	9	20	24
	SN34 Frühjahr 63 Herbst 241	63	304		1	6		
S		Herbst	241	30 4		6	0	
Sachsen 2014			Individuen	zahl gesamt:	19535	Artenzahl	gesamt:	137


Abb. 48: Fundorte von *Oppiella epilata* in Deutschland und Tschechien. (Abfrage der Datenbank Edaphobase am 07.03.2018, Kartendarstellung: Edaphobase).

6.4.1.3 Beschreibung der ermittelten Artengruppen in den untersuchten Biotoptypen

Die Verteilung der Oribatiden zeigt eine klare Differenzierung. die mit den unterschiedlichen Biotoptypen sowie deren verschiedenen Feuchte-, Säureund Nährstoffgraden korreliert. So konnten für die beiden Wald-Biotoptypen Kennarten identifiziert werden, die innerhalb der Untersuchung nahezu ausschließlich dort auftraten und auch im gesamten Länderstudien-Datensatz (vgl. Kap. 5, 7, 8) meist einen deutlichen Schwerpunkt in diesen beiden Biotoptypen aufwiesen, wie z. B. Trhypochthonius tectorum (Kiefer) und Hermanniella punctulata (Laubwald). Des Weiteren lassen sich edaphische Gruppen der Faktoren Feuchte, Säure- und Nährstoffgehalt bilden. Innerhalb der Feuchtegruppe treten Arten der frischen, wechselfeuchten Standorte und der zeitweise austrocknenden Streuschichten auf, in der Säuregruppe trennt die Gruppe generell saurer (im Mittel < pH=4 /basenarm) Standorte die Sand-Kiefernwälder von den anderen Biotoptypen standortökologisch ab, und zur Nährstoffgruppe zählt die Gruppe der sehr nährstoffarmen Wälder. Die Grundartengruppe der Laubwälder besteht aus Arten, die in dieser Untersuchung die Laubwaldstandorte von den anderen beiden Biotoptypen unterscheiden, aber in der gesamten Edaphobase-Länderstudie (vgl. Kap. 5, 7, 8) in den unterschiedlichen Laubwaldtypen auftraten. Für die individuen- und artenarmen Sandäcker ließen sich keine Kennartengruppen bzw. edaphischen Gruppen identifizieren (vgl. **Tab. 45**).

Mit Hilfe der Indikatorartenanalyse (ISA) konnte gezeigt werden, dass nahezu alle Kennarten statistisch signifikante Indikatorarten für die beiden Wald-Biotoptypen darstellen, wie z. B. *Dissorhina signata* (Kiefer) und *Hermanniella punctulata* (Laubwald) (siehe **Tab. 45** und **Tab. Anhang 24**). Einzige Ausnahme ist *Ceratoppia quadridentata*, die auf der Fläche EB_SN11 nicht nachgewiesen werden konnte. Da diese Art jedoch auch im Vergleich mit dem gesamten Länderstudien-Datensatz schwerpunktmäßig in den Sand-Kiefernwäldern auftrat, wurde sie als Kennart für diesen Biotoptyp gewertet.

Einige Arten, die in der ISA als Indikatoren errechnet wurden, wurden in der sortierten Kreuztabelle an

Abb. 49: Fundorte von *Metabelba propexa* in Deutschland (Kartenausschnitt: Dreiländereck Deutschland-Tschechien-Polen; Abfrage der Datenbank Edaphobase am 07.03.2018, Kartendarstellung: Edaphobase).

Tab. 45: Sortierte Kreuztabelle der Hornmilben (Oribatida); Angaben in Individuen/m2; Punkte: kein Tier gefunden; durchgezogene Rahmen: kennzeichnende Artengruppen; gepunktete Rahmen: schwach kennzeichnende Artengruppe.

		lfd. Nr. 1: Seidewinkel lfd. Nr. 2: Weißkollm lfd. Nr. 3: Hoyerswerda Sand- Kiefernwald 44.02.03.02			lfd. Nr. (lfd. Nr. (basen	lfd. Nr. 4: Buchberg lfd. Nr. 5: Spitzberg lfd. Nr. 6: Schönbrunner Berg basenreicher Laubwald mittlerer Feuchte 43.07.05.02			Ifd. Nr. 7: Kreba-Neudorf Ifd. Nr. 8: Mückenhain Ifd. Nr. 9: Klein Krauscha Sand- Acker 33.03.03/33.03.02		
	Flächenkürzel Edaphobase	EB_SN11	EB_SN1	2 EB_SN1	3 EB_SN2	2 EB_SN2	3 EB_SN24	EB_SN	31 EB_SN	32 EB_SN34	
	lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Kennarter											
Ken	narten Kiefernwälder				_						
	Trhypochthonius tectorum	47	544	249							
	Dissorhina signata	19444	2347	575			16		16		
	Micreremus brevipes	62	62	16							
	Ceratoppia quadridentata		47	109							
Ken	narten basenreiche Laubwä	ilder						_			
	Belba bartosi				653	16	560].			
	Chamobates voigtsi	31			109	2378	2860		16		
	Hermanniella punctulata				2425	1072	357				
	Hypochthonius luteus				528	62	16				
	Metabelba propexa				404	187	1104				
	Multioppia glabra	•		•	326	140	995				
	Oppiella epilata	•		•	13196	497	606		31		
	Phthiracarus compressus	•		•	16	187	16				
	Phthiracarus globosus				342	124	78				
	Zetorchestes falzonii				3404	591	78				
Feuchtegr	uppen							'			
frisc	he wechselfeuchte Standort	e									
	Achipteria coleoptrata				668	435	995].			
	Scheloribates (H.) initialis				311	16	16				
	Berniniella conjuncta				1026	47	420				
					1694	109	31				
zeitv	v. austrocknende Streuschic		-					1.	•	•	
	Porobelba spinosa	264	1321	824	٦.		16				
Säuregrup					_						
	r im Mittel < ph4 /basenarn	n									
	Adoristes ovatus	357	420	1228	٦.						
	Suctobelbella acutidens	249	16	466		·	·	•	•	·	
	Quadroppia Quadroppia				ļ.	•	·	•	•		
	quadricarinata	326	16	93	<u></u> .						
Nährstoffg											
nähr	stoffarme Wälder				_						
	Ceratozetes minimus	249	1741	1710		16		•	•		
	Eupelops torulosus	482	311	373					62		
	Microtritia minima	4601	793	280	16				16		
Grundarto	en der Laubwälder										
	Berniniella bicarinata			47	8284	342	2098				

	lfd. Nr. 1: Seidewinkel lfd. Nr. 2: Weißkollm lfd. Nr. 3: Hoyerswerda Sand- Kiefernwald 44.02.03.02			lfd. Nr. lfd. Nr. baser	lfd. Nr. 4: Buchberg lfd. Nr. 5: Spitzberg lfd. Nr. 6: Schönbrunner Berg basenreicher Laubwald mittlerer Feuchte 43.07.05.02			lfd. Nr. 7: Kreba-Neudorf lfd. Nr. 8: Mückenhain lfd. Nr. 9: Klein Krauscha Sand- Acker 33.03.03/33.03.02		
Flächenkürzel Edaphobase	EB_SN1	1 EB_SN1:	2 EB_SN1:	B_SN2	2 EB_SN2	3 EB_SN24	EB_SN	31 EB_SN3	2 EB_SN34	
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Ceratozetes gracilis				1461	715	482				
Steganacarus (S.) magnus				16	218	435	31			
Phthiracarus laevigatus			140	47	31	16].	•		
Begleitarten										
Begleiter mit hoher Stetigkeit										
Oppiella (O.) falcata	31	31	47	1679	1274	5253	31	31	16	
Oppiella (O.) nova	12994	13771	11750	1803	78	7196	31	62	513	
Tectocepheus group velatus	2627	2860	870	2829	280	808		1477	3497	
Artengruppen mit hoher Stetigl	keit									
Brachychthoniidae	1104	528	497	373	16	497		62	575	
Oribatida juvenil	404	1632	513	3886	637	1104		16	62	
Sonstige Begleiter										
Eniochthonius minutissimus	16	16	1850	3932	249	155	16			
Steganacarus (A.) striculus	16	16		3357	1321	513	16	16		
Dissorhina ornata			1212	3388	31	5533		31	31	
Galumna lanceata	31	249		435	47	249		31		
Microppia minus	2269	249	1570	3948		591		47		
Oppiella (M.) keilbachi	389	1430	62		16	62		16		
Oppiella (R.) obsoleta		16	16	47	47	1414				
Oribatula tibialis	1197	497	591			202	16	62		
Rhysotritia duplicata	218	1274	1119	16	31	249				
Suctobelbella subcornigera	342	451	497	326	62	171				
Suctobelbella sarekensis	16	155	404	78	93	124			•	
Carabodes subarcticus	16	140	311	16	•	•		202	•	
Conchogneta dalecarlica	•	16	16	•	4399	•	16		16	
Oppiella (O.) acuminata	5284	10647	6419	93	•	•		47	•	
Quadroppia monstruosa			31	3497	47	2471		16	•	
Phthiracarus longulus		31	140	47	62	31			•	
Suctobelbella arcana	62	31	124	16		16				
Chamobates borealis	2658	233			78				16	
Nothrus silvestris		31	389	16		16				
Pergalumna nervosa	870	140	1927	218						
Platynothrus peltifer			389	78	16	451				
Tectocepheus minor	47	31		1477	870					
Acrogalumna longipluma		16			93	31				
Cepheus cepheiformis	16	373	•	16						
Damaeus riparius		•	•	124	140	730	•			
Eupelops plicatus		•	31	124		746	•			
Liochthonius brevis	16	31	16							

Tab. 45 (Fortsetzung).

	lfd. Nr. 1: Seidewinkel lfd. Nr. 2: Weißkollm lfd. Nr. 3: Hoyerswerda Sand- Kiefernwald 44.02.03.02			lfd. Nr. lfd. Nr. base r		erg runner Berg Laubwald euchte	lfd. Nr. 7: Kreba-Neudorf lfd. Nr. 8: Mückenhain lfd. Nr. 9: Klein Krauscha Sand- Acker 33.03.03/33.03.02		
Flächenkürzel Edaphobase	EB_SN11 EB_SN12 EB_SN13			13 EB_SN2	22 EB_SN	23 EB_SN24	EB_SN	31 EB_SN3	32 EB_SN34
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Nothrus palustris		16		31	140	•			
Pantelozetes paolii				2642	233	202			
Phthiracarus borealis			31		124	47			
Punctoribates hexagonus	16			16				466	
Punctoribates punctum			16				16	218	
Rhysotritia ardua	47		389	16					
Suctobelbella duplex	16	31	31						
Suctobelbella subtrigona		16	16			16			
Oribatida spec.		16	47	93	78	62		31	

Zusätzlich (zwei Untersuchungsflächen): Amerus polonicus (5:16; 6:16), Ceratoppia bipilis (4:16; 6:16), Ceratozetes minutissimus (2:16; 3:637), Cultroribula bicultrata (5:16; 6:109), Damaeus (A.) onustus (5:31; 6:93), Eremaeus hepaticus (5:47; 6:155), Eupelops hirtus (1:16; 6:47), Euzetes globulus (5:342; 6:16), Fosseremus laciniatus (3:31; 4:917), Heminothrus targionii (4:1352; 5:684), Licnodamaeus pulcherrimus (1:47; 2:466), Liebstadia similis (4:2642; 6:870), Microzetes septentrionalis (4:16; 6:389), Minunthozetes semirufus (4:16; 5:155), Oppiella acuminata/keilbachi (1:2300; 2:7569), Oppiella marginedentata (4:2378; 6:3590), Oribatella calcarata (5:31; 6:233), Phthiracarus crinitus (5:31; 6:16), Pilogalumna tenuiclava (2:31; 3:420), Scheloribates ascendens (4:16; 5:16), Scheloribates latipes (1:637; 6:47), Sellnickochthonius suecicus (1:16; 2:16), Suctobelba atomaria (4:31; 6:16), Suctobelba granulata (4:47; 5:78), Suctobelbella diffissa (4:16; 5:16), Suctobelbella falcata (1:124; 3:326), Suctobelbella forsslundi (4:311; 5:62), Suctobelbella nasalis (3:16; 5:31), Xenillus tegeocranus (4:16; 5:16)

Zusätzlich (eine Untersuchungsfläche): Banksinoma lanceolata (6:16), Berniniella (H.) dungeri (4:249), Camisia spinifer (1:16), Carabodes areolatus (6:47), Carabodes coriaceus (3:109), Carabodes ornatus (4:78), Carabodes rugosior (6:31), Ceratozetoides maximus (3:342), Chamobates subglobulus (6:1026), Cymbaeremaeus cymba (4:16), Damaeus (P.) clavipes (6:16), Eulohmannia ribagai (5:47), Eupelops acromios (5:16), Eupelops occultus (1:16), Gustavia microcephala (5:31), Hermannia gibba (4:31), Hermanniella dolosa (5:16), Hypochthonius rufulus (5:513), Kunstidamaeus tecticola (6:31), Liacarus coracinus (6:16), Liochthonius strenzkei (6:16), Machuella bilineata (4:16), Nanhermannia nana (5:16), Nothrus borussicus (5:140), Oppiella beskidyensis (6:311), Oribatula interrupta (2:16), Phthiracarus anonymus (6:16), Phthiracarus boresetosus (3:16), Phthiracarus bryobius (5:47), Protoribates capucinus (5:280), Ramusella insculpta (8:155), Scheloribates laevigatus (6:31), Sellnickochthonius hungaricus (4:16), Spatiodamaeus verticillipes (6:93), Suctobelba sorrentensis (5:16), Suctobelba trigona (3:16), Suctobelbella alloenasuta (4:16), Suctobelbella perforata (5:31), Suctobelbella serratirostrum (2:47), Suctobelbella similis (3:16), Trichoribates trimaculatus (3:16), Zygoribatula exilis (6:16)

anderer Stelle einsortiert, wie z. B. Adoristes ovatus. Diese Indikatorart der Sand-Kiefernwälder wurde als Säurezeiger gewertet (vgl. Kap. 6.4.1.4). Zudem ergab die ISA eine Indikatorart für die intensiv bewirtschafteten Sandäcker (Punctoribates punctum), die jedoch bei der Kreuztabellen-Sortierung als Begleitart eingestuft wurde (siehe Kap. 6.4.1.4 Sandacker). Grundsätzlich liegen die Unterschiede der Ergebnisse beider Analysen daran, dass für die Sortierung der Kreuztabelle Hintergrundwissen zu der Autökologie der Arten verwendet und der Datensatz der vorliegenden Untersuchung im Bundesland Sachsen im Kontext des gesamten Edaphobase-Länderstudiendatensatzes (vgl. Kap. 5, 7, 8) bewertet wurde.

Die ISA ergab 18 Indikatorarten Sand-Kiefernwälder, 25 Indikatorarten für die Laubwälder und eine Indikatorart für die intensiv erklärt. Dies weist auf einen starken Zusammenhang

bewirtschafteten Sandäcker. Bei der Durchführung der Korrespondenzanalyse (CA) wurde nach diesen insgesamt 44 Arten gefiltert und in der Abbildung der Daten deren Lage sowie die der Untersuchungsflächen angezeigt (siehe Abb. 50). Die CA zeigt aufgrund der unterschiedlichen Artenspektren der Oribatiden eine deutliche Trennung der beiden Waldstandorte an. Die Artenspektren der Sandäcker liegen zwischen diesen beiden Waldtypen, da dort ausschließlich Begleitarten auftraten, die auch in den beiden Waldtypen vorkamen. Eine vorangegangene Kanonische Korrespondenzanalyse < 0,05) errechnete als erklärende (CCA, p)Umweltvariablen den Schluffanteil des Bodens sowie die Ellenberg-Temperaturzahl (siehe Tab. 38, 39 und 40). die Der Schluffgehalt korreliert weitgehend mit der ersten Achse der CA, die 42,5% der Variabilität der Daten

zwischen der Lebensgemeinschaft der Oribatiden und der Bodenart hin.

Mit einem Anteil von 32 % (44 von 127 Arten) wurden sehr viele Oribatidenarten statistisch signifikant als Indikatoren errechnet. Dies liegt vermutlich daran, dass drei Biotoptypen mit sehr unterschiedlichen Standortbedingungen untersucht wurden, die somit auch sehr unterschiedliche Oribatiden-Lebensgemeinschaften beherbergten. Der Vergleich mit Literaturdaten (Weigmann & Kratz 1981, Weigmann 2006, Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der untersuchten Flächen dieser Studie vom 11.01.2018) ergab, dass viele der hier ermittelten Indikatorarten ein deutlich breiteres Spektrum an

Biotoptypen besiedeln. Trotzdem zeigt das Vorkommen der Kennarten bzw. edaphischen Gruppen ein Muster wiederkehrender, innerhalb des jeweiligen Biotoptyps stetig auftretender Arten, das für den entsprechenden Biotoptyp als charakteristisch zu bewerten ist.

Neben den Kennarten sowie den edaphischen Artengruppen traten Begleiter mit teilweise hoher Stetigkeit auf. Zwei der drei hochstetig nachgewiesenen Arten, *Tectocepheus* group *velatus* und *Oppiella nova*, gehören sowohl auf Ackerstandorten und Brachen als auch in Laub- und Nadelwäldern zu den am häufigsten gefangenen Arten (Datenbestand Edaphobase, siehe **Tab. 46**). Die Abfrage von Edaphobase mit Hilfe des Auswertetools Edaphoclass ergab, dass diese beiden

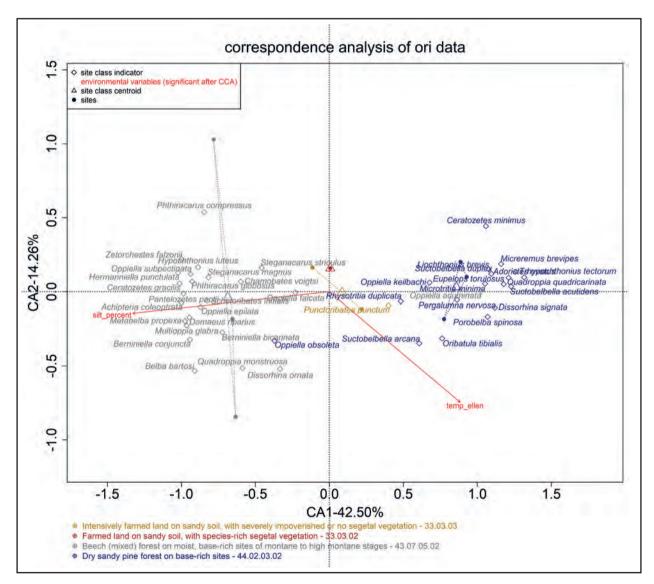


Abb. 50: Korrespondenzanalyse (CA) der Oribatidendaten der Biotoptypen trockener, basenreicher Sand-Kiefernwald (blau), Laubwald basenreicher Standorte (grau), intensiv bewirtschafteter Sandacker (gelb) und extensiv bewirtschafteter Sandacker (rot) sowie die mit der Kanonischer Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter; Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart aus der Indikatorartenanalyse; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 46: Stetigste Oribatidenarten der Biotoptypen 33. (Ackerland und Brachen), 43. (Laub(misch)wälder und –plantagen) und 44. (Nadel(misch)wälder und –plantagen) (Biotoptypen 1. Ordnung nach Riecken et al. 2003). Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 11.01.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps (Frequenz).

Ackerland und Brachen (Code: 33.) 2 Standorte	Frequenz
Tectocepheus velatus (Michael, 1880)	1,0
Punctoribates punctum (C. L. Koch, 1839)	1,0
Achipteria coleoptrata (Linné, 1758)	1,0
Oppiella nova (Oudemans, 1902)	0,5
Scheloribates laevigatus (C. L. Koch, 1835)	0,5
Oribatella quadricornuta (Michael, 1880)	0,5
Metabelba pulverosa Strenzke, 1953	0,5
Xenillus tegeocranus (Hermann, 1804)	0,5
Ceratozetes gracilis (Michael, 1884)	0,5
Tectocepheus minor Berlese, 1903	0,5
Laub(misch)wälder und -plantagen (Code: 43.) 112 Standorte	Frequenz
Oppiella nova (Oudemans, 1902)	0,8
Suctobelbella subcornigera (Forsslund, 1941)	0,8
Tectocepheus velatus (Michael, 1880)	0,7
Platynothrus peltifer (C. L. Koch, 1839)	0,7
Dissorhina ornata (Oudemans, 1900)	0,7
Oppiella subpectinata (Oudemans, 1900)	0,7
Achipteria coleoptrata (Linné, 1758)	0,7
Hypochthonius rufulus C. L. Koch, 1835	0,6
Suctobelbella sarekensis (Forsslund, 1941)	0,6
Nothrus silvestris Nicolet, 1855	0,6
Nadel(misch)wälder und -plantagen (Code: 44.) 44 Standorte	Frequenz
Tectocepheus velatus (Michael, 1880)	0,9
Oppiella nova (Oudemans, 1902)	0,7
Adoristes ovatus (C. L. Koch, 1839)	0,6
Platynothrus peltifer (C. L. Koch, 1839)	0,6
Carabodes labyrinthicus (Michael, 1879)	0,6
Suctobelbella subcornigera (Forsslund, 1941)	0,6
Nothrus silvestris Nicolet, 1855	0,6
Chamobates pusillus (Berlese, 1895)	0,6
Dissorhina ornata (Oudemans, 1900)	0,6
Hypochthonius rufulus C. L. Koch, 1835	0,6

Arten im Datenbestand von Edaphobase die einzigen sind, die zu den 10 häufigsten Arten aller drei in dieser Studie untersuchten Biotoptypen 1. Ordnung gehören (Ackerland und Brachen, Laub(misch)wälder und -plantagen, Nadel(misch)wälder und -plantagen, vgl. Riecken et al. 2003). Die Biotoptypen-Ebene 1. Ordnung umfasst viele verschiedene, weiter differenzierte Biotoptypen. Oribatidenarten, die innerhalb dieser übergeordneten

Biotoptypebene stetig vorkommen, besiedeln daher ein breites Spektrum verschiedener Habitate und zeigen keine enge Habitatbindung. Es existieren jedoch auch auf dieser übergeordneten Biotoptypen-Ebene Muster im Auftreten der Arten (z. B. generelle Offenland- oder Waldarten bzw. Arten, die Laub(misch)wald oder Nadel(misch) wald bevorzugen), die erst durch den Vergleich vieler Datensätze erkennbar werden.

6.4.1.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Sand-Kiefernwald

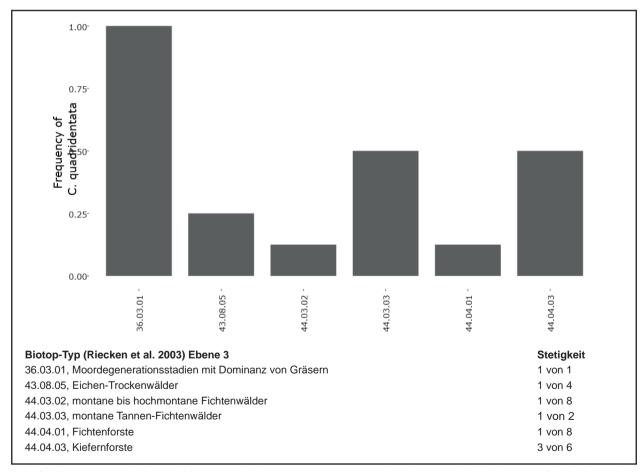
Die Lebensgemeinschaft der Oribatiden auf den untersuchten Kiefernstandorten ist positiv, d. h. durch das Auftreten vier verschiedener Artengruppen (Kennartengruppe und drei edaphische Gruppen), gekennzeichnet (siehe **Tab. 45**).

Die Vertreter der Kennartengruppe der Sand-Kiefernwälder, d. h. *Micreremus brevipes*, *Trhypochthonius tectorum*, *Dissorhina signata* und *Ceratoppia quadridentata*, sind innerhalb des gesamten Länderstudien-Datensatzes (vgl. Kap. 5, 7, 8) nahezu ausschließlich in diesem Biotoptyp vorzufinden. Die Kennart *Ceratoppia quadridentata* kommt auch in anderen Oribatiden-Untersuchungen schwerpunktmäßig in Nadelwäldern und Kiefernforsten vor (siehe **Abb. 51**).

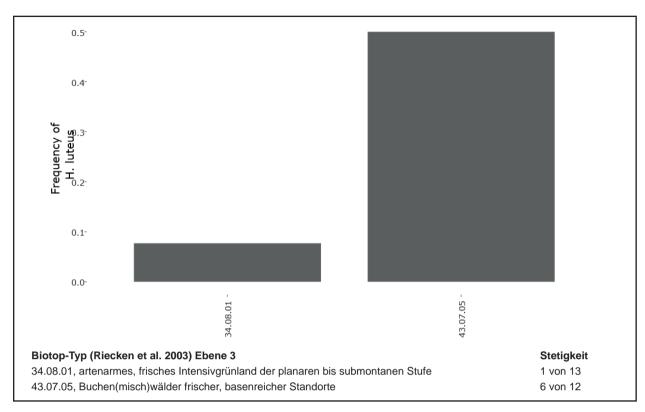
Bei der Abfrage der Datenbank Edaphobase ist jedoch zu berücksichtigen, dass die einzigen Oribatidendaten, die in trockenen Sand-Kiefernwäldern erhoben wurden, aus der vorliegenden Untersuchung stammen und somit keine Vergleichsdaten für diesen Biotoptyp vorliegen. Dies zeigt, dass die Datenlage zum Vorkommen und den Habitatpräferenzen der Hornmilben noch lückenhaft ist. Weitere quantitative, ökologische Studien zu dieser Tiergruppe sind daher empfehlenswert.

Die Art Porobelba spinosa trat fast ausschließlich in der (zeitweise austrocknenden) Streu der Sand-Kiefernwälder auf und grenzte diesen Biotoptyp von den anderen beiden ab. Nach Weigmann (2006) kommt diese xero- bis mesohygrophile Art in Waldstreu, Moosen und Flechten sowie in der organischen Auflage von Wiesen vor. Weigmann & Kratz (1981) beschreiben Hauptvorkommen dieser Art als mesophile Falllaubwälder, Tannenwälder und bodensaure Laubund Nadelwälder. Beim Vergleich mit den Daten aus der gesamten Edaphobase-Länderstudie (vgl. Kap. 5, 7, 8) fällt jedoch auf, dass die Art neben dem Vorkommen in den Sand-Kiefernwäldern der vorliegenden Studie innerhalb aller untersuchten Waldstandorte fast nur in den trockenen, basenarmen Eichenwäldern (NP Eifel) und der Streu der bodensauren Fichtenforste (NP Eifel) gefunden

wurde. Aus diesem Grund wurde die Art als Zeiger für die zeitweise austrocknende Streuschicht gewertet.


Die Arten der Säuregruppe (im Mittel < pH=4 / basenarm) um *Adoristes ovatus* werden auch in der Literatur als häufige Bewohner bodensaurer Wälder beschrieben (Weigmann & Kratz 1981, Weigmann 2006). Dies wird durch die Daten der gesamten Edaphobase-Länderstudie bestätigt, da diese Artengruppe innerhalb der Waldtypen ausschließlich in den basischen Laubwaldstandorten fehlt.

Obgleich auch die Vertreter der Gruppe der nährstoffarmen Wälder um Ceratozetes minimus in der Literatur als Arten bodensaurer Wälder aufgeführt werden (Weigmann & Kratz 1981, Weigmann 2006) wurden sie hier in diese Nährstoffgruppe einsortiert. In der gesamten Länderstudie wurden verschiedene, auch bodensaure Laub- und Nadelwald-Standorte untersucht. Diese Artengruppe trat jedoch nur in den Sand-Kiefernwäldern der vorliegenden Studie sowie in den trockenen, basenarmen Eichenwäldern im NP Eifel auf. Dies lässt darauf schließen, dass diese Arten schwerpunktmäßig nährstoffärmere Wälder bevorzugen.


Basenreicher Laubwald mittlerer Feuchte

Auch der basenreiche Laubwald ist positiv bzw. durch das Auftreten einer Kennartengruppe sowie zweier edaphischer Gruppen charakterisiert (siehe **Tab. 45**).

Das Vorkommen der Kennarten basischer Laubwälder um Belba bartosi trennt diesen von den anderen untersuchten Biotoptypen standortökologisch ab. Eine Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017, unter Ausschluss der untersuchten Flächen dieser Studie, Abfrage vom 22.03.2018) ergab, dass Hypochthonius luteus schwerpunktmäßig in basenreichen Laub(Buchen)wäldern vorkommt (siehe Abb. 52) und somit auch studienübergreifend als charakteristische Art basenreicher Laubwälder zu werten ist. Zudem traten einige Arten stetig und teilweise hoch abundant auf, von denen in Edaphobase sehr wenige Datensätze existieren (Metabelba propexa, Multioppia glabra, Oppiella epilata, Zetorchestes falzonii). Zum einen sind die beiden Arten M. propexa und O. epilata noch nicht lange bekannt (O. epilata) oder erreichen im Osten Deutschlands ihre westliche Verbreitungsgrenze (M.

Abb. 51: Ceratoppia quadridentata: Biotoptypen, in denen C. quadridentata nachgewiesen wurde (8 Nachweise auf 94 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der untersuchten Flächen dieser Studie. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 20.03.2018).

Abb. 52: *Hypochthonius luteus*: Biotoptypen, in denen *H. luteus* nachgewiesen wurde (7 Nachweise auf 94 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der untersuchten Flächen dieser Studie. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 22.03.2018).

Tab. 47: Arten- und Individuenzahlen der Collembolen auf den Untersuchungsflächen in Sachsen.

			Individuenzah	len		Artenza	hlen	
	SN11	Frühjahr	741	1123	,	17	23	'
	SINII	Herbst	382	1123		16	23	
Kiefer	SN12	Frühjahr	1094	1396	4461	20	25	39
Kleier	SN12	Herbst	302	1390	4401	15	23	39
	CNI12	Frühjahr	915	1942		20	27	
	SN13	Herbst	1027	1942		21	27	
	SN22	Frühjahr	770	1121		17	25	
	SIN22	Herbst	351	1121		18	23	
Laubwald	SN23	Frühjahr	1391	2109	6218	22	30	50
Laubwalu	31123	Herbst	718	2109	0218	22	30	30
	SN24	Frühjahr	1971	2988		18	31	
	511/24	Herbst	1017	2900		25	31	
	SN31	Frühjahr	26	113		6	11	
	31131	Herbst	87	113		8	11	
Sandacker	SN32	Frühjahr	1677	2199	3019	16	25	33
Sanuacker	51132	Herbst	522	2199	3019	22	23	33
	Frühjahr SN24	Frühjahr	211	707		14	19	
\$	SN34	Herbst	496	/0/		14	19	
Sachsen 2014			Individuenzah	l gesamt:	13698	Artenzahl gesamt: 68		

propexa, vgl. Kap. 6.4.1.2), was der Grund für die niedrige Zahl bekannter Funde in Edaphobase sein könnte. Zum anderen existieren in Edaphobase, neben der vorliegenden Studie, lediglich Oribatiden-Funddaten eines weiteren Buchenwalds basenreicher Standorte der montanen bis hochmontanen Stufe (Biotoptypen-Ebene 4, 43.07.05.02, Riecken et al. 2003, Abfrage Edaphobase am 22.03.2018). Es könnte daher sein, dass die selten gefundenen Arten eine enge Habitatbindung aufweisen und aufgrund der nahezu fehlenden Beprobung ihres Biotoptyps bisher kaum nachgewiesen wurden.

Die edaphische Gruppe frischer wechselfeuchter Standorte um *Achipteria coleoptrata* zeigt die Feuchtebedingungen der basenreichen Laubwälder an. Auch in der Literatur sind frische bis feuchte, zuweilen auch nasse Standortbedingungen als Habitatpräferenz dieser Arten angegeben (Weigmann & Kratz 1981, Weigmann 2006).

Die Grundarten der Laubwälder um Berniniella bicarinata, die in dieser Studie die basischen Laubwälder von den beiden anderen Biotoptypen abgrenzen, wurden in der gesamten Edaphobase-Länderstudie (vgl. Kap. 5, 7, 8) ebenfalls in den beiden bodensauren Laubwaldtypen (Buchenwald, trockener Eichenwald) im NP Eifel gefangen. Daher wurden sie in dieser Artengruppe zusammengefasst und nicht als Kennarten basischer Laubwälder gewertet.

Sandacker

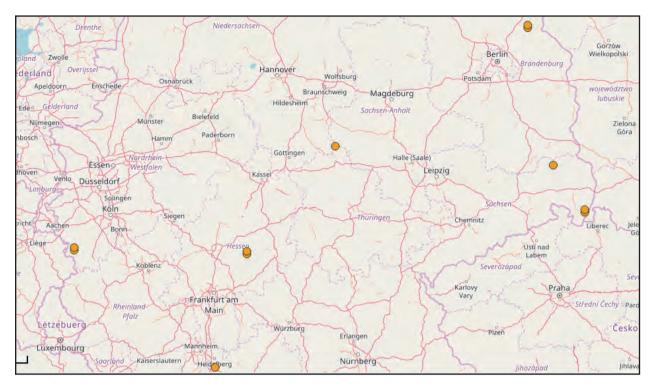
Die Sandäcker weisen keine Artengruppe auf, die diesen Biotoptyp charakterisiert und von den anderen Biotoptypen standortökologisch unterscheidet (siehe **Tab. 45**). Die ISA ergab jedoch eine Art, *Punctoribates* punctum, die als statistisch signifikante Indikatorart der intensiv bewirtschafteten Sandäcker (EB SN31, EB SN32) errechnet wurde. Da diese jedoch in der gesamten Edaphobase-Länderstudie schwerpunktmäßig Borstgrasrasen, Kalkmagerrasen und Goldhaferwiesen sowie vereinzelt auf Löss- und Kalkäckern nachgewiesen wurde, wurde sie in der sortierten Kreuztabelle nicht als Kennart gewertet. Zudem wird sie auch in der Literatur als eurytope Art, die in verschiedenen Wiesen-, Weidenund Waldtypen auftritt, geführt (Weigmann & Kratz 1981, Weigmann 2006, Toschki 2008).

Das Fehlen charakteristischer Arten in Verbindung mit der generellen Individuen- und Artenarmut dieses Biotoptyps lässt den Rückschluss zu, dass die Sandäcker für die Oribatiden einen Lebensraum darstellen, der nur von besonders anspruchslosen, weit verbreiteten Arten (beispielsweise *Oppiella falcata, Oppiella nova, Tectocepheus* group *velatus*) besiedelt werden kann.

6.4.2 Collembola 6.4.2.1 Individuen- und Artenzahlen

Insgesamt wurden auf allen untersuchten Flächen 13.698 Individuen aus 68 Arten nachgewiesen (vgl. **Tab. 47**, **Tab. Anhang 2**).

Der individuenreichste Biotoptyp war der basenreiche Laubmischwald mittlerer Feuchte mit insgesamt 6.218 Individuen, gefolgt von den drei Sand-Kiefernwald-Standorten (insgesamt 4.461 Individuen) und den drei Sandäckern (insgesamt 3.019 Individuen). Innerhalb des Biotoptyps Sandacker unterschieden sich die Individuenzahlen deutlich: Auf der Fläche EB_SN31 traten nur 113 Tiere auf, wohingegen auf der Fläche EB_SN32 2.199 Tiere gezählt wurden, was mit den Individuendichten in den untersuchten Laubmischwaldund Kiefernstandorten vergleichbar war. Auffällig ist, dass speziell im Laubmischwald auf allen Flächen trotz des herbstlichen Laubfalls die Individuenzahlen im Frühjahr höher waren als im Herbst.


Ähnlich wie bei den Oribatiden nahmen die Artenzahlen der Collembolen in der Reihe Laubwald (50) > Kiefernwald (38) > Sandacker (33) ab. Parisotoma notabilis war in dem Biotoptyp Sand-Kiefernwald die häufigste Art (2.026 Individuen), wohingegen im Laubmischwald *Folsomia quadrioculata* die höchsten Individuenzahlen (1.667 Individuen) erreichte, gefolgt von der morphologisch sehr ähnlichen Art *Folsomia manolachei* (1.432 Individuen) (siehe **Tab. Anhang 25-27**). *Isotomurus palustris* war die häufigste Art im Biotoptyp Sandacker mit 717 Individuen, wobei sie dort nur auf der Fläche EB SN32 nachgewiesen wurde.

6.4.2.2 Faunistische Anmerkungen und kritische Arten

Arrhopalites pseudoappendices Rusek, 1967

Die hemiedaphische Art Arrhopalites pseudoappendices wurde bisher relativ selten in Deutschland nachgewiesen. Die bisherigen Fundorte (siehe **Abb. 53**) bilden einen Südwest-Nordost-Gradienten von Südwestdeutschland (Raum Heidelberg) bis in die Region nordöstlich von Berlin. Außerhalb Deutschlands gibt es z. B. in den österreichischen Alpen (Bretfeld 1975) und in Finnland (Vilkamaa 1989) Nachweise dieser Art.

In der vorliegenden Untersuchung konnte Arrhopalites pseudoappendices ausschließlich in den Laubwäldern nachgewiesen und auch als Kennart für basenreiche Laub(misch)wälder identifiziert werden (siehe Kapitel 6.4.2.3).

Abb. 53: Fundorte von *Arrhopalites pseudoappendices* in Deutschland. (Abfrage der Datenbank Edaphobase vom 17.04.2018, Kartendarstellung: Edaphobase).

6.4.2.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Biotoptypen in Sachsen

Kennarten

Für alle drei untersuchten Biotoptypen konnten Kennartengruppen bestimmt werden (siehe **Tab. 48**).

Als charakteristische Kennarten für die trockenen Kiefernwälder wurden *Choreutinula inermis* und *Dicyrtoma fusca* identifiziert. Fjellberg (1998) gibt als Verbreitungsschwerpunkt für *Choreutinula inermis* Nadelwälder an, allerdings konnte diese Art auch im Offenland nachgewiesen werden, z. B. in kalkreichen Grasländern des Schweizer Jura (Salamon et al. 2004). Ähnlich wie in der vorliegenden Freilandstudie trat *Dicyrtoma fusca* im Mittelgebirgsraum des Sollings in Nadelwaldbeständen auf (in diesem Fall Fichtenreinbestände), während diese Art in Buchenreinbeständen nicht gefunden wurde (Salamon 2001). Auch in der vorliegenden Untersuchung konnte *Dicyrtoma fusca* in den von Buchen dominierten Laub(misch)wäldern nicht nachgewiesen werden.

Kennarten für den basenreichen Laub(misch)wald sind laut vorliegender Erhebung Folsomia manolachei, Arrhopalites pseudoappendices und Heteromurus nitidus. Entsprechend dieser Einstufung konnte Heteromurus nitidus auch von Wolters (1985) in einem Kalkbuchenwald (Göttinger Wald) nachgewiesen

werden, während diese Art z. B. im sauren Moderhumus-Buchenwald des Sollings nicht gefunden wurde (Albers 1996, Salamon 2001). Folsomia manolachei wurde in der vorliegenden Untersuchung ähnlich wie in vielen anderen Freilandstudien gemeinsam mit der sehr ähnlichen Art Folsomia quadrioculata nachgewiesen, z. T. sind Verwechslungen dieser beiden Arten nicht auszuschließen (Fjellberg 1998). Dies erschwert natürlich die Interpretation früherer Studien – generell scheint F. manolachei aber trockenere Habitate als F. quadrioculata zu bevorzugen (Fjellberg 1998).

Als Kennarten für den Sandacker wurden Entomobrya schoetti, Lathriopyga monoculata und Lepidocyrtus paradoxus identifiziert. Lepidocyrtus paradoxus wurde auch in relativ trockenen Ackerflächen (Rapsanbau) in Österreich gefunden (Bodentyp: Chernozem, pannonisches/kontinentales Klima) (Querner et al. 2013).

Auch *Entomobrya schoetti* scheint relativ sonnige, trockene Standorte zu bevorzugen (Gisin 1960) und wurde z. B. auch in Luzernefeldern in Spanien nachgewiesen (Jordana 2012).

Bezogen auf die Nährstoffgruppen können Schoettella ununguiculata als Grundart für nährstoffarme Wälder und Cryptopygus thermophilus als Grundart für Intensivgrünland und Acker eingestuft werden. Cryptopygus thermophilus wurde z.B. auch in Ostösterreich in Rapsfeldern (Querner et al. 2013) und Ackerbrachen (Salamon et al. 2011) erfasst.

Tab. 48: Sortierte Kreuztabelle der Springschwänze (Collembola); Angaben in Individuen/m²; Punkte: keine Tiere gefunden; durchgezogene Rahmen: kennzeichnende Artengruppen; gepunktete Rahmen: schwach kennzeichnende Artengruppe.

		1: Seidewi			4: Buchber	~		7: Kreba-l	
		2: Weißkol3: Hoyersv			5: Spitzber6: Schönbru	_		8: Mücker 9: Klein K	
		44.02.03.02			ald 43.07.0	_		Acker 33.0	
Flächenkürzel Edaphobase	EB_SN1	1 EB_SN12	2 EB_SN1	3 EB_SN2	2 EB_SN2	3 EB_SN24	EB_SN3	31 EB_SN3	32 EB_SN
lfd. Nr.:	1	2	3	4	5	6	7	8	9
ennartengruppen									
Kennarten Sand-Kiefernwälder									
Choreutinula inermis		435	264	7.					•
Dicyrtoma fusca		62	280	.					
Kennarten basenreiche Laub(m	isch)wale	d		_					
Folsomia manolachei			31	5082	10491	6683].	1274	
Arrhopalites pseudoappendices	16			31	155	124			
Heteromurus nitidus				31	78].		
Kennarten Sand-Acker									
Entomobrya schoetti	93						16	•	171
Lathriopyga monoculata		31				78		16	93
Lepidocyrtus paradoxus		•			•		.	47	16
hrstoffgruppe									
nährstoffarme Wälder									
Schoettella ununguiculata	249	47	404].				•	
Intensivgrünland und Acker		,		_					
Cryptopygus thermophilus			16		16		295	4228	
gleitarten									
Begleiter mit hoher Stetigkeit									
Lepidocyrtus lignorum	4119	5207	4103	1414	2176	3621	16	901	109
Parisotoma notabilis	7973	12434	11082	1943	2798	12527	202	4647	249
Sminthurinus aureus	16	124	16	62	47		264	497	16
Isotomiella minor	637	1026	2813	1166	1477	4554	78	544	
sonstige Begleiter									
Lepidocyrtus juvenil	16	171	311	249	171	1399		31	
Mesaphorura macrochaeta	16	31	140	140	16	16	311		
Mesaphorura juvenil	93	78	93	62	16	78	78		
Sphaeridia pumilis	699	420	1057	171	16	389		202	
Brachystomella parvula	47	31	31	47		47		5393	3295
Folsomia quadrioculata		16	730	4569	11937	9403		16	
Friesea mirabilis	357	233	1368	47		109	93		
Protaphorura armata	31		1912	62	497	1026		482	
Pseudosinella alba	16	16	31	979	730	948			
Neanura muscorum	47	62	155	47	31	62			
Protaphorura juvenil			155	78	575	2254	16	202	
Megalothorax minimus	31	93	78	311	249		16		
Entomobryidae juvenil	513	16	93	264	93	47			
Neanura juvenil	109	16	31		124	31		16	
Sminthuridae juvenil		16		93		16	16	16	

Tab. 48 (Fortsetzung).

	Ifd. Nr. 1: Seidewinkel Ifd. Nr. 2: Weißkollm Ifd. Nr. 3: Hoyerswerda Kiefer 44.02.03.02 EB_SN11 EB_SN12 EB_SN13			lfd. Nr lfd. Nr. Laubv	lfd. Nr. 4: Buchberg lfd. Nr. 5: Spitzberg lfd. Nr. 6: Schönbrunner Berg Laubwald 43.07.05.02			lfd. Nr. 7: Kreba-Neudorf lfd. Nr. 8: Mückenhain lfd. Nr. 9: Klein Krauscha Sand-Acker 33.03.02/03		
Flächenkürzel Edaphobase lfd. Nr.:	EB_SN1	11 EB_SN: 2	12 EB_SN1 3	3 EB_SN:	22 EB_SN2 5	3 EB_SN24 6	EB_SN: 7	8 8 8 1 EB_SN3	2 EB_SN3 9	
Entomobrya juvenil	326	373		171	16		16			
Lepidocyrtus lanuginosus	342		16		264	62				
Desoria violacea		124	78		47			155		
Orchesella flavescens	62	16	31	31						
Tomoceridae juvenil	78	31	31		373					
Entomobrya lanuginosa	16		16	47	16					
Isotoma juvenil	31			16	16				16	
Isotomurus palustris		16			78			11144	16	
Isotomurus juvenil	16			16	16			109		
Lathriopyga juvenil	31		62		16				155	
Deharvengiurus denisi			16		2347	389		62		
Cryptopygus thermophilus			16		16		295	4228		
Isotoma viridis group	62			93	31			2860		
Pogonognathellus flavescens	124	31			62					
Ceratophysella denticulata	171		4352	109						
Ceratophysella juvenil	31		78		16					
Paratullbergia callipygos				31	140	31				
Isotomidae juvenil		78		47				233		
Allacma fusca				31		93			16	
Arrhopalites caecus				16	62				16	
Folsomia juvenil				47	47	47				
Willemia anophthalma	140	171				16				
Entomobrya multifasciata		16				31	•		47	
Entomobrya quinquelineata		16		16					78	
Lepidocyrtus cyaneus		•	16	171		•		264		
Lepidocyrtus violaceus		•				16	16	140	•	
Lipothrix lubbocki				78		357			•	
Pogonognathellus juvenil		31	16							
Supraphorura furcifera					47	31				
Neanuridae juvenil	47		93							
Orchesella juvenil	47		16							
Protaphorura pseudovanderdrifti			155			2285				
Hypogastrura assimilis					16			16		
Folsomia candida								202	155	
Bourletiella juvenil							155		31	
Hypogastrura juvenil							16		124	
Sminthurides juvenil							16	544		
Protaphorura quadriocellata					•	171				

	lfd. Nr. lfd. Nr. Kiefer	1: Seidev 2: Weißko 3: Hoyers 44.02.03.0	ollm swerda 02	lfd. Nr. 5: Spitzberg lfd. Nr. 8: Milfd. Nr. 6: Schönbrunner Berg lfd. Nr. 9: Kl			. 8: Mücke . 9: Klein I Acker 33. (Llein Krauscha r 33.03.02/03	
Flächenkürzel Edaphobase									
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Entomobrya nivalis			•	•	•	16	•		
Arrhopalites cochlearifer				•	47	•	•		
Arrhopalites pygmaeus		•		•	16			•	•
Hypogastruridae juvenil		•		•	•			16	•
Pogonognathellus juvenil		31		•	•			•	•
Pseudachorutes juvenil						47			
Brachystomella juvenil						31			
Deuterosminthurus bicinctus						16			
Deuterosminthurus pallipes	•	•		•	31		•	•	
Entomobrya corticalis			16						
Entomobrya marginata	31								
Hypogastrura burkilli									528
Micranurida granulata						31			
Micranurida pygmaea		16							
Onychiurus jubilarius						47			
Orchesella bifasciata	497								
Orchesella cincta									2362
Proisotoma minuta						16			
Protaphorura humata					16				
Protaphorura subuliginata					109				
Pseudachorutella asigillata						16			
Tetracanthella wahlgreni		187							
Willemia juvenil	78								
Isotomodes productus			•						560
Metaphorura affinis									31
Isotomurus graminis								124	
Sminthurus viridis								47	
Stenaphorura quadrispina								31	
Stenaphorura denisi								140	
Bourletiella viridescens							155		
Pseudosinella petterseni									109
Arrhopalites pseudoappendices									1321
Choreutinula inermis								47	
Dicyrtoma fusca								16	
Entomobrya nivalis									16
Folsomia dovrensis									16
Hypogastrura sahlbergi					•			16	
Protaphorura eichhorni									886

Innerhalb der Korrespondenzanalyse (CA) trennten sich die drei Biotoptypen (Sand-Kiefernwald, Laub(misch) Sandacker) anhand der zugrundeliegenden Collembolendaten deutlich voneinander (siehe **Abb. 54**). Signifikante Umweltvariablen (p < 0.05), die mit Hilfe einer vorangegangenen Kanonischen Korrespondenzanalyse (CCA) identifiziert und in das Ordinationsdiagramm integriert wurden, waren der prozentuale Sand- (sand percent) und Schluffanteil (silt percent). Der prozentuale Sandanteil korrelierte dabei positiv mit der Artenzusammensetzung der Sand-Kiefernwälder, wohingegen der prozentuale Schluffanteil mit der Artenzusammensetzung der Laub(misch)wälder korreliert war.

Im Rahmen der Indikatorartenanalyse (ISA) konnten die Collembolenarten Schoettella ununguiculata und Friesea mirabilis als Indikatorarten für Sand-Kiefernwälder identifiziert werden (siehe **Tab. 49**), was sich auch in dem Ordinationsdiagramm der CA widerspiegelt (**Abb. 54**). Beide Arten korrelierten somit gleichzeitig positiv mit einem hohen prozentualen Sandanteil, wie er entsprechend in den Sand-Kiefernwäldern vorliegt. Als "strenge" Kennart für Sand-Kiefernwälder konnte Schoettella ununguiculata zwar nicht identifiziert werden, da sie vereinzelt z. B. auch in Borstgrasrasen in Sachsen-Anhalt nachgewiesen wurde (Kap. 8), trotzdem tritt sie innerhalb des Untersuchungsgebiets in Sachsen ausschließlich in den Sand-Kiefernwäldern auf und kann als Grundart für nährstoffarme Wälder charakterisiert werden.

Indikatorarten für die basenreichen Laubwälder sind Pseudosinella alba, Folsomia quadrioculata, Folsomia manolachei, Arrhopalites pseudoappendices und Paratullbergia callipygos (Tab. 49). Alle fünf Arten korrelierten somit gleichzeitig positiv mit einem hohen prozentualen Schluffanteil. Übereinstimmend zu diesen Ergebnissen konnten Folsomia manolachei und Arrhopalites pseudoappendices als typische Kennarten für basenreiche Laubwälder identifiziert werden (siehe Abb. 54).

6.4.2.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Ubiquistische Arten wie *Paristoma notabilis*, *Isotomiella minor* und *Lepidocyrtus lignorum* (Salamon et al. 2008, Salamon & Alphei 2009) waren wichtige Bestandteile der Collembolen-Gemeinschaften aller drei untersuchten Biotoptypen und traten fast durchgehend auf allen 9 Untersuchungsflächen auf (siehe **Tab. 48**). Trotzdem gab es erwartungsgemäß deutliche Unterschiede in der Artengemeinschaft der Collembolen zwischen dem untersuchten Offenland-Biotoptyp (Sandacker) und den

beiden Wald-Biotoptypen (Kiefern- und Laubwald), da die Lebensbedingungen in Agrarökosystemen wie dem Sandacker in stärkerem Ausmaß von anthropogenen Einwirkungen geprägt sind (z. B. Ernte und Bodenbearbeitung) als in Waldökosystemen. So konnten typische Offenlandarten wie z. B. Metaphorura affinis und Isotomodes productus (Fjellberg 1998, 2007, Salamon et al. 2011, Querner et al. 2013) zwar auf den Sandacker-Flächen, nicht aber in den untersuchten Wäldern nachgewiesen werden, während Arten, die ihren Verbreitungsschwerpunkt in Wäldern haben, wie Pogonognathellus flavescens und Orchesella flavescens (siehe z. B. Wolters 1985, Salamon 2001) auf den Sandacker-Flächen fehlten.

Ähnlich wie in der vorliegenden Untersuchung wurden auch in der Freilandstudie von Eisenbeis & Feldmann (1991) die Collembolengemeinschaften von Kiefern- und Laubwäldern (Buchenwäldern) miteinander verglichen. Im Gegensatz zur vorliegenden Untersuchung konnten Eisenbeis & Feldmann (1991) höhere Dichten der Collembolen in den Kiefernwäldern als in den Buchenwäldern nachweisen - auf Artniveau wurden die Collembolen in dieser Studie jedoch nicht determiniert.

Für eine ökologische Charakterisierung von Bodenlebensgemeinschaften ist aber eine Bestimmung auf Artniveau nötig - im weiteren Fokus der Beschreibung der drei untersuchten Biotoptypen stehen daher nun die identifizierten Kenn- und Indikatorarten.

Sand-Kiefernwald

Choreutinula inermis und Dicyrtoma fusca konnten als Kennarten und Schoettella ununguiculata und Friesea mirabilis als Indikatorarten für Sand-Kiefernwälder identifiziert werden. Speziell Dicyrtoma fusca scheint Nadelwälder gegenüber Laubwäldern zu präferieren (siehe Albers 1996, Salamon 2001). Friesea mirabilis ist eine vorwiegend räuberische Collembolenart, die sich z. B. von Rotatorien, Tardigraden, Proturen oder Eiern anderer Collembolen ernährt (Petersen 1971, Usher & Booth 1984, Palacios-Vargas & Vidal-Acosta 1994) - hier könnte das potentielle Beutespektrum in Kiefernwäldern wesentlich günstiger sein als z. B. in Sandacker-Flächen oder Laub(misch)wäldern.

Denkbar ist auch, dass die Bioturbation durch Regenwürmer in den trockenen und bodensauren Sand-Kiefernwäldern sehr gering ist. Eventuell profitieren speziell die genannten hemiedaphischen Collembolenarten *Choreutinula inermis*, *Schoettella ununguiculata* und *Friesea mirabilis* von dem geringen Störungsregime (siehe auch Maraun et al. 2003).

Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 11.09.2019 zeigt, dass Choreutinula inermis bereits in Kiefernforsten (Code:

Tab. 49: Collembolenarten der Biotoptypen Sand-Kiefernwald, basenreicher Laubwald mittlerer Feuchte und Sandacker, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency				
44.02.03.02	Sand-Kiefernwald	Sand-Kiefernwald						
Friesea mirabilis	0,85	0,02	0,85	1,00				
Schoettella ununguiculata	1,00	0,02	1,00	1,00				
43.07.05.02	basenreicher Laub	wald mittlerer feuchte	2					
Pseudosinella alba	0,98	0,00	0,98	1,00				
Folsomia quadrioculata	0,95	0,01	0,95	1,00				
Arrhopalites pseudoappendices	0,95	0,01	0,95	1,00				
Folsomia manolachei	0,91	0,03	0,91	1,00				
Paratullbergia callipygos	1,00	0,03	1,00	1,00				

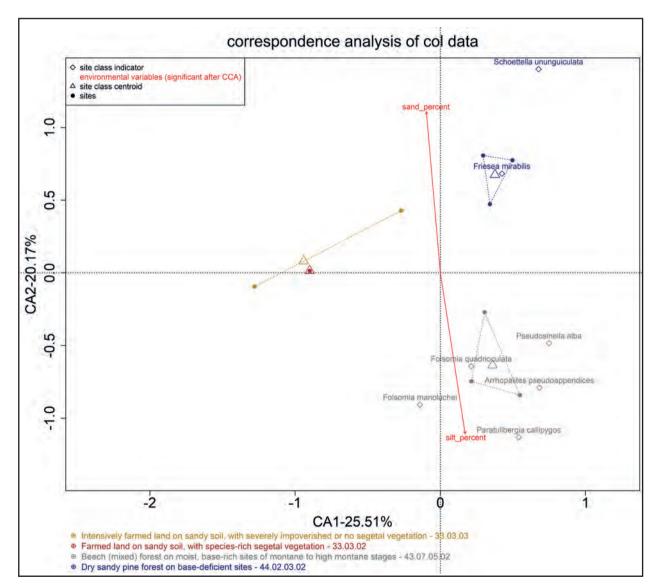
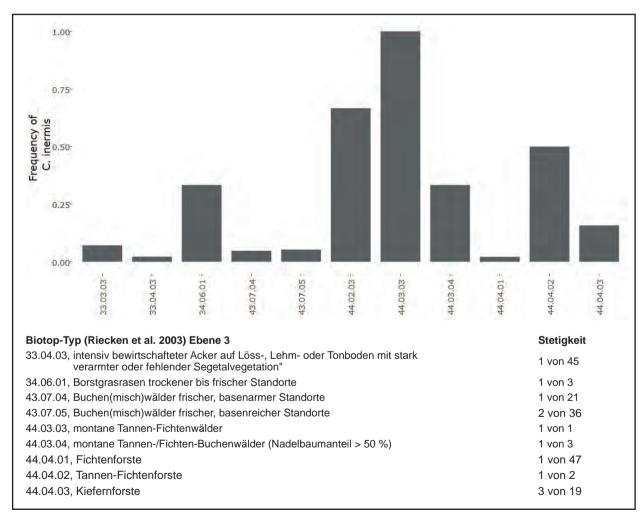


Abb. 54: Korrespondenzanalyse (CA) der Collembolendaten der Biotoptypen Sand-Kiefernwald (blau), basenreicher Laubwald mittlerer Feuchte (grau) und Sandacker (braun/rot) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

44.04.03) nachgewiesen wurde und offensichtlich seinen Verbreitungsschwerpunkt in Nadelwäldern hat (siehe **Abb. 55**).


Basenreicher Laubwald mittlerer Feuchte

Als Kenn-und Indikatorarten für basenreiche Laubwälder mittlerer Feuchte konnten Folsomia manolachei und Arrhopalites pseudoappendices bestimmt werden. Weitere Indikatorarten für diesen Biotoptyp waren Pseudosinella alba, Paratullbergia callipygos und Folsomia quadrioculata. Eine zusätzliche Kennart war Heteromurus nitidus.

Speziell Heteromurus nitidus scheint verstärkt in basenreichen Laubwäldern, wie z.B. dem Göttinger Kalkbuchenwald, aufzutreten (Wolters 1985, Peter 1997) – in den bodensauren Moderhumuswäldern des Sollings fehlt diese Art dagegen (Salamon 2001). Im Solling konnten allerdings Folsomia quadrioculata, Pseudosinella alba und Paratullbergia callipygos

auch in bodensauren Buchenbeständen nachgewiesen werden (Salamon 2001), was darauf hindeutet, dass diese Arten ein relativ breites Spektrum des Boden-pH-Werts tolerieren. Eventuell ist speziell die Bodenfeuchte für die hygrophile Art *Folsomia quadrioculata* (Kaczmarek 1975, Doppelreiter 1979) eine wichtige Steuergröße. Diese Art erreicht sowohl in den Laubwäldern mittlerer Feuchte in Sachsen als auch in den von subozeanischmontanem Klima geprägten Buchenwäldern des Sollings hohe Dichten. Wie bereits in Kapitel 6.4.2.2 erwähnt, bevorzugt *Folsomia manolachei* generell trockenere Habitate als *F. quadrioculata* (Fjellberg 1998), die hier untersuchten Laubwälder scheinen aber beiden Arten günstige Lebensbedingungen zu bieten.

Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 10.04.2018 zeigt, dass *Heteromurus nitidus* einen wichtigen Verbreitungsschwerpunkt in basenreichen Laubwäldern hat (z. B. Eschen- und Eschen-Bergahornwald feuchter

Abb. 55: *Choreutinula inermis*: Biotoptypen in denen *C. inermis* nachgewiesen wurde. Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 11.09.2019).

Standorte, Code: 43.07.01 oder Buchen(misch)wälder und Lepidocyrtus paradoxus handelt es sich um frischer, basenreicher Böden, Code: 43.07.05), aber z. B. auch in basenreichen Ackerstandorten nachgewiesen wurde (siehe Abb. 56).

Sandacker

Für die Sandacker-Standorte konnten Entomobrya schoetti, Lathriopyga monoculata und Lepidocyrtus Kennarten als bestimmt werden, Indikatorarten wurden für diesen Biotoptyp dagegen

wärmeliebende Arten, die relativ trockene Lebensräume besiedeln können, wie z.B. Ackerbrachen pannonischen Klimagebiet (Lepidocyrtus paradoxus, siehe Salamon et al. 2011) oder Luzernefelder in Spanien (Entomobrya schoetti, siehe Jordana 2012). Entomobrya schoetti wurde z. B. auch in besonnten Mauerritzen im pannonischen Klimagebiet nachgewiesen (Gisin 1960). Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 10.04.2018 nicht ermittelt. Speziell bei Entomobrya schoetti ergab, dass Lepidocyrtus paradoxus auch früheren

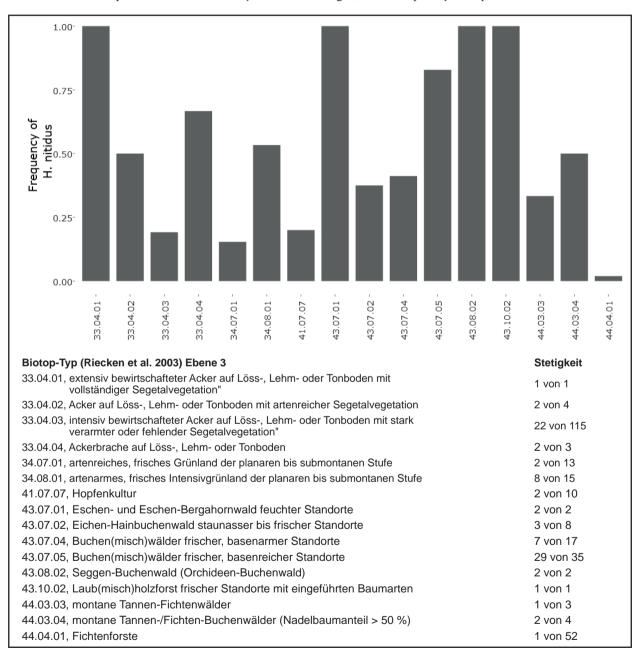


Abb. 56: Heteromurus nitidus: Biotoptypen in denen H. nitidus nachgewiesen wurde. Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 10.04.2018).

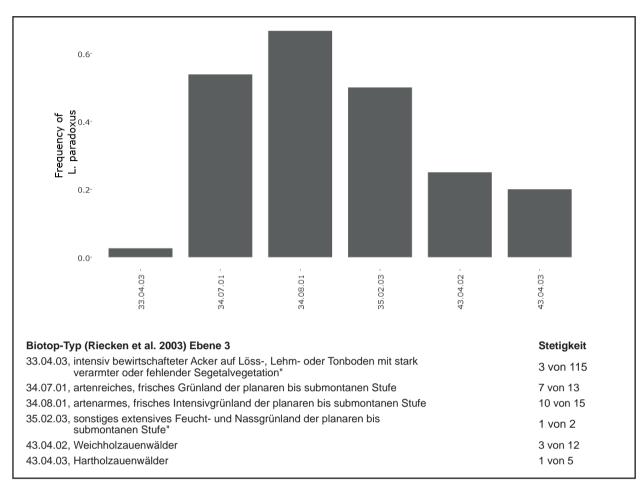


Abb. 57: Lepidocyrtus paradoxus: Biotoptypen in denen L. paradoxus nachgewiesen wurde. Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 10.04.2018).

wurde, wie z.B. in Äckern auf Löss/Lehmböden (Code: 33.04.03) (siehe Abb. 57).

Diplopoda 6.4.3 6.4.3.1 Individuen- und Artenzahlen

Insgesamt wurden in der Länderstudie in Sachsen 176 Diplopoden mit Hilfe der Bodenfallen erfasst (vgl. Tab. Anhang 28). Davon wurden 163 Individuen bis zur Art determiniert (Tab. 50, Tab. Anhang 3). Diese verteilen sich auf 12 Arten aus sechs Familien. Dabei ist die Familie der Schnurfüßer (Julidae) mit 6 Arten und 113 Individuen am zahlreichsten vertreten. Bei den nicht auf Artniveau identifizieren Tieren handelt es sich um Weibchen der Familie Julidae, für deren Bestimmung bisher kein Schlüssel vorliegt (Hauser & Voigtländer 2009).

Der Großteil der streuzersetzenden Doppelfüßer konnte in den mesophilen Laubwäldern mit ihrem günstigen Wasserhaushalt und diversem Nahrungsangebot erfasst

Untersuchungen in Agrarökosystemen nachgewiesen werden. Die meisten Arten (8) und Individuen (88) beherbergte hierbei der Standort am Spitzberg bei Deutsch-Paulsdorf (EB SN23). Dementgegen konnten sowohl auf den naturnahen Kiefernstandorten über Sandboden als auch auf den Sandäckern nur sehr wenige Doppelfüßer-Arten und Individuen nachgewiesen werden. An zwei der neun Standorte (EB SN11, EB SN31) konnte während der gesamten Untersuchung kein einziger Doppelfüßer gefangen werden.

> Mit Hilfe des Bodenkernstechers wurde insgesamt nur ein bis auf Artniveau identifizierbares Taxon (Enantiulus nanus) an einem Standort (EB SN22) erfasst, welches hier allerdings auch in den Bodenfallen zahlreich vertreten war.

6.4.3.2 Beschreibung der ermittelten Artengruppen in den drei untersuchten **Biotoptypen**

Die geordnete Kreuztabelle (Tab. 51) wurde für die Diplopoden nur mit den für diese Tiergruppe als

relevant angesehen Bodenfallenfängen erstellt. Wie beim NP Eifel basiert die Sortierung der Kreuztabelle der Diplopoden auch hier ausschließlich auf den Daten der Länderstudie in Sachsen (vgl. Anmerkungen in Kap. 5.4.3.3). Aufgrund relativ weniger Funde sowohl auf Art- als auch auf Individuenniveau konnte sowohl den Sand-Kiefernwäldern als auch den Sandäckern keine Kennartengruppe zugewiesen werden. Teilweise wurde an den Standorten kein einziger Doppelfüßer Eine Gruppe nachgewiesen. um Megaphyllum projectum ist erkennbar, die eine deutliche Bindung an die Laubwaldstandorte aufweist und daher als Kennartengruppe eingestuft wurde. Ansonsten unterscheiden sich die Untersuchungsflächen innerhalb dieses Biotoptyps deutlich (Abb. 58).

Laut Indikatorartenanalyse erreichen 3 Arten einen Indikatorwert von 0,8 und können somit als Indikatorarten bzw. Kennarten für einen Biotoptypen angesprochen werden (**Tab. 52**). Dies sind allesamt typische Arten der basischen Laubmischwälder, die auch innerhalb der Kreuztabelle diesem Biotoptyp zugeordnet wurden. Im Gegensatz zur Kreuztabelle wurde anhand der statistischen Analyse *Enantiulus nanus* nicht als Kennart detektiert, da die Art am Standort Schönbrunner Berg, EB SN24, nicht nachgewiesen

werden konnte. Die Art gilt als wenig laufaktiv und wird daher nur gefangen, wenn sie in der Nähe der Fallen in hohen Abundanzen vorkommt (Voigtländer 1987). Bei geringer Populationsdichte ist es somit möglich, dass die Art mit keiner der beiden Methoden nachgewiesen werden kann. Hauser & Voigtländer (2009) führen sie als typische Art der laubbaumbestockten Bereiche der Oberlausitzer Basaltkuppen.

Aufgrundderwenigen Fundeinden Sand-Kiefernwäldern und den Sandäckern sind diese Biotoptypen innerhalb der CA wenig ausdifferenziert (Abb. 58). Bezüglich des basenreichen Laub(misch) Waldes ist eine deutliche Varianz innerhalb der Artengemeinschaften der einzelnen Standorte zu erkennen. Standort EB_SN23, Spitzberg bei Deutsch-Paulsdorf bspw. wird dominiert von den Arten Ommatoiulus sabulosus und Strongylosoma stigmatosum, die in den anderen beiden Standorten nicht gefunden wurden. Enantiulus nanus hingegen dominiert am Standort EB_SN22 und Leptoiulus proximus den Standort EB_SN24, Schönbrunner Berg, wobei diese Arten an den anderen Standorten nur mit wenigen Individuen oder gar nicht erfasst werden konnten.

Mittels Abfrage der Datenbank Edaphobase via Edaphoclass konnten die zehn häufigsten in bestimmten Biotoptypen (44.02 natürliche bzw. naturnahe, trockene

Tab. 50: Arten- und Individuenzahlen der in der Länderstudie nachgewiesenen Diplopoda.

			Individ	uenzahlen		Artenzah	len	
	SN11	Falle	0	0		0	0	
		Stecher	0	U		0	U	
Kiefernwald	SN12	Falle	1	1	10	1	1	4
Kieleiliwalu		Stecher	0	1	10	0	1	4
	SN13	Falle	9	9		3	3	
		Stecher	0	9		0	3	
	SN22	Falle	42	42		6	6	
		Stecher	4	42		1	U	
(basenreicher)	SN23	Falle	88	92	153	8	8	9
Laubmischwald		Stecher	0	92	155	0	o	9
	SN24	Falle	19	19		5	5	
		Stecher	0			0	3	
	SN31	Falle	0	0		0	0	
		Stecher	0	U		0	U	
Sandacker	SN32	Falle	1	1	4	1	1	3
Sandacker		Stecher	0	1	4	0	1	3
	SN34	Falle	3	3		2	2	
		Stecher	0	3		0		
			Individu	Individuenzahl Fallen:		Artenzah	l Fallen:	12
Sachsen 2014			Individu	uenzahl Stecher:	4	Artenzah	Artenzahl Stecher: 1	
			Individu	uenzahl gesamt:	167	Artenzah	l gesamt:	12

Mischwälder feuchter bis frischer Standorte und 33.03 Äcker und Ackerbrache auf Sandboden nach Riecken et al. 2003) erfassten Diplopodenarten ausgegeben werden (Tab. 53). Für Sandäcker liegen bis auf die Länderstudie bisher keine Nachweise von Diplopoden vor. Eine ausgesprochen stetig in mesophilen Laub(misch)wäldern nachgewiesene Art ist Julus scandinavius, die auch in der Länderstudie in allen basischen Laubwaldstandorten zu finden war und auch in einem Kiefernwald erfasst wurde - die Verteilung innerhalb von Edaphobase ist somit den Ergebnissen der Länderstudie sehr ähnlich. Einige der typischen Arten für die Waldtypen sind eher westlich bis südlich verbreitet und wurden im Untersuchungsgebiet in Ostsachsen laut Edaphobase (2018) bisher nicht (Tachypodoiulus niger, Allaiulus nitidus, Glomeris undulata) oder nur sehr spärlich (Glomeris marginata,

bis wechselfeuchte Kiefernwälder, 43.07 Laub- und Mycogona germanica) nachgewiesen, was ihr Fehlen in der Länderstudie erklärt. Ommatoiulus sabulosus und Leptoiulus proximus werden als niederfrequent und regelmäßig auftretende Laubmischwaldbewohner detektiert, was den Ergebnissen der Länderstudie entspricht, wo die Arten in einigen der Standorte auftraten. Zu beachten sind die oft sehr deutlichen Verbreitungsgrenzen vieler Doppelfüßer-Arten sowie die Abfrage auf einem eher groben Biotoptypenniveau über ganz Deutschland. Dies wird nötig, da genauere Daten nicht in ausreichender Menge in Edaphobase vorliegen, um regionalspezifische biotoptyptypische Artenkombinationen kenntlich zu machen.

> Länderstudie in Sachsen schließt Wissenslücken hinsichtlich der Diplopoden-Gemeinschaften typischer Lebensräume Ostsachsens. Das betrifft insbesondere die der Sandäcker, aber auch der

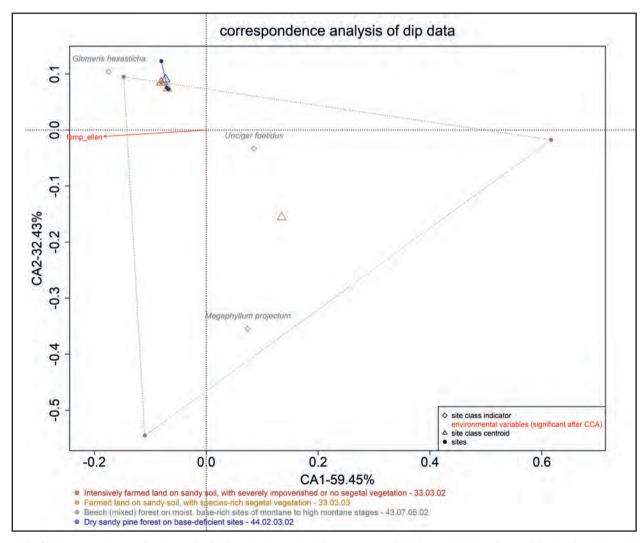


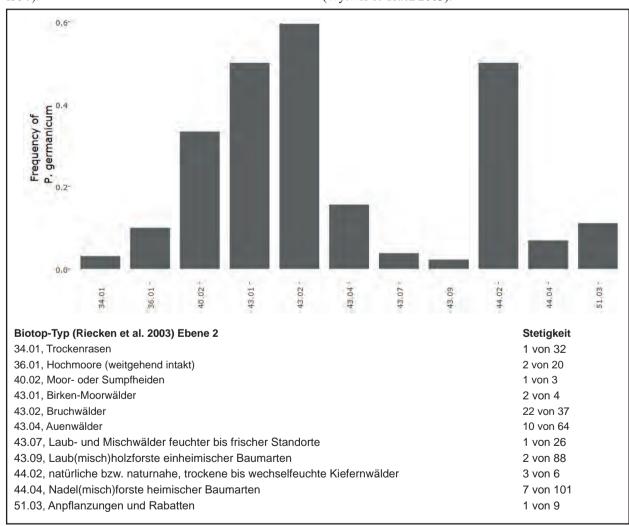
Abb. 58: Korrespondenzanalyse (CA) der Diplopoden-Daten der Biotoptypen Sand-Kiefernwald (blau), basenreicher Laub(misch)wald (grau), Sandacker extensiv (orange), Sandacker intensiv (rot) sowie die mit der Kanonischer Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 51: Sortierte Kreuztabelle der in den Bodenfallen nachgewiesenen Doppelfüßer (Diplopoda); Angaben in Individuen/Standort; Punkte: keine Tiere gefunden; durchgezogene Rahmen: kennzeichnende Artengruppen.

			1: Seide			r. 4: Buchb	Č		Ir. 7: Kreba		
						lfd. Nr. 5: Spitzberg			lfd. Nr. 8: Mückenhain		
			· · · · · · · · · · · · · · · · · · ·			lfd. Nr. 6: Schönbrunner Berg			Ir. 9: Klein		
			44.02.03			Laubwald 43.07.05.02			-Acker 33.		
	Flächenkürzel Edaphobase	EB_SN1	1 EB_SN	N12 EB_S1	N13 EB_SN	22 EB_SN	23 EB_SN24	EB_S1	N31 EB_SN	N32 EB_SN34	
	lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Kennarte	ngruppen										
Ken	nnarten basenreiche Laub(n	nisch)wal	i								
	Megaphyllum projectum				15	12	3		•		
	Glomeris hexasticha				1	1	5		•	•	
	Enantiulus nanus				20	4					
	Unciger foetidus				4	10	1				
Begleitart	ten										
	Strongylosoma stigmatosum					28					
	Ommatoiulus sabulosus			2		25					
	Leptoiulus proximus			1	1		8				
	Julus scandinavius		1		1	2	2			1	
	Polydesmus complanatus					6					
	Polyzonium germanicum			6							
	Craspedosoma rawlinsii									2	
	Polydesmus inconstans	•							1		
Artengru	ppen										
	Julidae			1	8	3	1				

Tab. 52: Diplopoden-Arten der Biotoptypen: Sand-Kiefernwald, basenreicher Laubmischwald mittlerer Feuchte und Sandacker, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency			
43.07.05.02	basenreicher Laubwald mittlerer Feuchte						
Glomeris hexasticha	1,00	0,01	1,00	1,00			
Megaphyllum projectum	1,00	0,01	1,00	1,00			
Unciger foetidus	1,00	0,01	1,00	1,00			


Tab. 53: Stetigste Diplopodenarten der Biotoptypen 44.02 natürliche bzw. naturnahe, trockene bis wechselfeuchte Kiefernwälder, 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 33.03 Äcker und Ackerbrache auf Sandboden (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 12.02.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps).

Biotoptyp	44.02	43.07	33.03	
Anzahl Standorte	15	64	0	
Allajulus nitidus	0,62	0,60		
Julus scandinavius	0,33	0,87		
Tachypodoiulus niger	0,52	0,53		
Glomeris marginata	0,59	0,40		
Glomeris undulata	0,39	0,47		
Cylindroiulus caeruleocinctus	0,17	0,53		
Craspedosoma rawlinsi	0,31	0,33		
Ommatoiulus sabulosus	0,08	0,40		
Mycogona germanica	0,31	0,07		
Leptoiulus proximus	0,03	0,33		

Sand-Kiefernwälder, die große Bereiche der nördlichen Oberlausitz bedecken.

In den Sandäckern wurden nur sporadisch auftretende Begleitarten erfasst. Bezüglich der Diplopoden auf Äckern verweist auch Martens (2007) auf deren ausgesprochene Artenarmut im Vergleich mit anderen Artengruppen. Er und bspw. Klimm (1985), Klinger (1992), Schmitt & Roth (1999) und Schmelz et al. (2018) fanden jedoch einige weit verbreitete Arten wie bspw. Blaniulus guttulatus, Unciger foetidus, Cylindroiulus caeruleocinctus und Polydesmus inconstans in teilweise hohen Individuendichten auf extensiv genutzten Äckern mit höheren Schluff- und Tonanteilen. Die generelle Reduktion der Artenvielfalt gegenüber ungestörten Habitaten ist mit einer vergleichsweise hohen Sensibilität der Artengruppe gegenüber regelmäßiger Bewirtschaftung zu begründen (Wolters & Ekschmitt 1997).

Bezüglich der Sandkiefernwälder existieren verschiedene Befunde. In der Nähe von Jena wurden in Kiefernwäldern und -forsten zahlreiche, vor allem xerophile Arten erfasst (Peter 2006, 2008), auch bei Frankfurt (Main) (Feldmann 1993) konnte eine artenreiche Kiefernwald-Gemeinschaft festgestellt werden, die vergleichbar in der Länderstudie nur am Standort EB SN13 gefunden werden konnte. Ausgesprochen artenarme Bestände fanden hingegen Voigtländer & Balkenhol (2006) in räumlicher Nähe zu den Standorten der Länderstudie, ebenfalls auf Sandböden. Denkbar ist hier ein Zusammenhang mit dem Substrat. Laut ausgiebigen Untersuchungen in Kiefernbeständen bei Brest besteht eine strenge Korrelation der Diplopoden-Artenvielfalt und -Individuendichte zum Humusgehalt (Rubcova 1967), wobei im Bialowieza Nationalpark in Polen auch schon auf armen Sandböden artenreiche Diplopoden-Gemeinschaften vorgefunden wurden (Wytwer & Tracz 2003).

Abb. 59: *Polyzonium germanicum*: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotoptypen zweiter Ebene nach Riecken et al. (2003). Ausgewertet wurden Untersuchungen innerhalb des Hauptverbreitungsgebiets (52 Nachweise an 696 Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 22.03.2018).

Die vorgefundenen Artengemeinschaften der untersuchten Laub(misch)wälder können als typisch für die Oberlausitzer Basaltkuppen angesehen werden (Voigtländer 1987). Untersuchungen von Hauser (1996) zeigen, dass die Artenzusammensetzung und -dichte der Diplopoden in Laubwäldern insbesondere vom Ausgangsgestein abhängig ist. Aber auch die Höhenlage spielt eine große Rolle. So fanden Voigtländer & Hauser (2005) schon im Zittauer Gebirge auf etwa 700 m ü. NHN eine submontan geprägte Diplopoden-Gemeinschaft, die sich deutlich von denen der untersuchten Basaltkuppen unterscheidet.

6.4.3.3 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Sand-Kiefernwald

Wie in Kap. 6.4.3.2 diskutiert, existieren auch andere Untersuchungen, welche eine ausgesprochene Artenarmut von Kiefernwäldern auf Sandböden nachweisen konnten (Rubcova 1967, Voigtländer & Balkenhol 2006). Zu vermuten ist eine Abhängigkeit der Arten- und Individuendichte vom Humusgehalt (Rubcova 1967). Der einzige Standort mit einer typisch ausgeprägten Diplopoden-Gemeinschaft ist EB SN13 (vgl. Rubcova 1967, Feldmann 1993, Peter 2006, 2008). Sie besteht aus den trockenheitsresistenten Arten Ommatoiulus sabulosus und Leptoiulus proximus (Hauser & Voigtländer 2009) sowie Polyzonium germanicum, einer Art, die vorwiegend in Bruchwäldern vorkommt, oft jedoch auch offene Hochmoore, Moorwälder und trockene bis feuchte Kiefernwälder besiedelt (Abb. 59, Hausen et al. 2017).

Basenreicher Laubwald mittlerer Feuchte

Die Diplopoden-Zönosen der untersuchten Standorte dieses Biotoptyps unterscheiden sich untereinander relativ deutlich. Gemein ist den Flächen das Auftreten der Kennartengruppe, wobei diese allesamt typische Laubwaldbewohner sind (Hauser & Voigtländer 2009). Die eher xerophilen Arten *Ommatoiulus sabulosus* und *Leptoiulus proximus* verweisen auf zumindest temporär trockene Zustände an allen drei Standorten.

Sandacker

Aufgrund mangelnder Nahrungsressourcen in Kombination mit intensiver Bearbeitung (EB_SN31, EB_SN32) der kargen Sandböden konnte sich auf den Sandäckern vermutlich keine ausgeprägte Diplopoden-Gemeinschaft entwickeln. Neben den zwei Waldarten Julus scandinavius und Craspedosoma rawlinsii wurde nur die Art Polydesmus inconstans gefunden, die

unregelmäßig in hohen Dichten in Äckern nachgewiesen wird (Martens 2007), schwerpunktmäßig aber Auwälder besiedelt (**Abb. 60**, Hausen et al. 2017).

6.4.4 Chilopoda 6.4.4.1 Individuen- und Artenzahlen

Im Rahmen der Länderstudie konnten im Bundesland Sachsen 118 Chilopoden mittels Bodenfallen und 178 mit Hilfe des Bodenstechers erfasst werden (vgl. Tab. Anhang 29). Gemäß der Methodik handelt es sich bei ersteren hauptsächlich um oberflächenaktive Arten, während die vornehmlich mit Bodenstecher gefundenen Arten eine eher endogäische Lebensweise bevorzugen (Koren 1986, 1992). Es wurden 107 bzw. 116 Individuen bis zur Art bestimmt. Diese verteilen sich auf 12 bzw. 10 Arten, wobei 6 Arten ausschließlich mit den Bodenfallen und 4 Arten exklusiv mit dem Bodenstecher nachgewiesen werden konnten (Tab. 54, Tab. Anhang 4, 29). Bei den nicht auf Artniveau identifizieren Tieren handelt es sich um juvenile Tiere der Gattung Lithobius. Viele bestimmungsrelevante Merkmale sind an sehr frühen Stadien noch nicht ausgebildet (Eason 1964, Koren 1986).

Ähnlich den Doppelfüßern wurde der Großteil der Hundertfüßer in den mesophilen Laubwäldern erfasst. Der bezüglich der Bodenfallenfänge artenreichste Standort (5 Arten) befindet sich am Buchberg bei Schlegel (EB_SN22). Mit dem Bodenstecher hingegen konnten die meisten Arten (6 Arten) auf dem Schönbrunner Berg (EB_SN24) gefunden werden. Demgegenüber fallen sowohl die Arten- als auch die Individuenzahlen der Kiefernwälder bei beiden Methoden im Durchschnitt etwas geringer aus. Auf den Äckern konnten Chilopoden nur mit Bodenfallen nachgewiesen werden. Bei den hier gefundenen Tieren handelt es sich nahezu ausschließlich um Vertreter der Art Lamyctes emarginatus.

6.4.4.2 Beschreibung der ermittelten Artengruppen in den drei untersuchten Biotoptypen

Für die Darstellung der Artengruppen innerhalb der Kreuztabelle wurden für die Chilopoden sowohl die Nachweise aus den Bodenkernen als auch die Funde der Bodenfallen betrachtet (**Tab. 55**). Die Notwendigkeit ergibt sich aus der Lebensweise der Vertreter dieser Artengruppe, die teilweise endogäisch, teilweise epigäisch aktiv sind. Wie auch bei den Diplopoden liegen der Sortierung der Kreuztabelle ausschließlich Daten der Länderstudie in Sachsen zugrunde (siehe Anmerkungen zu Kap. 5.4.3.3, 6.4.3.2).

Biotoptypen Arten, die diesen jeweils von den anderen differenzieren. Typische Arten sind Lithobius calcaratus für die Sand-Kiefernwälder, Lamyctes emarginatus für die Sandäcker sowie Lithobius mutabilis und Geophilus flavus für die

Insgesamt beherbergen alle drei der untersuchten Schendyla nemorensis konnte auf allen bewaldeten Standorten gefunden und als Grundart der Wälder charakterisiert werden. Eine dieser Kennarten ist dabei nur mit Hilfe der Bodenkernstecher nachgewiesen worden (Geophilus flavus), eine andere wurde hingegen mesophilen Laub(misch)wälder. nur mittels Bodenfallen erfasst (Lamyctes emarginatus).

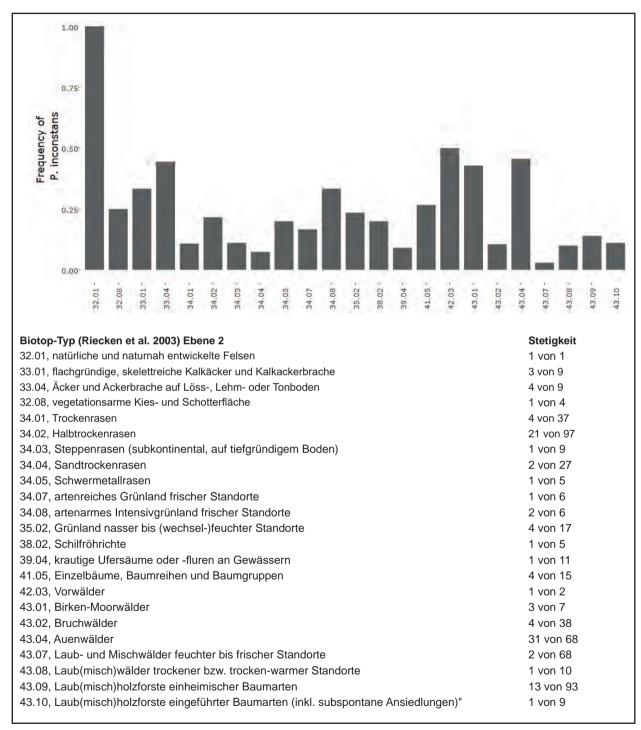


Abb. 60: Polydesmus inconstans: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotoptypen zweiter Ebene nach Riecken et al. (2003) (107 Nachweise in 980 Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 16.02.2018).

Tab. 54: Arten- und Individuenzahlen der in der Länderstudie nachgewiesenen Chilopoda.

			Individu	ienzahlen		Artenza	hlen	
	SN11	Falle	4	12		4	6	,
	SINII	Stecher	8	12		4	O	
Kiefernwald	SN12	Falle	4	20	51	3	3	8
Kieleriiwalu	51112	Stecher	16	20	31	2	3	0
	SN13	Falle	2	19		2	4	
	SIN13	Stecher	17	19		2	4	
	SN22	Falle	34	68		5	6	,
	511/2/2	Stecher	34	08		4	O	
(basenreicher)	SN23	Falle	35	51	157	2	6	11
Laubmischwald		Stecher	16	31	137	5	O	11
	SN24	Falle	13	38		4	8	
		Stecher	25	38		6	0	
	SN31	Falle	4	4		2	2	'
	SN31	Stecher	0	4		0	2	
Sandacker	SN32	Falle	1	1	15	1	1	2
Sandacker	SN32	Stecher	0	1	13	0	1	2
	CNI24	Falle	10	10		1	1	
	SN34	Stecher	0	10		0	1	
				ienzahl Fallen:	107		hl Fallen:	12
Sachsen 2014			nenzahl Stecher: nenzahl gesamt:	116 223		hl Stecher: hl gesamt:	10 16	
			marviau	ichzani gesanit:	443	Aiteliza	ııı gesaint.	10

Tab. 55: Sortierte Kreuztabelle der in den Bodenstecherproben und Bodenfallen nachgewiesenen Hundertfüßer (Chilopoda); Angaben in Individuen pro Standort; Bodenstecher/Bodenfalle; Punkte: keine Tiere gefunden; durchgezogene Rahmen: kennzeichnende Artengruppen..

	lfd. Nr	lfd. Nr. 1: Seidewinkel			lfd. Nr. 4: Buchberg			lfd. Nr. 7: Kreba-Neudorf		
	lfd. Nr	: 2: Weißko	llm	lfd. Nr.	lfd. Nr. 5: Spitzberg			lfd. Nr. 8: Mückenhain		
						runner Berg		. 9: Klein I		
	Kiefer	44.02.03.0	2	Laubw	ald 43.07.	05.02	Sand-	Acker 33.0	03.02/03	
Flächenkürzel Edaphobase	EB_SN	11 EB_SN1	2 EB_SN	13 EB_SN2	22 EB_SN2	23 EB_SN24	EB_SN	31 EB_SN	32 EB_SN34	
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Kennartengruppen									·	
Kennarten Sand- Kiefernwälde	er									
Megaphyllum projectum	1/1		0/1					•	•	
Kennarten basenreicher Laub(misch)wa	ald					_			
Lithobius mutabilis				1/28	2/34	1/9].	•	•	
Geophilus flavus				1/0	2/0	1/0].	•	•	
Kennarten Sand-Acker										
Lamyctes emarginatus							0/3	0/1	0/10	
Grundarten der Wälder										
Schendyla nemorensis	5/1	3/1	8/0	31/1	8/0	6/1].			
Begleitarten		'				'	-			
Lithobius microps	1/0	13/2	9/0	1/2			0/1			
Lithobius forficatus			0/1	0/2		0/2				

Tab. 55 (Fortsetzung)

	lfd. Nr. 2: Weißkollm lfd. Nr. 3: Hoyerswerda			lfd. Nr. 4: Buchberg lfd. Nr. 5: Spitzberg lfd. Nr. 6: Schönbrunner Berg Laubwald 43.07.05.02			lfd. Nr. 7: Kreba-Neudorf lfd. Nr. 8: Mückenhain lfd. Nr. 9: Klein Krauscha Sand-Acker 33.03.02/03		
Flächenkürzel Edaphobase	EB_SN11	EB_SN12	EB_SN13	EB_SN22	EB_SN23	EB_SN24	EB_SN31	EB_SN32	EB_SN34
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Lithobius austriacus		0/1			1/0	4/0			
Geophilus electricus						4/1			
Geophilus alpinus						2/0			
Strigamia acuminata					2/0				
Lithobius agilis						0/1			
Strigamia crassipes				0/1					
Lithobius erythrocephalus	0/1								
Lithobius pelidnus	0/1								
Lithobius muticus	1/0								
Craspedosoma rawlinsii									2
Polydesmus inconstans								1	
Artengruppen									
Lithobius spec.	2/0	21/0	13/0	7/1	12/1	6/2	0/5	0/2	2/0

Tab. 56: Chilopoden-Arten der Biotoptypen: Sand-Kiefernwald, basenreicher Laubmischwald mittlerer Feuchte und Sandacker, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency				
44.02.03.02	Sand-Kiefernwald							
Lithobius microps	0,90	0,04	0,90	1,00				
43.07.05.02	basenreicher Laubwald mittlerer Feuchte							
Geophilus flavus	1,00	0,02	1,00	1,00				
Lithobius mutabilis	1,00	0,02	1,00	1,00				
33.03.02/03	Sand-Acker							
Lamyctes emarginatus	0,84	0,10	0,84	1,00				

Die meisten der spärlich auftretenden Hundertfüßer wurden als Begleitarten eingestuft, die keine deutliche Schwerpunktzugehörigkeit erkennen ließen.

Laut Indikatorartenanalyse erreichen vier Arten einen Indikatorwert von über 0,8 (**Tab. 56**). Drei dieser Arten wurden innerhalb der Kreuztabelle als Kennarten markiert. *Lithobius calcaratus* wurde aufgrund der geringen Aktivität und des Fehlens auf Standort EB_SN12 von der Indikatorartenanalyse nicht als Indikatorart ausgewiesen. Demgegenüber wird *Lithobius microps* als Indikatorart der Sand-Kiefernwälder detektiert, da die Analyse stärker auf Differenzen der Aktivitätsdichten reagiert. Letztgenannte Art hat ihren Schwerpunkt sicher innerhalb der Kiefenwälder, wurde aber sowohl im Laubmischwald als auch auf einem Sandacker nachgewiesen.

Die CA zeigt eine deutliche Aufteilung der Biotoptypen anhand der Hundertfüßer-Gemeinschaften (Abb. 61).

Die größte Ähnlichkeit untereinander besitzen dabei die sehr artenarmen Gemeinschaften der Sandäcker, die nahezu ausschließlich aus Vertretern der Art *Lamyctes emarginatus* bestehen. Größere Variabilität haben die Waldstandorte. Die Hundertfüßer-Zönosen der Sand-Kiefernwälder werden dabei offenbar vor allem durch den Nährstoffgehalt des Bodens beeinflusst (abgeleitet aus den Ellenberg'schen Zeigerwerten). Die aus den Zeigerwerten abgeleitete Lichtzahl wiederum hat einen erheblichen Einfluss auf die Gemeinschaften der Laub(misch)wälder. Insgesamt hat auch die Textur des Bodens Auswirkungen auf die Artenzusammensetzung der Chilopoden.

Eine Abfrage der Daten in Edaphobase mit Hilfe des Tools Edaphoclass konnte die zehn häufigsten in bestimmten Biotoptypen (44.02 natürliche bzw. naturnahe, trockene bis wechselfeuchte Kiefernwälder,

43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 33.03 Äcker und Ackerbrache auf Sandboden (nach Riecken et al. 2003)) gefundenen Chilopodenarten ermitteln (**Tab. 57**). Neun der zehn dargestellten Arten besitzen Vorkommen im Untersuchungsgebiet (Ausnahme: Lithobius tricuspis, Edaphobase 2018). Für Sandäcker liegt nur eine einzige Beobachtung neben der Länderstudie vor, wobei hier Lamyctes emarginatus und Lithobius muticus erfasst wurden (= 100 % Vorkommen). Erstgenannte Art konnte in den dargestellten Wald-Biotoptypen laut Datenbank bisher noch nicht gefunden werden. Die sowohl in Kiefern- als auch Laub(misch)wäldern stetig erfasste Art Lithobius mutabilis wird in der Länderstudie als Kennart der Laub(misch)wälder charakterisiert, wohingegen sie die Sand-Kiefernwälder meidet. Die sonst regelmäßig in Laub(misch)wäldern gefundenen Arten Strigamia

acuminata, Lithobius crassipes und L. dentatus konnten nur vereinzelt oder gar nicht innerhalb der Länderstudie nachgewiesen werden. Von den sonst relativ häufig in Kiefern-Wäldern beobachteten Arten wurde nur Lithobius calcaratus gefunden.

Innerhalb der Länderstudie wurden mit Sandäckern und Sand-Kiefernwäldern Habitate beprobt, die bisher nur ausgesprochen selten Gegenstand diesbezüglicher Inventuren waren (**Tab. 57**), jedoch weite Teile der Oberlausitz und Nordostdeutschlands bedecken.

Untersuchungen auf Sandäckern sind nur aus Sachsen-Anhalt bekannt (Edaphobase 2018). Hier konnte mit *Lamyctes emarginatus* eine Art nachgewiesen werden, die in der Länderstudie in Sachsen als Kennart der Sandäcker spezifiziert werden konnte. Die Gemeinschaft ist ansonsten auch hier sehr artenarm (2 Arten). Einen ähnlichen Befund liefern Schmelz et al. (2018), siehe auch

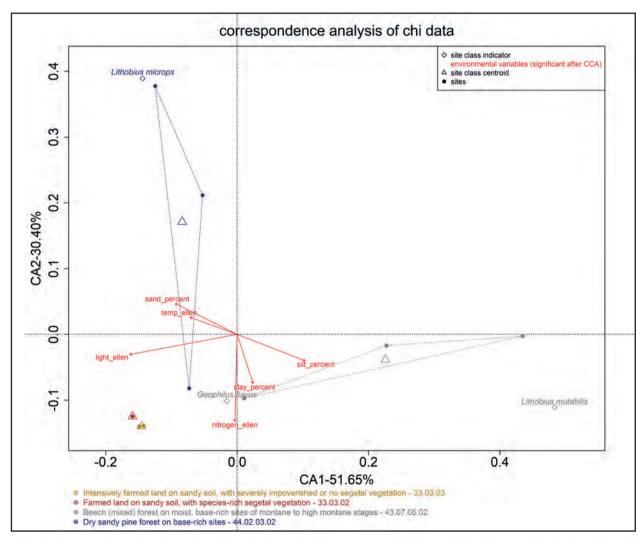


Abb. 61: Korrespondenzanalyse (CA) der Chilopoden-Daten der Biotoptypen Sand-Kiefernwald (blau), basenreicher Laub(misch)wald (grau), Sandacker extensiv (rot), Sandacker intensiv (orange) sowie die mit der Kanonischer Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Kap. 8, für intensive Löss- und extensive Kalk-Äcker in Bayern (1-3 Arten pro Standort) sowie Schmitt & Roth (1999) für Lehm-Äcker in Nord-Brandenburg (1-2 Arten pro Standort). Artenreichere Bestände (2-6 Arten pro Standort) dagegen fand Klinger (1992) in Hessen, auch hier konnte *L. emarginatus* hochstet erfasst werden. Im Allgemeinen können Chilopoden aufgrund ihrer hohen Sensibilität gegenüber Bewirtschaftung keine artenund individuenreichen Gemeinschaften auf Äckern ausbilden (Wolters & Ekschmitt 1997) und nur *Lamyctes emarginatus* wird regelmäßig auf Äckern beobachtet.

Kiefernwälder bzw. -forste wurden bisher ebenfalls nur selten untersucht (Tab. 57). Bei den oben abgebildeten Beobachtungen des Biotoptyps 44.02 (natürliche bzw. naturnahe, trockene bis wechselfeuchte Kiefernwälder) werden sowohl trockene als auch feuchte Kiefernwälder betrachtet. Nach Voigtländer (1995b) ist es vor allem die Bodenfeuchte, die das Auftreten einzelner Arten in Kieferwäldern bestimmt. Demnach besiedelt Lithobius mutabilis eher feuchte und L. muticus eher trockene Kiefernwälder. Letztere Art kann aber aufgrund von Negativnachweisen an zwei der drei Standorten nicht Kennart der (trockenen) Sand-Kiefernwälder betrachtet werden. Insgesamt wurden schon sehr unterschiedliche Befunde bezüglich der Chilopoden aus Kiefernwäldern publiziert. So fand Peter (2006) keinen einzigen Hundertfüßer in Schwarz-Kiefern-Wäldern bei Jena, einige Kilometer entfernt jedoch eine individuenarme, aber relativ artenreiche (sechs Arten) Gemeinschaft an einem ähnlichen Standort (Peter 2008). Geringe Aktivitätsdichten und mäßigen Artenreichtum beobachtete auch Voigtländer (1995b) in verschieden ausgeprägten Kiefernwäldern bei Bitterfeld. Im Dubringer Moor bei Hoyerswerda konnte in der Nähe

des Länderstudien-Untersuchungsgebiets eine arten- und individuenarme Gemeinschaft in einem Kiefernforst gefunden werden, in der *Lithobius calcaratus* die dominierende Art war (Voigtländer 1995a).

In den meisten mesophilen, basenreichen (oft buchenbetonten) Laub(misch)wäldern Ostdeutschlands ist ähnlich wie in der Länderstudie Lithobius mutabilis die klar dominierende Art (Voigtländer 1983, Voigtländer & Hauser 2005, Voigtländer & Zulka 2007, Voigtländer & Decker 2014). Ergänzt wird das Spektrum sehr häufig durch die Arten Lithobius crassipes und L. forficatus (Rosenberg 2009). Erstgenannte Art dominiert teilweise in Buchenwäldern des Nationalparks Hainich (Voigtländer & Zulka 2007), konnte aber in der Länderstudie nicht erfasst werden. Dies deckt sich mit anderen Inventuren in der Oberlausitz, in welchen die eurytope Art überhaupt nicht (Zittauer Gebirge, Voigtländer & Hauser 2005) oder nur ausgesprochen selten gefunden wurde (Baruther Schafberg, Voigtländer 2011a). Das mikroklimatisch bedingte heterogene Auftreten von Arten wie u. a. Strigamia acuminata, Geophilus alpinus und Lithobius austriacus ist ebenfalls typisch für verschiedene Laubund Nadelwälder (Rosenberg 2009), weswegen es schwierig ist, Schwerpunktvorkommen dieser Arten auf der Basis der Biotoptypen festzustellen.

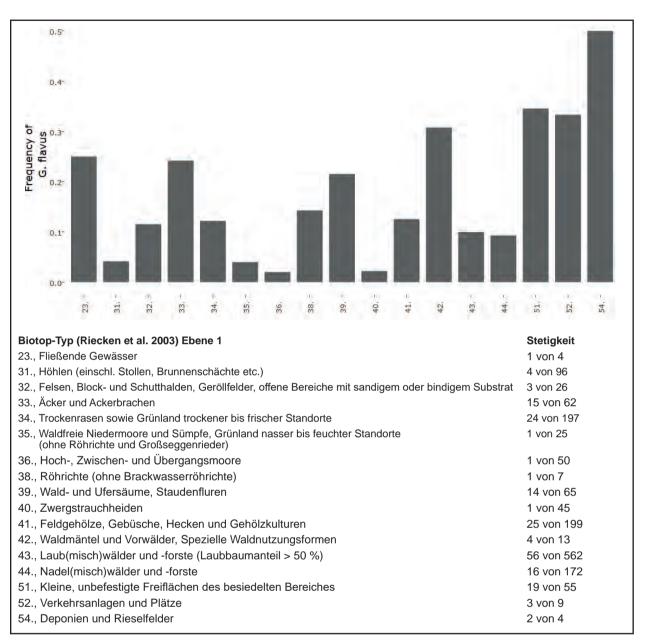
6.4.4.3 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Sand-Kiefernwald

Mit Schendyla nemorensis und vor allem Lithobius calcaratus werden die Kiefern-Standorte durch Arten

Tab. 57: Stetigste Chilopodenarten der Biotoptypen 44.02 natürliche bzw. naturnahe, trockene bis wechselfeuchte Kiefernwälder, 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 33.03 Äcker und Ackerbrache auf Sandboden (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 16.02.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps).

Biotoptyp	44.02	43.07	33.03
Anzahl Standorte	11	52	1
Lithobius muticus	0,09	0,06	1,00
Lithobius mutabilis	0,55	0,52	
Lamyctes emarginatus			1,00
Lithobius dentatus	0,45	0,37	
Strigamia acuminata	0,18	0,56	
Lithobius crassipes	0,09	0,46	
Lithobius tricuspis	0,36	0,15	
Lithobius piceus	0,18	0,27	
Lithobius erythrocephalus	0,36	0,04	
Lithobius calcaratus	0,27	0,02	


charakterisiert, die trockene und möglichst vegetationsarme Standorte bevorzugen (Voigtländer 2005). *L. calcaratus* kann dabei innerhalb der Länderstudie in Sachsen als Kennart der sehr offenen Sand-Kiefernwälder der Oberlausitz gelten. Die Art besiedelt schwerpunktmäßig Heiden und Sandtrockenrasen (**Abb. 62**). Hinzu kommt mit *Lithobius microps* eine hier zahlreich gefundene Art, die häufig im Kulturland erfasst wird (Eason 1964) und ebenfalls eine Präferenz für mindestens zeitweise austrocknende Boden- bzw. Streuschichten aufweist (Voigtländer 2005, Kap. 5.4.4). Mit Ausnahme der relativ eurytopen Waldarten *Lithobius forficatus* und *L. austriacus* besiedeln auch die unregelmäßig nachgewiesenen Arten schwerpunktmäßig trockene Standorte (Koren 1992, Voigtländer 2005).

Basenreicher Laubwald mittlerer Feuchte

Mit Lithobius mutabilis werden die untersuchten basenreichen Laubwälder mittlerer Feuchte von einer typischen mesophilen Wald-Art mit breiter ökologischer Amplitude (Koren 1992, Rosenberg 2009) dominiert. Die ebenfalls prägende Art Geophilus flavus ist eurytop (Abb. 63), meidet jedoch ausgeprägt trockene oder feuchte Standorte (Rosenberg 2009) und verweist somit ebenso auf die mittleren Feuchtebedingungen, was ähnlich auch für die Begleitarten gilt (Koren 1992, Voigtländer 2005, Rosenberg 2009). Der Fund der Trockenheit liebenden Art Lithobius microps auf dem Standort EB_SN22, Buchberg, deutet dort auf eine temporäre Austrocknung des Bodens hin (vgl. Voigtländer 2005, Kap. 5.4.4).

Abb. 62: *Lithobius calcaratus*: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotopty-pen erster Ebene nach Riecken et al. (2003) (243 Nachweise in 1622 Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 22.03.2018).

Abb. 63: *Geophilus flavus*: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotoptypen erster Ebene nach Riecken et al. (2003) (190 Nachweise in 1622 Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 22.03.2018).

Sandacker

Die bezüglich der Chilopoden ausgesprochen artenarmen Sandäcker werden allesamt von *Lamyctes emarginatus* dominiert. Diese einjährige Pionierart bewohnt bevorzugt insbesondere Äcker, Grünland, (Halb)trockenrasen und Überflutungsgebiete, wo sie aufgrund ihrer jagenden Lebensweise oft in großen Individuenzahlen gefangen wird (Rosenberg 2009). Durch regelmäßige Bodenbearbeitung und dadurch bedingtes knappes Nahrungsangebot ist es kaum einer anderen Art möglich, auf den Sandäckern stabile Vorkommen zu bilden (siehe Kap. 6.4.4.2).

6.4.5 Lumbricidae 6.4.5.1 Individuen- und Artenzahlen

Auf den neun Standorten in Sachsen wurden bei den beiden Probenahmen im Frühjahr und Herbst 2014 insgesamt 1.050 Regenwürmer aus 12 Arten bzw. 6 Gattungen gefunden (**Tab. 58**, **Tab. Anhang 5**). Eine detaillierte Darstellung, aufgeschlüsselt nach den jeweils drei Standorten pro Biotoptyp, ist **Tab. Anhang 30-32** zu entnehmen.

Die meisten Lumbriciden wurden in den drei Laubwald-Flächen (insgesamt 778 Individuen) gefangen,

			Individue	nzahlen		Artenz	ahlen	
	SN11	Frühjahr	12	25		2	2	
	SINII	Herbst	13	23		2	3	
Kiefer	SN12	Frühjahr	8	13	54	1	1	5
Kieler	SN12	Herbst	5	13	34	1	1	3
	SN13	Frühjahr	9	16		3	4	
	SN13	Herbst	7	10		4	4	
	CNICO	Frühjahr	352	426	,	6	6	
	SN22	Herbst	74	420		4	U	
Laubwald	SN23	Frühjahr	Frühjahr 255	778	5	5	7	
Laubwaid	SIN23	Herbst	91	340	//8	4	3	/
	SN24	Frühjahr	2	6		1	3	
	SN24	Herbst	4	6		2		
	CNI21	Frühjahr	7	13	,	1	1	
	SN31	Herbst	6	13		1	1	
Candaalsan	CNI22	Frühjahr	16	161	210	1	7	7
Sandacker	SN32	Herbst	145	161	218	7	/	/
	CNI24	Frühjahr	16	4.4		1	1	
	SN34	Herbst	28	44		1	1	
		Herbst	28			1		

Individuenzahl gesamt:

Tab. 58: Arten- und Individuenzahlen der Lumbriciden auf den Untersuchungsflächen in Sachsen.

während ihre Zahl in den beiden übrigen Biotoptypen um ca. den Faktor 3,6 (Sandacker: 218) bzw. den Faktor 14 (Kiefernwald: 54) niedriger lag. Die Gesamtartenzahl unterschied sich hingegen zwischen den drei Biotoptypen nicht grundlegend (Kiefernwälder: 5; Laubwälder und Sandäcker: je 7). Die einzelnen drei Standorte eines Biotoptyps unterschieden sich hinsichtlich der Abundanz mit Ausnahme des Kiefernwalds deutlich. So betrug der Faktor zwischen der niedrigsten und höchsten Abundanz innerhalb der Kiefernwälder ca. 2, bei den Laubwäldern 71 und bei den Sandäckern 12. Meistens weniger ausgeprägt waren die Unterschiede zwischen den beiden Probenahmen eines Standorts. Hier betrug an den Laubwäldern EB SN22 und EB SN23 sowie dem Sandacker EB SN32 der Faktor zwischen den beiden Probenahmen ca. 3 bis 9 (sonst stets \leq 2), ohne dass eine konsistent höhere Abundanz an einem der beiden Zeitpunkte erkennbar war. Die Artenzahl pro Standort war in den Laubwäldern mit 3 bis 6 am höchsten. Sowohl die Kiefernwälder mit 1 bis 4 als auch die Sandäcker mit 1 bis 7 zeigten ein sehr heterogenes Bild.

Sachsen 2014

6.4.5.2 Beschreibung der ermittelten Artengruppen in den drei untersuchten Biotoptypen in Sachsen

In der **Tab. 59** sind die Lumbricidenarten mit ihren Abundanzen entsprechend ihres Vorkommens in den

Biotoptypen geordnet. Bezogen auf die Gesamtabundanz der adulten Tiere waren die drei häufigsten Arten (in abnehmender Reihenfolge) Aporrectodea rosea, Aporrectodea caliginosa und Dendrobaena attemsi, die zusammen 82% dieser Altersklasse bzw. 35% aller Regenwürmer stellten. Eingerahmt und damit vorläufig als charakteristisch eingestuft sind Arten, die in zwei oder drei Replikaten eines Biotoptyps gefunden wurden, wobei durch die Gruppierung Ähnlichkeiten und Unterschiede zwischen den drei untersuchten Biotoptypen hervorzuheben waren. Zugleich wurden Ähnlichkeiten und Unterschiede innerhalb eines Biotoptyps, d. h. zwischen den Replikaten, sichtbar gemacht. Jungtiere wurden bei diesem Ansatz nicht berücksichtigt, da sie an praktisch allen Standorten Tiere aus verschiedenen Arten enthalten können.

Artenzahl gesamt:

12

Anhand der Kreuztabelle lassen sich folgende Artengruppen identifizieren:

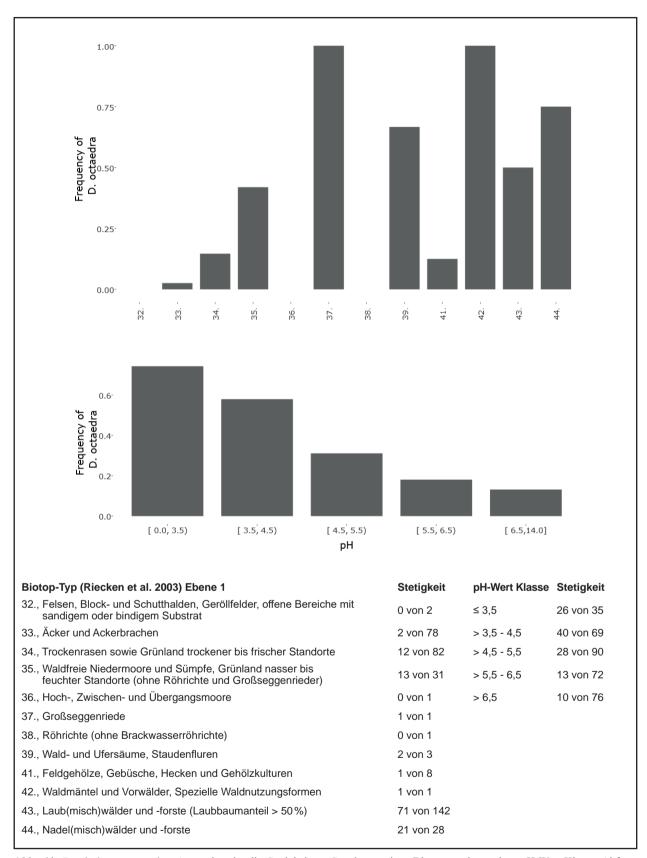
- Dendrobaena octaedra wurde an zwei der drei Kiefernwaldstandorten gefunden. Sie kam auch an den drei Fichtenforst-Standorten im Nationalpark Eifel stetig vor (Kap. 5.4.5) und zeigt damit sehr saure Nadelwaldstandorte an.
- Aporrectodea caliginosa, Aporrectodea rosea und Lumbricus terrestris sind, auch unter Berücksichtigung der Beobachtungen aus den übrigen Länderstudien (Kap. 5, 7, 8), einer Säuregruppe für schwach saure bis neutrale Standorte, also hier der Laubwälder und Sandäcker,

- zuzuordnen. Erstere wurde an allen sechs dieser Standorte gefunden. Die letzteren beiden Arten wurden an je zwei bzw. drei Laubwaldstandorten, jedoch nur einem Sandacker nachgewiesen.
- Unter der Hinzunahme der Informationen aus den übrigen Länderstudien kann *Lumbricus rubellus* als unter den Regenwürmern einzige Grundart (für Grasland- und Waldstandorte) angesehen werden. Sie wurde an zwei der drei Laubwaldstandorte gefunden, jedoch nur in einem der Kiefernwälder.
- Alle übrigen Regenwurmarten (Aporrectodea longa, Bimastos parvus, Dendrobaena attemsi, Dendrodrilus rubidus, Lumbricus castaneus, Octolasion cyaneum, Octolasion tyrtaeum) können an den in Sachsen untersuchten Standorten als sporadische Begleitarten angesehen werden.

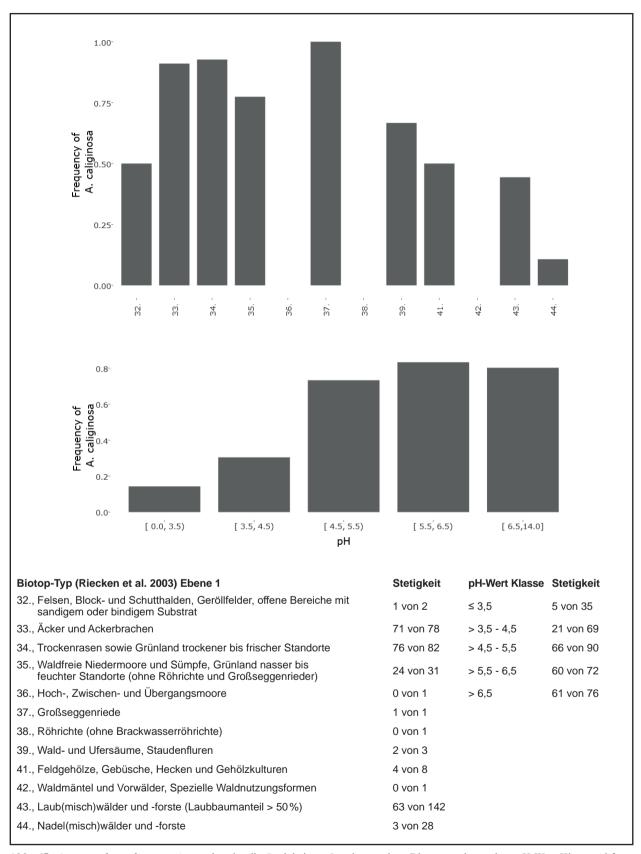
Grasland- und Waldstandorte) angesehen werden. In der Indikatorartenanalyse (**Tab. 60**) wurde Sie wurde an zwei der drei Laubwaldstandorte Dendrobaena sp. als einziges Taxon für den Biotoptyp gefunden, jedoch nur in einem der Kiefernwälder. "Nadelwald trocken" (Sand/Kiefer) als relevant und

Tab. 59: Sortierte Kreuztabelle der Lumbriciden. Angaben in Ind./m². Angabe des Biotoptyps nach Riecken et al. (2003).

	lfd. Nr lfd. Nr Nadel (Sand / 44.02 .	lfd. Nr. 1: Seidewinkel lfd. Nr. 2: Weißkollm lfd. Nr. 3: Hoyerswerda Nadelwald trocken (Sand/Kiefer) 44.02.03.02			lfd. Nr. 4: Buchberg lfd. Nr. 5: Spitzberg lfd. Nr. 6: Schönbrunner Berg Laubwald mittl. Feuchte (basenreich) 43.07.05.02			lfd. Nr. 7: Kreba-Neudorf lfd. Nr. 8: Mückenhain lfd. Nr. 9: Klein Krauscha Sandacker 33.03.02/03		
Flächenkürzel Edaphobase		11 EB_SN 2.		13 EB_SN2 4			EB_SN		32 EB_SN34	
lfd. Nr.: Säuregruppen	1		3	4	5	6		8	9	
sehr saure Nadelwaldstandorte										
Dendrobaena octaedra	3,6		2	\neg						
schwach saure bis neutrale Star		•		_ .	•	•	•	•	•	
Aporrectodea caliginosa	iuoi te		0,8	8,4	26,4	0,8	3,2	18,4	8,4	
Aporrectodea rosea	•	•	0,0	51,2	17,6	0,6	3,2	3,6	0,4	
Lumbricus terrestris	•	•	•	1,2	2,8	0,4		0,8		
Grundarten	•	•	•	1,2	2,6	0,4	•	0,0	•	
Grasland- und Waldstandorte										
Lumbricus rubellus			0.4		4,4	0,8	1			
Grundarten	·	•	0,4		4,4	0,8].	•		
sonstige Begleiter										
Aporrectodea longa								0,8		
Bimastos parvus	•	•	•	0,4		•	•	0,0		
Dendrobaena attemsi	1,2	2,4	0,8	0,8	3,2	•	•	•		
Dendrodrilus rubidus	0,8	2,4	0,0	0,0	3,2	•	•			
Lumbricus castaneus	0,0	•	•	•		•	•	4,4		
Octolasion cyaneum	•	•	•	•			•	2,4		
Octolasion tyrtaeum	•	•	•	6,8		•	•	0,4		
Juvenile Lebensstadien	•	•	•	0,0	•	•	•	0,4	•	
Aporrectodea sp. sensu				40.0	10.1			10.6	^	
lato		•	1,6	48,8	42,4	•	1,2	19,6	8	
Dendrobaena sp.	3,2	2,4	0,4	0,4	0,8					
Lumbricus sp.			•	18,8	22			2		
Octolasion sp.	. .			16						
endogäische Adulte			0,8	66,4	44	0,8	3,2	24,8	8,4	
epigäische Adulte	5,6	2,4	3,2	1,2	7,6	0,8		4,4		
anözische Adulte				1,2	2,8	0,4		1,6		
Total	10	5,2	6,4	170,4	138,4	2,4	5,2	64,4	17,6	
Artenzahl	3	1	4	6	5	3	1	7	1	


signifikant eingestuft. Die Juvenilen dieser Gattung sind den Arten *D. octaedra* und *D. attemsi* zuzuordnen. Dies ist somit konsistent mit der Darstellung der Artengruppe für *D. octaedra* in den sortierten Kreuztabellen. Da in den Kreuztabellen juvenile Lebensstadien sowie die Abundanz nicht berücksichtigt wurden, liefert die Indikatorartenanalyse hier eine wertvolle Zusatzinformation.

Mit Hilfe des in das Edaphobase-Portal integrierten Auswerte-Werkzeugs Edaphostat (Hausen et al. 2017) können die ökologischen Profile der im Datenbestand enthaltenen Arten angezeigt werden. Es wurden Daten von Standorten in Deutschland ausgewählt, an denen das Artenspektrum der Lumbriciden quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung auch Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Damit standen Daten von insgesamt 407 Standorten für 32 verschiedene Lumbricidenarten zur Verfügung. Für den Vergleich mit Daten von den untersuchten Standorten in Sachsen werden beispielhaft zwei Arten hervorgehoben: Dendrobaena octaedra als die einzige Art, die an mindestens zwei Standorten nur eines Biotoptyps auftrat sowie Aporrectodea caliginosa, die als einzige Art an allen sechs untersuchten schwach sauren bis neutralen Standorten nachgewiesen wurde. Als Standortfaktoren werden exemplarisch zwei dargestellt, die für die vorliegende Untersuchung als besonders relevant angesehen werden können: Biotoptyp (1. Ebene) sowie Boden pH-Wert. Aus Abb. 64 und 65 wird ersichtlich, dass die in Sachsen gemachten Beobachtungen konsistent mit den ökologischen Profilen beider Arten sind. D. octaedra ist eine Art, die bevorzugt an sehr sauren Nadelwaldstandorten und deutlich seltener an schwach sauren bis neutralen Offenlandstandorten auftritt. Demgegenüber ist Aporrectodea caliginosa eine Art mit einer klaren Präferenz für schwach saure bis neutrale Standorte, also für vorwiegend Offenlandstandorte sowie einige Laubwälder, die jedoch nur sehr selten in Nadelwäldern vorkommt.


Das CA-Diagramm (Abb. 66) visualisiert die Unterschiedlichkeit der drei Biotoptypen. Es zeigt sich ein signifikanter Einfluss mehrerer Umweltvariablen wie der Textur (% Ton, Schluff, Sand) sowie der Ellenberg-Zahlen (Feuchte, Stickstoff, Licht, Temperatur). Hierbei ist zunächst zu beachten, dass für die Sandäcker Kreba-Neudorf und Klein Krauscha aufgrund fehlender Vegetation keine Ellenberg-Zahlen abgeleitet werden

Tab. 60: Indikatorwerte (indicator_value) der Lumbriciden-Arten der Biotoptypen Nadelwald trocken (Sand/Kiefer), Laubwald mittl. Feuchte (basenreich) und Sandacker sowie die entsprechenden relativen Abundanzen (rel_abundance) und Stetigkeiten (rel_frequency). Ein Indikatorwert > 0,8 wird als relevant angesehen und ist signifikant bei einer Irrtumswahrscheinlichkeit (pvalue) ≤ 0,1. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
44.02.03.02	Nadelwald trocken	(Sand/Kiefer)		
Dendrobaena attemsi	0,52	0,40	0,52	1,00
Dendrobaena octaedra	0,67	0,30	1,00	0,67
Dendrobaena sp.	0,83	0,05	0,83	1,00
Dendrodrilus rubidus	0,33	1,00	1,00	0,33
43.07.05.02	Laubwald mittl. Fer	uchte (basenreich)		
Aporrectodea sp. sensu lato	0,41	0,70	0,62	0,67
Aporrectodea caliginosa	0,38	0,79	0,38	1,00
Aporrectodea rosea	0,62	0,29	0,93	0,67
Bimastos parvus	0,33	1,00	1,00	0,33
Lumbricus rubellus	0,62	0,26	0,93	0,67
Lumbricus sp.	0,62	0,39	0,93	0,67
Lumbricus terrestris	0,79	0,08	0,79	1,00
Octolasion tyrtaeum	0,31	0,91	0,92	0,33
Octolasion sp.	0,33	1,00	1,00	0,33
33.03.02/03	Sandacker			
Aporrectodea longa	0,50	0,32	1,00	0,50
Lumbricus castaneus	0,50	0,32	1,00	0,50
Octolasion cyaneum	0,50	0,32	1,00	0,50

Abb. 64: *Dendrobaena octaedra*: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.04.2018).

Abb. 65: Aporrectodea caliginosa: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.04.2018).

konnten. Die anhand der Regenwurmgemeinschaft festgelegte Anordnung der Standorte im Diagramm korreliert mit den ihrerseits stark autokorrelierten Faktoren Feuchte und Nährstoffverfügbarkeit: von links trockenen und mageren zu rechts frischen und eutrophen Standorten. Es zeigt sich eine gute Trennung der drei Biotoptypen. Während die Kiefernwälder durch Arten der Gattung Dendrobaena (D. octaedra, D. attemsi) inklusive ihrer Juvenilen (dem Indikator Dendrobaena sp.) charakterisiert werden, unterscheiden sich die Laubwaldstandorte von den Sandäckern durch ihre höhere Artenzahl inklusive des Auftretens von Aporrectodea rosea, Lumbricus rubellus und Lumbricus terrestris. Einen Sonderfall bildet der Sandacker Mückenhain, der seinerseits zusätzliche Arten aufweist, die an den übrigen Standorten in Sachsen nicht vertreten waren (Aporrectodea longa, Lumbricus castaneus und Octolasion cyaneum).

6.4.5.3 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Mit dem Edaphobase Auswerte-Werkzeug Edaphoclass lässt sich aus dem in Edaphobase enthaltenen Datenbestand ein deutschlandweiter Vergleich anderer Standorte des gleichen Biotoptyps (2. Ebene) zu den in Sachsen untersuchten Standorten vornehmen (**Tab. 61**). Voraussetzung für die Vergleichbarkeit war, dass das Artenspektrum der Lumbriciden dort quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung zudem Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Nach der nach diesen Kriterien erfolgten Filterung standen leider keine Standorte des Biotoptyps 44.02: natürliche bzw.

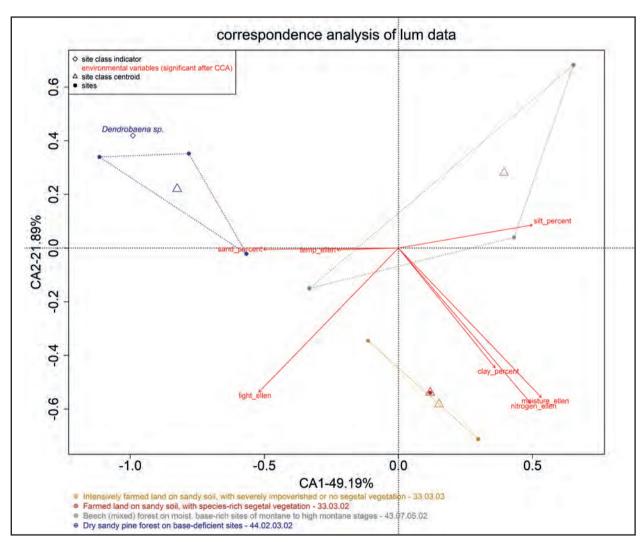


Abb. 66: Korrespondenzanalyse (CA) der Lumbricidendaten der Biotoptypen Nadelwald trocken (Sand/Kiefer) (blau), Laubwald mittl. Feuchte (basenreich) (grau) und Sandacker (beige/rot) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

naturnahe, trockene bis wechselfeuchte Kiefernwälder zur Verfügung. Daher konnten für einen Vergleich nur Standorte der höheren 1. Ebene (Biotoptyp 44.: Nadel(misch)wälder und -forste) herangezogen werden (insgesamt 28). Für den Biotoptyp 43.07: Laub- und Mischwälder feuchter bis frischer Standorte standen hingegen 87 Standorte als Vergleich zur Verfügung sowie für die Sandäcker neun Vergleichsflächen des Biotoptyps 33.03: Äcker und Ackerbrache auf Sandboden. Für diese Standorte wurde die Stetigkeit der Lumbricidenarten berechnet. Diese Stetigkeit ist somit ein Maß dafür, mit welcher Wahrscheinlichkeit eine einzelne Art an einem Standort des jeweiligen Biotoptyps erwartet werden kann.

Sand-Kiefernwald

Aus den in **Tab. 61** enthaltenen Werten ist erkennbar, dass an Standorten des Biotoptyps 44. zwei Arten mit einer hohen Wahrscheinlichkeit erwartet werden können: *Dendrobaena octaedra* und *Lumbricus rubellus*. Erstere wurde an zwei der drei Standorten dieses Typs in Sachsen nachgewiesen, letztere hingegen nur an einem. Darüber

hinaus wurde an allen drei dieser Standorte Dendrobaena attemsi gefunden. Diese Art ist an den übrigen Standorten dieses Biotoptypen (1. Ebene) nicht besonders häufig (Tab. 61). Gleiches gilt für Aporrectodea caliginosa sowie Dendrodrilus rubidus, die an jeweils einem Standort erfasst wurden. Die dominanteste Art war für die Standorte Seidewinkel und Hoyerswerda D. octaedra (64% bzw. 50% der Adulti), am Standort Weißkollm war dies D. attemsi als einzige nachgewiesene Art. Das Artenspektrum war somit zwischen den drei Standorten unterschiedlich. Hinsichtlich der Gesamtabundanz zeigten sich zwischen den drei Standorten hingegen keine starken Unterschiede (< Faktor 2). Insgesamt ergab die Auswertung der drei Kiefernwald-Standorte keine besonderen Auffälligkeiten. Zwar standen in Edaphobase keine Standorte des gleichen Biotoptyps (2. Ebene) zum Vergleich zur Verfügung, es handelt sich jedoch um trockene, saure und nährstoffarme Standorte, die daher keine günstigen Bedingungen für Regenwürmer bieten. Somit waren eine geringe Artenzahl und Abundanz und das Vorkommen acidotoleranter, epigäischer Arten zu erwarten.

Tab. 61: Angaben der Stetigkeiten der Lumbricidenarten innerhalb der Biotoptypen 44.02 natürliche bzw. naturnahe, trockene bis wechselfeuchte Kiefernwälder, 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 33.03 Äcker und Ackerbrache auf Sandboden (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 25.04.2018).

Biotoptyp	44	43.07	33.03	
Anzahl Standorte	28	87	9	
Allolobophoridella eiseni		0,03		
Aporrectodea caliginosa	0,11	0,43	1,00	
Aporrectodea cupulifera		0,01		
Aporrectodea handlirschi		0,09		
Aporrectodea limicola		0,05		
Aporrectodea longa		0,03		
Aporrectodea rosea	0,18	0,49	0,11	
Dendrobaena attemsi	0,11	0,03		
Dendrobaena octaedra	0,75	0,39	0,11	
Dendrobaena pygmaea		0,02		
Dendrodrilus rubidus	0,29	0,23		
Eisenia fetida		0,01		
Eiseniella tetraedra		0,07		
Lumbricus badensis		0,01		
Lumbricus castaneus	0,07	0,10		
Lumbricus meliboeus		0,01		
Lumbricus polyphemus	0,07	0,02		
Lumbricus rubellus	0,89	0,76	0,11	
Lumbricus terrestris	0,07	0,28	0,44	
Murchieona minuscula	0,04	0,01		
Octolasion cyaneum		0,07		
Octolasion tyrtaeum	0,21	0,46		

Basenreicher Laubwald mittlerer Feuchte

Im Vergleich zu den in **Tab. 61** angegeben Stetigkeiten der verschiedenen Arten kann zunächst festgestellt werden, dass *Lumbricus rubellus*, der mit der höchsten Wahrscheinlichkeit in Laub- und Mischwäldern feuchter bis frischer Standorte zu erwarten war, auch an zwei von drei Standorten nachgewiesen wurde. Aus der Vielzahl der in diesem Biotoptyp bereits nachgewiesenen Arten wird deutlich, dass es sich bezüglich der Bodeneigenschaften um einen sehr heterogenen Biotoptyp handelt. Dies betrifft insbesondere den pH-Wert, der bekanntermaßen einen starken Einfluss auf die Zusammensetzung der Lumbriciden-Gemeinschaft ausübt. Das Auswerte-Werkzeug Edaphoclass erlaubt, mehrere Standortfaktoren in die Analyse aufzunehmen und die Ergebnisse grafisch darzustellen. In den **Abb. 67**

und 68 ist daher die Stetigkeit der Arten an Standorten des Biotoptyps 43.07 mit einem pH-Wert von 3,5 bis 4,5 (34 Standorte) bzw. 4,5 bis 5,5 (19 Standorte), wie für die drei Laubwälder in Sachsen zutreffend, dargestellt worden. Die Grafiken zeigen eine teilweise Schärfung des Artenspektrums: Insgesamt wurden in den engeren pH-Bereichen weniger Arten nachgewiesen. Im pH-Bereich zwischen 3.5 und 4.5 erreicht L. rubellus eine Stetigkeit von 82%, keine weitere Art tritt hier mit einer Stetigkeit von > 50% auf. An den beiden Standorten in diesem pH-Bereich (Dt-Paulsdorf Spitzberg und Schönbrunner Berg) wurde L. rubellus nachgewiesen. Im pH-Bereich zwischen 4,5 und 5,5 treten drei Arten mit einer Stetigkeit von jeweils 63 % auf: Aporrectodea rosea, Lumbricus rubellus und Octolasion tyrtaeum. Von diesen wurden am Standort Schlegel Buchberg

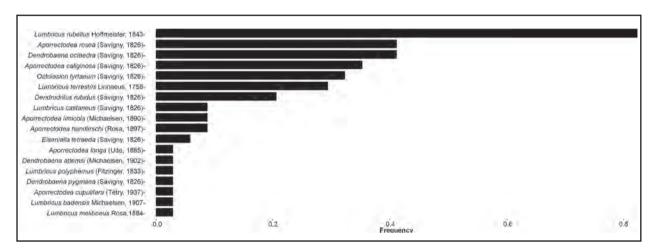
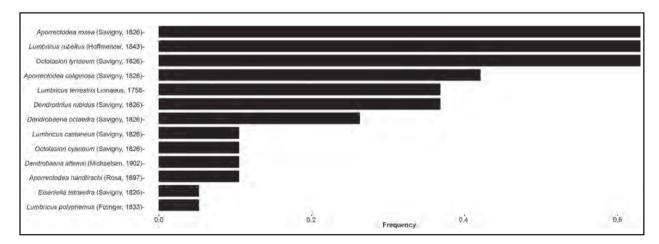



Abb. 67: Stetigkeiten der Lumbricidenarten innerhalb des Biotoptyps 43.07 Laub- und Mischwälder feuchter bis frischer Standorte (nach Riecken et al. 2003) und einem Boden-pH-Wert von 3,5-4,5 (34 Standorte; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 25.04.2018). Regenwurmarten (von oben nach unten): *L. rubellus*, *A. rosea*, *D. octaedra*, *A. caliginosa*, *O. tyrtaeum*, *L. terrestris*, *D. rubidus*, *L. castaneus*, *A. limicola*, *A. handlirschi*, *E. tetraeda*, *A. longa*, *D. attemsi*, *L. polyphemus*, *D. pygmaea*, *A. cupulifera*, *L. badensis*, *L. meliboeus*.

Abb. 68: Stetigkeiten der Lumbricidenarten innerhalb des Biotoptyps 43.07 Laub- und Mischwälder feuchter bis frischer Standorte (nach Riecken et al. 2003) und einem Boden-pH-Wert von 4,5-5,5 (19 Standorte; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 25.04.2018). Regenwurmarten (von oben nach unten): *A. rosea, L. rubellus, O. tyrtaeum, A. caliginosa, L. terrestris, D. rubidus, D. octaedra, L. castaneus, O. cyaneum, D. attemsi, A. handlirschi, E. tetraedra, L. polyphemus.*

A. rosea und O. tyrtaeum gefunden. Insgesamt lässt sich innerhalb der Standorte dieses Biotoptyps der Einfluss des pH-Gradienten ablesen: sowohl Artenzahl als auch Gesamtabundanz nehmen mit steigendem pH-Wert zu, letztere sehr deutlich. Dies betrifft dementsprechend vor allem wenig acidotolerante Arten wie Aporrectodea caliginosa, Lumbricus terrestris und Octolasion tyrtaeum und juvenile Exemplare dieser Gattungen. Erwähnenswert ist der Nachweis eines Exemplars der epigäischen Art Bimastos parvus am Standort Schlegel Buchberg, die bislang noch nicht in Deutschland gefunden wurde (Lehmitz et al. 2014). Darüber hinaus wurde an den Standorten Schlegel Buchberg und Dt-Paulsdorf Spitzberg Dendrobaena attemsi gefunden, die an vergleichbaren Standorten (Biotoptyp 2. Ebene) bislang sehr selten nachgewiesen wurde. Unter Berücksichtigung des Zusammenspiels des Biotoptyps und des pH-Wertes sind die drei Laubwald-Standorte in Sachsen jedoch insgesamt als typisch anzusehen.

Sandacker

Für diesen Biotoptyp standen in Edaphobase Daten von neun Standorten (33.03 Äcker und Ackerbrache auf Sandboden (nach Riecken et al. 2003)) für einen Vergleich zur Verfügung. Als einzige Art ist hier mit einer sehr hohen Wahrscheinlichkeit Aporrectodea caliginosa zu erwarten, die auch an allen drei Sandäckern in Sachsen nachgewiesen wurde und in Kreba-Neudorf und Klein Krauscha die einzige Art darstellte. Am Standort Mückenhain wurden dagegen noch Aporrectodea longa, Aporrectodea rosea, Lumbricus castaneus, Lumbricus terrestris, Octolasion cyaneum und Octolasion tyrtaeum gefunden. Dieser Standort wich somit deutlich vom Artenspektrum der beiden übrigen Standorte ab. Dies zeigte sich auch bei der Gesamtabundanz, die hier um ca. den Faktor 3.7 höher als am Standort Klein Krauscha und 12-mal höher als in Kreba-Neudorf war. Das Auftreten der Arten Aporrectodea longa, Lumbricus castaneus, Octolasion cyaneum und Octolasion tyrtaeum war aus den Vergleichsdaten nicht zu erwarten, da diese bislang nicht an Standorten dieses Biotoptyps (2. Ebene) nachgewiesen wurden. Insgesamt ist die Artenzahl an diesem Standort auffällig hoch.

6.4.6 Enchytraeidae 6.4.6.1 Individuen- und Artenzahlen

Insgesamt wurden auf allen untersuchten Flächen 21.574 Individuen aus 66 Arten und 10 Gattungen nachgewiesen (**Tab. 62**, **Tab. Anhang 6**, **33-35**). Darunter sind 8 noch unbeschriebene Arten, die bereits aus anderen Untersuchungen bekannt sind.

Die Art *Enchytronia pygmaea* wurde erst im letzten Jahr gültig beschrieben (Graefe & Schmelz 2017). Die hohe Zahl noch unbeschriebener, d. h. potentiell neuer Arten ist bei Enchytraeiden nicht ungewöhnlich – die taxonomische Durcharbeitung dieser Gruppe ist noch immer unzureichend. Viele dieser neuen Formen sind zwar bereits aus anderen Untersuchungen bekannt; ihre hohe Zahl ist dennoch bemerkenswert.

Die Kiefernwald- und Laubwald-Standorte hatten ähnlich hohe Individuenzahlen (jeweils insgesamt 9.609 bzw. 8.756 Ind.), während die der Sandacker-Flächen deutlich niedriger lagen (insgesamt 3.209 Ind.). Die Replikate von Laubwald und Sandacker wiesen starke Unterschiede der Individuenzahl auf. Innerhalb einer Fläche unterschieden sich die Individuenzahlen zwischen Frühjahrs- und Herbstprobenahme um den Faktor 1,2-9,9.

Der artenreichste Biotoptyp war der Sandacker mit summiert 28 Arten, der artenärmste der Kiefernwald mit summiert 10 Arten.

6.4.6.2 Faunistische Anmerkungen und kritische Arten

Cognettia chlorophila entspricht weitgehend der bekannten und in sauren Wäldern dominanten Art Cognettia sphagnetorum. Die Änderung des Artnamens geht auf eine taxonomische Aufspaltung von C. sphagnetorum in mehrere Arten zurück (Martinsson et al. 2015). Eine davon behielt, den Nomenklaturregeln entsprechend, den Namen sphagnetorum, eine andere erhielt den Namen C. chlorophila. In der vorliegenden Untersuchung wurde nur C. chlorophila nachgewiesen; sie wäre vor der Artaufspaltung als C. sphagnetorum identifiziert worden. Um Missverständnissen vorzubeugen. wird im Folgenden zwischen C. chlorophila und C. sphagnetorum s.l. (= sensu lato) unterschieden. Letztere bezeichnet den Artenkomplex vor der Artaufspaltung, der auch C. chlorophila beinhaltet.

Taxonomisch problematisch sind einige Arten der Gattung *Enchytraeus*, insbesondere *E. buchholzi* und *E. christenseni*. Die Unterscheidung dieser häufig in der Literatur genannten Arten ist kontrovers, außerdem handelt es sich bei ihnen vermutlich um Artengruppen. In dieser Studie wurde *E. christenseni* nicht nachgewiesen; sie ist aber teilweise identisch mit einer Art, die hier als *Enchytraeus* sp. GRAN ausgewiesen wurde. Artenkomplexe um *E. buchholzi* und *E. christenseni* werden z. Zt. taxonomisch mit lichtmikroskopischen und molekulargenetischen Methoden untersucht (R. Schmelz, unpubliziert), auch unter Einbeziehung des in dieser Länderstudie erhobenen Materials.

6.4.6.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Biotoptypen

Die fünf häufigsten Arten waren (in abnehmender Reihenfolge) Achaeta affinis, Cognettia chlorophila, Oconnorella cambrensis, Enchytraeus norvegicus und Enchytronia parva. Sie machten zusammen 72,4% aller gefangenen Individuen aus.

In **Tab. 63** sind die Arten mit ihren Abundanzen nach der Häufigkeit ihres Vorkommens in den jeweiligen Biotoptypen geordnet. Eingerahmt und damit vorläufig als charakteristisch eingestuft sind Arten, die in zwei oder drei Replikaten eines Biotoptyps gefunden wurden, wobei die Gruppierung so vorgenommen wurde, dass Ähnlichkeiten und Unterschiede zwischen den drei untersuchten Biotoptypen zum Vorschein kommen. Zugleich wurden Ähnlichkeiten und Unterschiede innerhalb eines Biotoptyps, d. h. zwischen den Replikaten, sichtbar gemacht.

Der Einteilung in Kennarten, Grundarten und Begleitarten (Kap. 4.5) liegt der gesamte Datensatz aller vier Länderstudien (vgl. Kap. 5, 7, 8) zugrunde. Außerdem wurden Arten ohne besondere Biotopbindung, aber mit spezifischer pH-Präferenz, in sogenannte Säuregruppen eingeteilt. So wurden übergeordnete Muster erkennbar gemacht, die aus der isolierten Betrachtung nur des Datensatzes der Länderstudie in Sachsen nicht erkennbar wären.

Anhand der Kreuztabelle lassen sich folgende Artengruppen identifizieren:

- Fridericia brunensis wurde an allen drei trockenen Nadelwaldstandorten (Sand-Kiefernwald), jedoch keinem der übrigen Biotoptypen nachgewiesen und dementsprechend als (einzige) Kennart dieses Biotoptyps identifiziert.
- Fridericia nemoralis, Fridericia paroniana und Fridericia sylvatica wurden innerhalb der Waldstandorte als Kennarten der basenreichen Laubwälder mittlerer Feuchte identifiziert, da sie fast ausschließlich an den Standorten dieses Biotoptyps nachgewiesen wurden. Allerdings wurden F. nemoralis und F. paroniana ebenfalls an einem Sandacker-Standort gefunden.
- Fridericia benti und Stercutus niveus bilden die Grundarten der Buchenwälder und wurden (mit Ausnahme von F. benti an einem Laubwaldstandort) an allen dieser Standorte nachgewiesen.
- Enchytraeus bulbosus, Enchytronia sp. (MINO) und Henlea perpusilla können insgesamt als Grundarten für Offenlandstandorte angesehen werden. E. bulbosus wurde im vorliegenden Datensatz jedoch nur an einem der drei Sandäcker gefunden.
- Achaeta affinis, Cognettia chlorophila, Enchytraeus norvegicus, Enchytronia sp. (TENU),
 Oconnorella cambrensis und Oconnorella

Tab. 62: Arten- und Individuenzahlen der Lumbriciden auf den Untersuchungsflächen in Sachsen.

			Individuen	zahlen		Artenzahle	n	
	SN11	Frühjahr	1075	2736		8	9	
	21111	Herbst	1661	2/30		8	9	
Kiefer	SN12	Frühjahr	1610	3553	9609	9	9	10
Kicici	51112	Herbst	1943		9009	8	7	10
	SN13	Frühjahr	1170	3320		9	9	
	51115	Herbst	2150			8	9	
	SN22	Frühjahr	503	863		17	17	
	511/2/2	Herbst	360	803		11	1 /	
Laubwald	SN23	Frühjahr	3169	4274	8756	13	17	25
Laubwalu	31123	Herbst	1105	42/4	8730	16	1 /	23
	SN24	Frühjahr	1020	3619		10	16	
	31124	Herbst	2599	3019		13	10	
	SN31	Frühjahr	112	383		7	12	
	31/31	Herbst	271	363		12	12	
Sandacker	SN32	Frühjahr	1366	2183	3209	14	18	28
Sandacker	51132	Herbst	817	2183	3209	17	10	20
	SN34	Frühjahr	584	643		6	9	
	Herbst	Herbst	59			7	<i></i>	
Sachsen 2014			Individuen	zahl gesamt:	21574	Artenzahl g	gesamt:	48

Tab. 63: Sortierte Kreuztabelle der Enchytraeiden. Angaben in Ind./m². Angabe des Biotoptyps nach Riecken et al. (2003).

	lfd. Nr.	1: Seidew 2: Weißkol	lm	lfd. Nr.	4: Buchber 5: Spitzber	g	lfd. Nr.	7: Kreba-N 8: Mücker	hain
							lfd. Nr. Sandac 33.03.0		rauscha
Flächenkürzel Edaphobase	EB_SN1	1 EB_SN1:	2 EB_SN1	3 EB_SN2	22 EB_SN2	3 EB_SN24	4 EB_SN3	1 EB_SN3	2 EB_SN3
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Kennarten									
Kiefernwald				_					
Fridericia brunensis	41	3573	690	<u></u>].					
Buchenwälder (basisch)							_		
Fridericia nemoralis				-	568	102		41	•
Fridericia paroniana				6963	122	53		873	
Fridericia sylvatica				812	6090	1027			
rundarten									
Buchenwälder							_		
Fridericia benti				.	589	244			
Stercutus niveus				386	3147	41].		•
Offenland							_		
Enchytronia sp. (MINO)							81		94
Henlea perpusilla							609	7998	
Enchytraeus bulbosus								508	
äuregruppen							•••••	••••••	• • • • • • • • • • • • • • • • • • • •
sauer									
Achaeta affinis	7166	21072	3187	1.	42854	70913	7.		27
Enchytronia sp. (TENU)	61	61	345	.	20	323	325		
Oconnorella cambrensis	26695	13378	13520	.	3796	239			
Cognettia chlorophila	18900	29314	36581			1789	<u>.</u>		
Enchytraeus norvegicus	20	2091	20		10191				10297
Oconnorella tubifera				447	6415				
sauer bevorzugt Wald	•••••	• • • • • • • • • • • • • • • • • • • •	•	•	••••••	•	••		
Achaeta camerani	61	41	81						
Marionina clavata			4547		•	•			
Grünland, neutral bis mäßig sa	uer, frisch	 1	• • • • • • • • • • • • • • • • • • • •	••					
Henlea ventriculosa							20	1421	61
Marionina communis								7816	
Offenland, schwach bis mäßig s	sauer						••••••	••••••	· ·• · · · · · · · · · · · · ·
Fridericia christeri							183	6151	
schwach sauer, Grünland/Wald	ı								
Fridericia bisetosa				3512	548	467	20		
Fridericia dura				41	41	20	1.		
egleitarten							_		
Begleitarten mit hoher Stetigke	eit								
Enchytraeus buchholzi				650	4182	398	1888	4101	2156
Enchytraeus sp. (GRAN)				183	3350	406	1340	1989	81
Enchytronia parva	670	284	8425	102	3025	1168			-

Tab. 63 (Fortsetzung).

	Ifd. Nr. 1: Seidewinkel Ifd. Nr. 2: Weißkollm Ifd. Nr. 3: Hoyerswerda Nadelwald trocken (Sand/Kiefer) 44.02.03.02		lfd. Nr. lfd. Nr. Laubw (basen)	lfd. Nr. 4: Buchberg lfd. Nr. 5: Spitzberg lfd. Nr. 6: Schönbrunner Berg Laubwald mittl. Feuchte (basenreich) 43.07.05.02			lfd. Nr. 7: Kreba-Neudorf lfd. Nr. 8: Mückenhain lfd. Nr. 9: Klein Krauscha Sandacker 33.03.02/03		
Flächenkürzel Edaphobase	EB_SN1	1 EB_SN1	2 EB_SN	13 EB_SN2	22 EB_SN2	23 EB_SN24	4 EB_SN3	1 EB_SN3	2 EB_SN34
lfd. Nr.:	1	2	3	4	5	6	7	8	9
sonstige Begleiter									
Achaeta sp.		325							
Achaeta sp. (DZWI)				406					
Buchholzia appendiculata				1929	812	2591		5217	
Enchytraeus dichaetus								365	
Enchytraeus lacteus								264	
Enchytronia baloghi				61					
Enchytronia parva							2862		•
Enchytronia sp. ID2VIII				81					
Enchytronia sp. (OMNI)								20	
Enchytronia pygmaea							244		
Fridericia bulboides						27	102	5156	3860
Fridericia connata				20	1015				
Fridericia cylindrica									27
Fridericia granosa									81
Fridericia isseli				20					
Fridericia nemoralis								41	
Fridericia paroniana								873	
Fridericia ratzeli s.s.								41	
Fridericia schmelzi				•				1198	
Fridericia sp. (ALAT)				731					
Fridericia sp. (PERT)								792	
Fridericia waldenstroemi				1177					
Marionina mendax								365	
Mesenchytraeus pelicensis	1929	1989							

tubifera bilden, auch unter Berücksichtigung der Beobachtungen aus den übrigen Länderstudien (Kap. 5, 7, 8), gemeinsam die Grundarten saurer Standorte. Für C. chlorophila, E. norvegicus und insbesondere O. tubifera war dieses Muster im vorliegenden Datensatz jedoch nur schwach ausgeprägt. C. chlorophila und E. norvegicus kamen nur an einem der drei Laubwaldstandorte vor, was vermutlich mit den speziellen Bodeneigenschaften der Laubwälder erklärt werden kann, die offenbar nur oberflächlich versauert, jedoch ansonsten basenreich sind (vgl. Kap. 6.3.1). O. tubifera fehlte in den trockenen Nadelwäldern ganz, was möglicherweise auf die

- geringe Bodenfeuchte zurückzuführen ist.
- Achaeta camerani und Marionina clavata bilden in der Zusammenschau aller Länderstudien eine Säuregruppe für saure Waldstandorte, M. clavata wurde hier jedoch nur in einem der drei trockenen Nadelwälder nachgewiesen.
- Henlea ventriculosa und Marionina communis wurden unter Berücksichtigung der Ergebnisse aller vier Länderstudien in eine Säuregruppe "neutrales bis mäßig saures und frisches Grünland" eingeordnet. Dennoch kam H. ventriculosa in überwiegend niedriger Abundanz in allen drei Sandäckern sowie M. communis in dem Sandacker mit der höchsten Feuchte vor.

- Fridericia christeri charakterisiert im vorliegenden
 Datensatz als einzige Art "schwach bis mäßig
 saures Offenland" und wurde dementsprechend
 auch in zwei der drei Sandäcker nachgewiesen.
- Fridericia bisetosa und Fridericia dura bilden eine Säuregruppe für schwach saure Grünland- & Waldstandorte und kamen auch an allen drei Laubwald-Standorten vor, was unter Berücksichtigung der speziellen Bodeneigenschaften der Laubwälder (vgl. Kap. 6.3.1) plausibel erscheint.
- Alle übrigen Enchytraeidenarten können an den untersuchten Standorten in Sachsen als Begleitarten mit unterschiedlich hoher Stetigkeit angesehen werden.

In der Indikatorartenanalyse (**Tab. 64**) wurden die folgenden Arten identifiziert, die für einen der Biotoptypen als relevant und signifikant eingestuft wurden:

- Nadelwald trocken (Sand-Kiefernwald): Achaeta camerani, Cognettia chlorophila, Fridericia brunensis und Oconnorella cambrensis. Alle vier Arten waren dementsprechend auch einer der Artengruppen in der Kreuztabelle zugeordnet (F. brunensis als Kennart der trockenen Nadelwälder, C. chlorophila und O. cambrensis zur Säuregruppe saurer Standorte sowie A. camerani zur Säuregruppe für saure Wälder). C. chlorophila und O. cambrensis traten ihrer Eingruppierung entsprechend auch an Standorten der Laubwälder mittlerer Feuchte auf. Sie erreichten jedoch in den trockenen Nadelwäldern eine erheblich höhere Abundanz, was sich in einem entsprechend hohen Wert für die relative Abundanz niederschlug.
- Laubwald mittl. Feuchte (basenreich): Fridericia bisetosa, Fridericia dura, Fridericia sylvatica und Stercutus niveus. Von diesen wurde F. sylvatica auch als Kennart für die Laubwälder mittlerer Feuchte identifiziert. S. niveus wurde den Grundarten der Buchenwälder zugeordnet, und F. bisetosa und F. dura bildeten eine Säuregruppe für schwach saures Grünland bzw. Wald.
- Sandacker: Bei der Kennartenanalyse für die Sandäcker ist zu beachten, dass die drei Standorte in zwei unterschiedliche Biotoptypen der 3. Ebene eingeordnet wurden: EB_SN31 & EB_SN32 = 33.03.03, intensiv bewirtschafteter Acker auf Sandboden mit stark verarmter oder fehlender Segetalvegetation; EB_SN34 = 33.03.02, Acker auf Sandboden mit artenreicher Segetalvegetation. Für erstere wurden Fridericia christeri und Henlea perpusilla als Kennarten identifiziert und

einer Säuregruppe für schwach bis mäßig saures Offenland (F. christeri) bzw. den Offenland-Grundarten (H. perpusilla) zugeordnet. Da Fridericia cylindrica und Fridericia granosa ausschließlich am Standort Klein Krauscha als einzigem Standort seines Biotoptyps vorkamen, wurden sie dementsprechend auch als Indikatorarten erkannt. Dies ist jedoch den Eigenheiten der Datengrundlage geschuldet, und diese Arten wurden auch angesichts ihrer niedrigen Abundanz als Begleitarten eingestuft.

Die Indikatorartenanalyse liefert somit zusätzliche Informationen zu der Darstellung der Artengruppen in den sortierten Kreuztabellen, in denen die Abundanz nicht berücksichtigt wurde.

CA-Diagramm (Abb. 69) visualisiert Unterschiedlichkeit der drei Biotoptypen. Generell fällt, trotz der geringen Zahl von Kennarten, die große faunistische Distanz zwischen den drei Habitattypen auf. Dies ist darauf zurückzuführen, dass wenige Begleitarten durchgehend in allen drei Biotoptypen auftraten, so dass die Überlappungen der Artenspektren gering sind (Tab. 63). Die großen Differenzen der bereits auf oberster Klassifizierungsebene unterschiedenen Habitattypen (Nadelwälder: 44, Laubwälder: 43, Äcker: 33), die weitgehend auf Landnutzung und Bodenreaktion zurückgehen, sind also auch bodenfaunistisch sichtbar. Als weitere erklärende Faktoren stellt Abb. 69 die Ellenberg'sche Stickstoffzahl (mager im Nadelwald, mesophil bzw. eutroph im Laubwald und (wo feststellbar) eutroph im Sandacker, siehe Tab. 40) sowie die Textur heraus. Innerhalb der drei Laubwaldreplikate ist der am wenigsten saure Standort (EB SN22) noch einmal deutlich von den anderen beiden (EB SN23, EB SN24) im Artenspektrum unterschieden. Die Replikate des Sandackers sind faunistisch inhomogen, zeichnen sich aber gegenüber den Waldstandorten durch eine störungsresistente Artengruppe (z. B. Fridericia bulboides und F. christeri) sowie durch eine starke Reduktion von Säure- und Mäßigsäurezeigern aus.

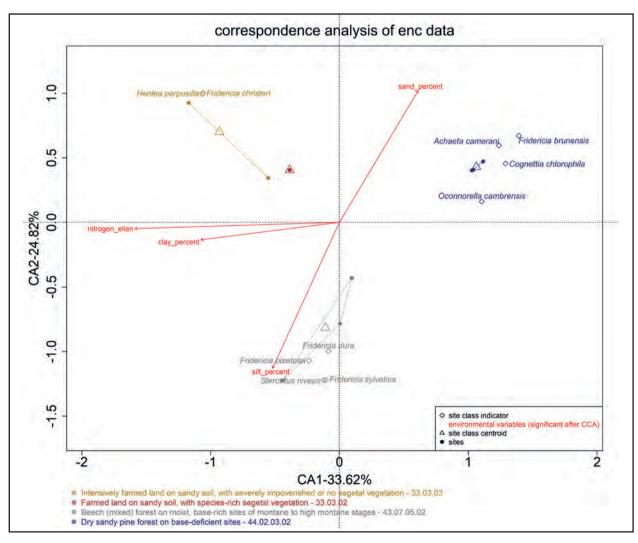
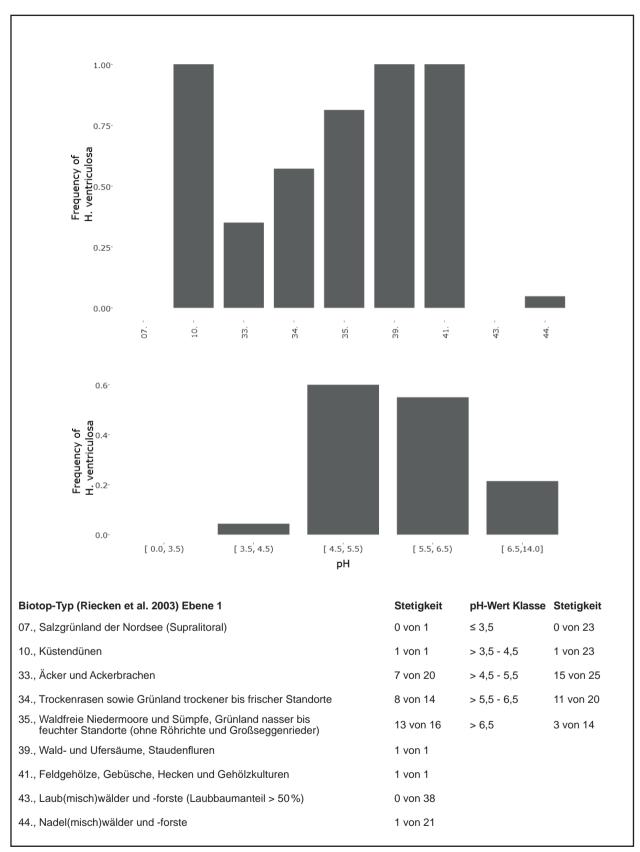
Mit Hilfe des in das Edaphobase-Portal integrierten Auswerte-Werkzeugs Edaphostat (Hausen et al. 2017) können die ökologischen Profile der im Datenbestand enthaltenen Arten angezeigt werden. Es wurden Daten von Standorten in Deutschland ausgewählt, an denen das Artenspektrum der Enchytraeiden quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung auch Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Damit standen Daten von insgesamt 119 Standorten für 95 verschiedene

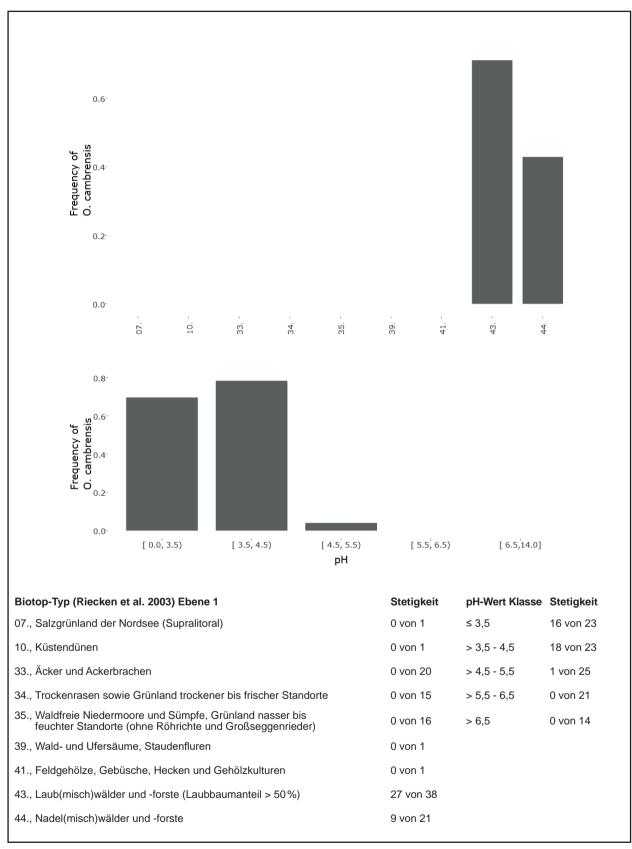
Enchytraeidenarten zur Verfügung. Für den Vergleich mit Daten von den untersuchten Standorten in Sachsen werden beispielhaft zwei Arten hervorgehoben: 1) Henlea ventriculosa, eine Grundart neutraler bis mäßig saurer Grünländer, die als einzige Art ausschließlich und an allen drei Sandacker-Standorten gefunden wurde. 2) Oconnorella cambrensis, die bislang in erster Linie als acidotolerante Waldart eingeschätzt (Jänsch & Römbke 2003) und in eine Säuregruppe für saure Standorte eingeordnet wurde. Als Standortfaktoren werden exemplarisch zwei dargestellt, die für die vorliegende Untersuchung als besonders relevant angesehen werden können: Biotoptyp (1. Ebene) sowie Boden pH-Wert. Aus den Abb. 70 und 71 wird ersichtlich, dass die in Sachsen erzielten Beobachtungen größtenteils konsistent mit den ökologischen Profilen beider Arten sind. H. ventriculosa ist eine Offenland-Art mit deutlich größerer Stetigkeit im

Grünland als in Äckern und einer Präferenz für schwach saure Bedingungen. Demgegenüber zeigt *O. cambrensis* eine klare Präferenz für (stark) saure Standorte und wurde bislang ausschließlich an Waldstandorten nachgewiesen.

6.4.6.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Mit dem Edaphobase Auswerte-Werkzeug Edaphoclass lässt sich aus dem in Edaphobase enthaltenen Datenbestand ein deutschlandweiter Vergleich zu anderen Standorten des gleichen Biotoptyps (2. Ebene) mit den in Sachsen untersuchten Standorten vornehmen (**Tab. 65**). Voraussetzung für die Vergleichbarkeit ist, dass das Artenspektrum der Enchytraeiden dort quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B.


Abb. 69: Korrespondenzanalyse (CA) der Enchytraeidendaten der Biotoptypen Nadelwald trocken (Sand/Kiefer) (blau), Laubwald mittl. Feuchte (basenreich) (grau) und Sandacker (beige/rot) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 64: Indikatorwerte (indicator_value) der Enchytraeiden-Arten der Biotoptypen Nadelwald trocken (Sand/Kiefer), Laubwald mittl. Feuchte (basenreich) und Sandacker sowie die entsprechenden relativen Abundanzen (rel_abundance) und Stetigkeiten (rel_frequency). Ein Indikatorwert > 0.8 wird als relevant angesehen und ist signifikant bei einer Irrtumswahrscheinlichkeit (pvalue) ≤ 0.1 . Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
44.02.03.02	Nadelwald trocker	ı (Sand/Kiefer)		
Achaeta camerani	1,00	0,03	1,00	1,00
Achaeta sp.	0,33	1,00	1,00	0,33
Cognettia chlorophila	0,98	0,02	0,98	1,00
Enchytronia parva	0,52	0,47	0,52	1,00
Enchytronia sp. TENU	0,36	0,80	0,36	1,00
Fridericia brunensis	1,00	0,03	1,00	1,00
Marionina clavata	0,33	1,00	1,00	0,33
Mesenchytraeus pelicensis	0,67	0,38	1,00	0,67
Oconnorella cambrensis	0,93	0,01	0,93	1,00
43.07.05.02	Laubwald mittl. F			1,00
Achaeta affinis	0,52	0,49	0,78	0,67
Achaeta sp. DZWI	0,33	1,00	1,00	0,33
_				
Buchholzia appendiculata	0,41	0,54	0,41	1,00
Enchytronia sp. ID2VIII	0,33	1,00	1,00	0,33
Fridericia benti	0,67	0,29	1,00	0,67
Fridericia bisetosa	0,99	0,02	0,99	1,00
Fridericia connata	0,67	0,31	1,00	0,67
Fridericia dura	1,00	0,03	1,00	1,00
Fridericia isseli	0,33	1,00	1,00	0,33
Fridericia nemoralis	0,61	0,29	0,92	0,67
Fridericia paroniana	0,84	0,27	0,84	1,00
Fridericia sp. ALAT	0,33	1,00	1,00	0,33
Fridericia sylvatica	1,00	0,03	1,00	1,00
Fridericia waldenstroemi	0,33	1,00	1,00	0,33
Oconnorella tubifera	0,67	0,31	1,00	0,67
Stercutus niveus	1,00	0,03	1,00	1,00
33.03.02/03	Sandacker			
Enchytraeus norvegicus	0,71	0,14	0,71	1,00
Enchytronia sp. MINO	0,70	0,18	0,70	1,00
Fridericia bulboides	0,59	0,45	0,59	1,00
Fridericia cylindrica	1,00	0,10	1,00	1,00
Fridericia granosa	1,00	0,10	1,00	1,00
Enchytraeus buchholzi	0,43	0,61	0,43	1,00
Enchytraeus bulbosus	0,50	0,31	1,00	0,50
Enchytraeus dichaetus	0,50	0,31	1,00	0,50
Enchytraeus lacteus	0,50	0,31	1,00	0,50
Enchytraeus sp. GRAN	0,54	0,40	0,54	1,00
Enchytronia baloghi	0,36	0,58	0,71	0,50
Enchytronia sp. OMNI	0,50	0,31	1,00	0,50
Enchytronia pygmaea	0,50	0,30	1,00	0,50
Fridericia christeri	1,00	0,03	1,00	1,00
Fridericia ratzeli s.s.	0,50		1,00	0,50
		0,31		
Fridericia schmelzi	0,50	0,31	1,00	0,50
Fridericia sp. PERT	0,50	0,31	1,00	0,50
Henlea perpusilla	1,00	0,03	1,00	1,00
Henlea ventriculosa	0,92	0,20	0,92	1,00
Marionina communis	0,50	0,31	1,00	0,50
Marionina mendax	0,50	0,31	1,00	0,50

Abb. 70: *Henlea ventriculosa*: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps (oben) bzw. einer pH-Wert-Klasse (unten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 06.07.2018).

Abb. 71: *Oconnorella cambrensis*: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps (oben) bzw. einer pH-Wert-Klasse (unten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 04.07.2018).

Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung zudem Daten von Experimentalflächen (z. B. denen aus ökotoxikologischen Untersuchungen). Nach der nach diesen Kriterien erfolgten Filterung standen 9 Standorte des Biotoptyps 44.02: natürliche bzw. naturnahe, trockene bis wechselfeuchte Kiefernwälder, 20 Standorte des Biotoptyps 43.07: Laub- und Mischwälder feuchter bis frischer Standorte sowie 5 Standorte des Biotoptyps 33.03: Äcker und Ackerbrache auf Sandboden für einen Vergleich zur Verfügung. Für diese Standorte wurde die Stetigkeit der Enchytaeidenarten berechnet. Diese Stetigkeit ist somit ein Maß dafür, mit welcher Wahrscheinlichkeit eine einzelne Art an einem Standort des jeweiligen Biotoptyps erwartet werden kann.

Sand-Kiefernwald

Gemäß **Tab. 65** ist an Standorten dieses Biotoptyps (2. Ebene) lediglich *Cognettia sphagnetorum* s.l. mit hoher Wahrscheinlichkeit zu erwarten. Diese Art wurde auch (hier als *C. chlorophila*, vgl. Kap. 6.4.6.2) an allen drei Länderstudien-Standorten in Sachsen mit hoher Abundanz nachgewiesen. Die oft artenarmen Nadelforste sind im Allgemeinen durch ein hohes Dominanzgefälle und Säurezeiger ohne spezifische Habitatbindung ausgezeichnet (vgl. Graefe 2004, Beylich & Graefe

2007). Das Arten- und Abundanzspektrum der drei untersuchten Standorte entspricht also den Erwartungen. Eine Besonderheit stellt die selten gefundene und hier als Kennart klassifizierte *Fridericia brunensis* dar.

Basenreicher Laubwald mittlerer Feuchte

Tab. 65 entsprechend sind an Standorten des Biotoptyps 43.07 sieben Arten mit hoher Wahrscheinlichkeit zu erwarten: Cognettia sphagnetorum s.l., Enchytraeus buchholzi, Enchytronia parva, Marionina clavata, Mesenchytraeus glandulosus, Oconnorella cambrensis und Stercutus niveus. Die drei Länderstudien-Standorte entsprachen somit nur teilweise den Erwartungswerten: Es wurden drei (EB_SN22) bis fünf (EB_SN24) der zu erwartenden Arten nachgewiesen. Insgesamt ist die ermittelte Artengesellschaft dennoch typisch für einen Laubwald mit Mull als Humusform. Im Vergleich zum Nadelwald treten die neutrophilen Fridericia-Arten hinzu, außerdem die an Mull gebundenen Arten Oconnorella tubifera, Stercutus niveus und der Streubewohner Buchholzia appendiculata. Hierbei sind die speziellen Bodeneigenschaften der hier untersuchten Laubwälder zu beachten, die offenbar zwar oberflächlich versauert, jedoch ansonsten basenreich sind (vgl. Kap. 6.3.1). Andererseits ist der Standort EB SN22 mit einem höheren gemesseneren pH-Wert von 4,88 durch das Fehlen von

Tab. 65: Stetigste (> 50%) Enchytraeidenarten innerhalb der Biotoptypen 44.02 natürliche bzw. naturnahe, trockene bis wechselfeuchte Kiefernwälder, 43.07 Laub- und Mischwälder feuchter bis frischer Standorte und 33.03 Äcker und Ackerbrache auf Sandboden (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 25.04.2018).

Biotoptyp	44.02	43.07	33.03
Anzahl Standorte	9	20	5
Achaeta aberrans	0,33	0,40	0,60
Achaeta bibulba			0,60
Cognettia sphagnetorum s.l.	0,67	1,00	0,20
Enchytraeus buchholzi	0,33	0,55	0,80
Enchytraeus christensi	0,33	0,25	1,00
Enchytraeus norvegicus	0,44	0,45	0,60
Enchytronia annulata			0,60
Enchytronia parva	0,22	0,60	0,60
Enchytronia pratensis		0,05	0,80
Fridericia bulboides	0,33		0,80
Fridericia christeri			0,60
Fridericia granosa			0,60
Henlea perpusilla	0,22	0,10	1,00
Henlea ventriculosa			0,80
Marionina clavata	0,33	0,70	
Mesenchytraeus glandulosus		0,80	
Oconnorella cambrensis	0,44	0,65	
Stercutus niveus		0,50	

Säurezeigern und das Auftreten von Begleitarten, welche eher in schwachsauren bis neutralen Böden zu erwarten sind (z. B. *Fridericia* sp.), auch faunistisch von den anderen beiden Flächen deutlich abgesetzt.

Sandacker

Aus den in Tab. 65 enthaltenen Werten ist erkennbar, dass an Standorten des Biotoptyps 33.03 13 Arten mit einer hohen Wahrscheinlichkeit erwartet werden können: Achaeta aberrans, Achaeta bibulba, Enchytraeus buchholzi, Enchytraeus christenseni, Enchytraeus norvegicus, Enchytronia annulata, Enchytronia parva, Enchytronia pratensis, Fridericia bulboides, Fridericia christeri, Fridericia granosa, Henlea perpusilla und Henlea ventriculosa. Diese Erwartungswerte basieren jedoch auf nur fünf Standorten. Von diesen wurden pro Standort fünf bis sechs Arten nachgewiesen. Die scheinbar hohe Zahl fehlender Arten sollte angesichts der schmalen Datenbasis sowie der Stetigkeit von nur 60 % des Großteils dieser Arten nicht überbewertet werden (vor allem auch hinsichtlich der Gattung Enchytraeus, vgl. Kap. 6.4.6.2). Die Replikate des Sandackers sind faunistisch inhomogen, zeichnen sich aber gegenüber den Waldstandorten durch eine störungsresistente Artengruppe aus (z. B. Fridericia bulboides und F. christeri) sowie durch eine deutliche Reduktion von Säurezeigern. EB SN32 ist für einen Acker ungewöhnlich artenreich; es ist auch das am wenigsten bodensaure Replikat und, wie Marionina communis und M. mendax anzeigen, das am wenigsten durch Trockenstress beeinträchtigte.

Zusammenfassend lässt sich feststellen, dass die drei hier untersuchten Biotoptypen sich mithilfe der Artengemeinschaft der bodenlebenden Enchytraeiden charakterisieren und voneinander abgrenzen lassen. Die Habitattypen sind so unterschiedlich gewählt, dass es kaum faunistische Übereinstimmungen gibt. Landnutzung und Bodenreaktion, zusammen mit Bodenfeuchte und Humusform, erklären einen Großteil der aufgefundenen faunistischen Differenzen.

6.5 Taxonübergreifende Charakterisierung der Lebensgemeinschaften der einzelnen Biotoptypen

Bei der Untersuchung der drei Biotoptypen wurden insgesamt 56.885 Individuen bestimmt und 291 Arten nachgewiesen. Die beiden Waldtypen erwiesen sich dabei als ähnlich individuenreich, auf den Sandäckern wurden dagegen deutlich weniger Bodentiere gefangen (siehe **Tab. 66**). Die individuenreichste Tiergruppe waren die Enchytraeiden, gefolgt von den Oribatiden und den Collembolen, d. h. die Tiergruppen, die aufgrund ihrer Größe zur Mesofauna gehören (vgl. Kap. 3.2). Die Diplopoden, Chilopoden und Lumbriciden, bzw. die Vertreter der Makrofauna, traten in deutlich geringerer Individuenzahl auf. Es ist jedoch beim Vergleich der Individuenzahlen zu berücksichtigen, dass zur Erfassung der verschiedenen Tiergruppen unterschiedliche Methoden angewendet wurden (siehe Kap. 4.4).

Die über alle Biotoptypen hinweg artenreichste Gruppe waren die Oribatiden mit 137 Arten, was auf deren sehr hohe Artenzahlen in den beiden Waldtypen zurückzuführen ist. Auf den Sandäckern traten deutlich weniger Oribatidenarten auf. Die ebenfalls relativ artenreichen Collembolen wurden in den beiden Waldtypen mit weniger Taxa als die Oribatiden nachgewiesen, auf den Sandäckern dagegen kamen mehr Collembolen- als Oribatidenarten vor. Obgleich die Enchytraeiden die individuenreichste Bodentiergruppe darstellte, ist ihre Artenzahl geringer als die der Oribatiden und Collembolen. Analog zu den Individuenzahlen waren auch die Artenzahlen der Diplopoden, Chilopoden und Lumbriciden geringer als die der anderen drei taxonomischen Gruppen.

Die meisten ausgewerteten taxonomischen Gruppen zeigten anhand ihres Vorkommens innerhalb dieser Untersuchung ein Muster sowohl aus Kennarten für die verschiedenen Biotoptypen als auch aus unterschiedlichen

Tab. 66: Übersicht über die Individuen- und Artenzahlen der untersuchten Tiergruppen, die in den Kiefern- und Laubwäldern sowie den Sandäckern nachgewiesen wurden.

	Ki	Kiefer		Laubwald		Sandacker		chsen
	Individuen	Artenzahl	Individuen	Artenzahl	Individuen	Artenzahl	Individuen	Artenzahl
Oribatida	9.658	70	9.361	111	516	24	19.535	137
Collembola	4.461	39	6.218	50	3.019	33	13.698	68
Diplopoda	10	4	153	9	4	3	167	12
Chilopoda	51	8	157	11	15	2	223	16
Lumbricidae	378	10	1.065	9	245	8	1.688	10
Enchytraeidae	9.609	10	8.756	25	3.209	28	21.574	48
gesamt	24.167	141	25.710	215	7.008	98	56.885	291

Kap. 4.5 und 6.4). Die Kennarten- und edaphischen Gruppen ließen sich in der Artenverteilung mehrerer Organismengruppen nachweisen, wie beispielsweise die Kennartengruppen der drei untersuchten Biotoptypen oder die Gruppe der nährstoffarmen Wälder. Nur für

Grundarten- und mehreren edaphischen Gruppen (vgl. die generell artenarmen Lumbriciden konnten keine Kennartengruppen identifiziert werden, allerdings zeigten sie die verschiedenen Säurebedingungen der untersuchten Standorte an. Eine Zusammenfassung der verschiedenen Kennarten-, Grundarten- und edaphischen Gruppen ist Tab. 67 zu entnehmen.

Tab. 67: Übersicht über die Tiergruppen, die Kennarten(gruppen), Grundarten(gruppen) sowie ver-schiedene edaphische Gruppen für die Biotoptypen Kiefern-, Laubwald und Sandacker aufwiesen.

	Kiefer	Laubwald	Sandacker
Kennarten			
	Collembola	Collembola	Collembola
	Chilopoda	Chilopoda	Chilopoda
	Oribatida	Oribatida	
	Enchytraeidae	Enchytraeidae	
		Diplopoda	
Feuchtegruppen			
zeitw. austrocknende Streuschicht	Oribatida		
frische wechselfeuchte Standorte		Oribatida	
Säuregruppen			
sauer im Mittel < ph4 /basenarm	Oribatida		
	Enchytraeidae	Enchytraeidae	
saure Waldstandorte	(Enchytraeidae)		
sehr saure Nadelwaldstandorte	Lumbricidae		
schwach saure/neutrale Standorte		Lumbricidae	Lumbricidae
schwach sauer, Grünland/Wald		Enchytraeidae	
Grünland, neutral/mäßig sauer, frisch			(Enchytraeidae)
Offenland, schwach/mäßig sauer			Enchytraeidae
Nährstoffgruppe			
nährstoffarme Wälder	Oribatida		
	Collembola		
Intensivgrünland und Acker			Collembola
Gundarten der Wälder			
	Chilopoda	Chilopoda	
Grundarten der Laubwälder			
		Oribatida	
Grundarten der Buchenwälder			
		Enchytraeidae	
Grundarten des Offenlands			
			(Enchytraeidae)
Grundarten der Grasland- und Waldstandorte			
	(Lumbricidae)	Lumbricidae	

Sand-Kiefernwald (*Leucobryo-Pinetum/Peucedano-Pinetum* Matuszkiewicz 1962)

Biotoptyp: 44.02.03.02 trockener Sand-Kiefernwald basenarmer Standorte (Riecken et al. 2003) / G3.421 Subcontinental Scots pine forests (EUNIS-Habitatklassifikation 2016)

Kurzcharakterisierung: Die 110 bis 150 Jahre alten Kiefernbestände wurden auf podsolierten Böden über fluviatilen bzw. Dünensanden angepflanzt. Sie sind in der West- und Oberlausitz auf Höhenlagen zwischen 121 und 134 m ü. NHN gelegen. Die mittleren Jahrestemperaturen liegen zwischen 9,0 und 9,1 °C, die Niederschlagsmengen erreichen Werte zwischen 618 und 648 mm/Jahr. Die Humusform der ebenen Flächen ist typischer (EB_SN33) und feinhumusarmer Rohhumus und die gemessenen pH-Werte zeigen mit Werten von 3,73 bis 3,89 saure Standortbedingungen an. Auch die Ellenbergzahlen der Pflanzen weisen auf saure, trocken-warme sowie magere Standorte hin. Alle drei Flächen unterliegen im Rahmen der Bodenzustandserhebung einem regelmäßigen Monitoring durch den Staatsbetrieb Sachsenforst.

Charakteristische Pflanzenarten

Baumarten: Pinus sylvestris

Strauchschicht und Verjüngung: Pinus sylvestris, Frangula alnus, Sorbus aucuparia, Begleitarten: Prunus serotina, Quercus petraea, Quercus rubra

Bodenvegetation:

- Basenreichere Standorte: *Chimaphila umbellata*, *Pyrola chlorantha*
- Bodensaure Kiefernwälder: Vaccinium myrtillus, Vaccinium vitis-idaea, Calluna vulgaris, Luzula campestris, Deschampsia flexuosa
- Trockener n\u00e4hrstoff\u00e4rmer Boden: Calamagrostis epigejos, Festuca ovina agg., Melampyrum pratense

Charakteristische Bodentierarten

	Ken	narten	
Oribatida	Collembola	Diplopoda	Enchytraeidae
Trhypochtho- nius tectorum	Choreutinula inermis	Lithobius calcaratus	Fridericia brunensis
Dissorhina signata	Dicyrtoma fusca		
Micreremus brevipes			
Ceratoppia quadridentata			

Kennzeichnende Artengruppen

 Feuchtegruppe: Zeitweise austrocknende Streuschicht

- Säuregruppen: 1) sauer im Mittel < pH4/ basenarm, 2) saure Waldstandorte, 3) sehr saure Nadelwaldstandorte
- Nährstoffgruppe: Nährstoffarme Wälder
- Grundartengruppen: 1) Grundarten der Wälder,
 2) Grundarten der Grasland- und Waldstandorte

Basenreicher Laubwald mittlerer Feuchte (Galio odorati-Fagetum Sougnez et Thill 1959)

Biotoptyp: 43.07.05.02 Buchenwald basenreicher Standorte der planaren bis submontanen Stufe (Riecken et al. 2003) / G1.6312 Medio-European woodruff and hairy sedge beech forests (EUNIS-Klassifikation 2016) **Schutzstatus:** FFH-Gebiet "Basalt und Phonolithkuppen der östlichen Oberlausitz"; Naturschutzgebiet, Nationales Naturerbe (EB_SN24); Naturdenkmal (EB_SN22)

Kurzcharakterisierung: Die im Oberlausitzer Lösshügelland (343-424 m ü. NHN) gelegenen Laubwälder stehen auf unterschiedlichem Ausgangsgestein (fluviatiler Kies/Sand; z. T. kiesiger Gehängelehm; Basalt). Hierauf haben sich Braunerden gebildet, die Bodenart ist lehmiger Sand (EB SN22) oder lehmiger Schluff, die Humusform F- oder L-Mull. Die mittlere Jahrestemperatur liegt zwischen 7,7 und 8,8 °C und es fallen zwischen 656 und 713 mm Niederschläge pro Jahr. Hinsichtlich der Hangneigung unterscheiden sich die drei Untersuchungsflächen mit Werten zwischen 0° (EB SN22) und 10° West (EB SN23) deutlich. Die gemessenen pH-Werte zwischen 3,74 und 4,88 zeigen eher schwach saure Bedingungen an, wohingegen die Ellenbergzahlen der Pflanzen auf basische Bedingungen hinweisen. Des Weiteren charakterisieren die Ellenbergzahlen die Flächen als frisch, mesophil bis eutroph hinsichtlich des Nährstoffangebots, schattig bis lichtreich und mäßig warm bis warm.

Charakteristische Pflanzenarten

Baumschicht: Fagus sylvatica, Fraxinus excelsior, Begleiter: Betula pendula, Carpinus betulus, Tilia x vulgaris, Tilia platyphyllos

Strauchschicht und Verjüngung: Fagus sylvatica, Sorbus aucuparia, Ulmus glabra, Acer pseudoplatanus, Acer platanoides

Bodenvegetation:

- Kennarten Perlgras-Waldmeister-Buchenwälder: Melica uniflora, Melica nutans, Poa nemoralis, Convallaria majalis, Lathyrus vernus
- Eutraphente Arten: z. B. *Galium aparine*, *Actaea spicata*
- Mesophile Buchenwälder: z. B. Mercurialis perennis, Galeobdolon montanum, Polygonatum

multiflorum, Dryopteris filix-mas, Milium effusum, Galium odoratum, Euphorbia dulcis, Asarum europaeum, Pulmonaria officinalis

Charakteristische Bodentierarten

Kennarten					
Oribatida	Collembola	Diplopoda	Enchytraeidae		
Belba bartosi	Folsomia	Megaphyllum	Fridericia		
	manolachei	projectum	nemoralis		
Chamobates	Arrh. pseudo-	Glomeris	Fridericia		
voigtsi	appendices	hexasticha	paroniana		
Hermanniella	Heteromurus	Enantiulus	Fridericia		
punctulata	nitidus	nanus	sylvatica		
Hypochthonius luteus		Unciger foetidus			
Metabelba propexa	Phthiracarus compressus	Chilopoda			
Multioppia	Phthiracarus	Lithobius			
glabra	globosus	mutabilis			
Oppiella	Zetorchestes	Geophilus			
epilata	falzonii	flavus			

Kennzeichnende Artengruppen

- Feuchtegruppe: Frische wechselfeuchte Standorte
- Säuregruppen: 1) sauer im Mittel < pH4/basenarm,
 2) schwach saure/neutrale Standorte, schwach sauer,
 Grünland/Wald
- Grundartengruppen: 1) Wälder, 2) Laubwälder,
 3) Buchenwälder, 4) Grasland-/Waldstandorte

Ackerwildkrautflur auf Sand (Stellarietea mediae Basalgesellschaft)

Biotoptyp: 33.03.03 intensiv bewirtschafteter Acker auf Sandboden mit stark verarmter oder fehlender Segetalvegetation; 33.03.02 Acker auf Sandboden mit artenreicher Segetalvegetation (EB_SN34) (Riecken et al. 2003) / II.1 Intensive unmixed crops; II.3 - Arable land with unmixed crops grown by low-intensity agricultural methods (EB_SN34) (EUNIS-Klassifikation 2016)

Kurzcharakterisierung: Die im Oberlausitzer Heide- und Teichgebiet lokalisierten Sandäcker unterscheiden sich hinsichtlich der Bewirtschaftungsintensität: Ein Acker wird extensiv, Bioland zertifiziert bewirtschaftet (EB_SN34). Die anderen beiden Standorte unterliegen einer intensiven Nutzung und sind im Rahmen eines Bodenmonitorings als Boden-Dauerbeobachtungsflächen ausgewiesen. Das Ausgangsgestein der drei ebenen Flächen besteht aus Tonschiefer, Grauwacke, Konglomerat, Quarzit, z. T. Kieselschiefer und Diabastuff (EB_SN32) oder fluviatilem Kies/Sand, die Bodenart ist z. T. lehmiger Sand oder stark sandiger Lehm. Die gemessenen pH-Werte liegen zwischen 4,23 und 5,94. Die mittleren Jahrestemperaturen

erreichen Werte zwischen 8 und 9 °C, die jährlichen Niederschlagsmengen liegen zwischen 657 und 601 mm/ Jahr. Die Äcker liegen auf Höhenlagen von 143 bis 190 m ü. NHN.

Charakteristische Pflanzenarten

Kulturpflanzen im Untersuchungsjahr: Mais (SN31), Weizen (SN32), Buchweizen (SN34)

Begleitarten: Apera spica-venti, Avena fatua, Bromus sterilis, Convolvulus arvensis, Echinochloa crus-galli, Fallopia convolvulus, Galium aparine, Poa annua, Polygonum aviculare agg., Solanum tuberosum, Viola arvensis

Charakteristische Bodentierarten

Kennarten					
Collembola Chilopoda					
Entomobrya schoetti	Lamyctes emarginatus				
Lathriopyga monoculata					
Lepidocyrtus paradoxus					

Kennzeichnende Artengruppen

- Säuregruppen: 1) schwach saure/neutrale Standorte,
 2) Grünland, neutral/mäßig sauer, frisch, 3) Offenland,
 schwach/mäßig sauer
- Nährstoffgruppe: Intensivgrünland und Acker
- Grundartengruppe des Offenlands

6.6 Auswertung der Fragestellungen des LfULG

Die Fragestellungen des LfULG zielen darauf ab, eine bodenökologische Bewertung der Biodiversität zu ermöglichen. Hierzu ist es notwendig, Leitbilder bzw. Referenzzustände für Bodentier-Zönosen zu entwickeln, die als Beurteilungsgrundlage für anthropogene Beeinträchtigungen dienen können (vgl. Kap. 6.1).

In der vorliegenden Studie ist es gelungen, Muster in der Verteilung bzw. der Zusammensetzung der Artengemeinschaften zu ermitteln sowie Kennarten innerhalb der untersuchten taxonomischen Gruppen für die Biotoptypen zu identifizieren. Dies erfolgte durch den Vergleich der Daten des gesamten Edaphobase-Länderstudiendatensatzes (siehe Kap. 5.4, 6.4, 7.4, 8.4). Ausbildung solcher charakteristischen Die Artengemeinschaften ist die Grundlage dafür, dass Bodenfauna Beurteilung standörtlicher zur Gegebenheiten verwendet werden kann, da somit gezeigt wird, dass die Zönosen sich an die unterschiedlichen Gegebenheiten anpassen. Die in dieser Studie auftretenden charakteristischen Artengemeinschaften können

Referenzzustände bzw. Leitbilder für die untersuchten Biotoptypen fungieren und zum Vergleich mit Bodentier-Zönosen anderer, ggf. anthropogen beeinflusster Flächen des gleichen Biotoptyps herangezogen werden. Um auch überregional Aussagen treffen zu können, wären weitergehende Untersuchungen gleicher sowie weiterer Biotoptypen mit den entsprechenden Standardmethoden erforderlich.

Durch den Vergleich mit dem gesamten Länderstudien-Datensatz konnten, mit Ausnahme der artenarmen Lumbriciden, für alle untersuchten Taxa Kennarten für die basenreichen Laubwälder ermittelt werden, für die Kiefernwälder gelang dies für die Oribatiden, Collembolen, Chilopoden und Enchytraeiden. Diese Kennarten weisen eine besondere Bindung an die entsprechenden Biotoptypen auf, obgleich sie in anderen Studien auch in verschiedenen anderen Biotoptypen nachgewiesen wurden (siehe Kap. 6.4). Hier zeigt sich, dass eine Verwendung der Kennarten als Indikatoren einerseits vermutlich einen geringeren Arbeits- und Kostenaufwand bedeuten würde, insbesondere, wenn in der Zukunft ggf. neue Bestimmungsmethoden wie beispielsweise das DNA-Barcoding zu einer größeren Bedeutung gelangen werden. Da einzelne Arten jedoch nur mit einer bestimmten Frequenz oder Wahrscheinlichkeit in einem Biotoptyp auftreten, bietet andererseits die Betrachtung der Zönosen die Möglichkeit, die wiederkehrenden Muster, die durch die Zusammensetzung und Struktur der Artengemeinschaften entstehen, zum Vergleich heranzuziehen.

Auf den Sandäckern kamen insgesamt weniger Individuen und Arten als in den beiden Waldtypen vor (vgl. Kap. 6.4 und 6.5), und es konnten nur für die Collembolen und die Chilopoden Kennarten identifiziert werden. Im Rahmen dieser Studie wurden zwei intensiv und ein extensiv bewirtschafteter Sandacker untersucht. Auf der Basis dieser drei untersuchten Flächen existieren dabei keine eindeutigen Hinweise darauf, dass die Intensität der Bewirtschaftung deutliche Auswirkungen auf die Arten- und Individuenzahlen sowie die Artenspektren hat. Da die Datengrundlage jedoch zu gering ist, um dies zu beurteilen, wäre zu empfehlen, Äcker verschiedener Bewirtschaftungsintensität gezielt zu untersuchen und zu vergleichen. Um das Auftreten von Bodentieren als Indikator für die Nutzungsintensität und damit den anthropogenen Einfluss zu verwenden, müssen die Artengemeinschaften auf die unterschiedlichen Bedingungen reagieren.

Eine weitere Fragestellung ist, inwieweit Edaphobase im Rahmen einer tiergruppen- und biotoptypenübergreifenden Studie genutzt werden kann. In dieser Studie wurden die Daten in Edaphobase überführt, in Verbindung mit den gemessenen Habitatparametern sowie den Vegetationsdaten abgelegt und über das Edaphobase-Portal (www.portal. edaphobase.org) der Öffentlichkeit zur Verfügung gestellt. Die neu implementierten Tools Edaphoclass und Edaphostat (Hausen et al. 2017) ermöglichen es, die Datenbank sowohl nach den autökologischen Präferenzen einzelner Arten (Edaphostat) als auch den typischen Artengemeinschaften bzw. den Frequenzen, mit denen die Arten in einem Biotoptyp auftreten, abzufragen (Edaphoclass).

Der Vergleich der Datensätze der gesamten Länderstudie war nur unter der Voraussetzung möglich, dass alle vier Untersuchungen (Bayern, Nationalpark Eifel, Sachsen, Sachsen-Anhalt) nach den gleichen Standardmethoden durchgeführt wurden. Um die Daten verschiedener Studien generell miteinander vergleichen zu können, ist es sinnvoll, Mindestanforderungen an die Methodik sowie die Begleitdaten zu formulieren. Hierzu könnte Edaphobase beispielsweise Hinweise für die Nutzer bereitstellen. Da Edaphobase die Möglichkeit bietet, Daten verschiedener Bodentiergruppen in Verbindung mit den Metadaten aufzunehmen und für andere Untersuchungen zur Verfügung zu stellen, ist es wünschenswert, Datenlücken weiter aufzufüllen, um die Kenntnisse zur Verteilung und zu den Habitatansprüchen der Bodentiere zu erweitern bzw. zu vertiefen.

7 Die Länderstudie im Freistaat Bayern: "Bodenökologische Untersuchung von Acker- und Graslandstandorten"

7.1 Problemstellung und Ziele der Länderstudie im Freistaat Bayern

Die Problemstellung wurde durch den Freistaat Bayern, konkret die Bayerische Landesanstalt für Landwirtschaft (LfL) (Kontakt: Frau R. Walter) wie folgt skizziert: Die LfL Bayern ist an der Beurteilung der biologischen Bodenqualität von Acker- und Grünlandstandorten als Teil eines umfassenden agrarökologischen Monitorings interessiert. Dazu sollen der Einfluss der Bodeneigenschaften (z. B. Bodenart) und der jeweiligen Bewirtschaftungsformen auf die Boden-Biodiversität beurteilt werden. So sollen Bodentiere als Indikatoren agrarökologische Fragestellungen identifiziert Die Entwicklung einer bodenbiologischen werden. Beurteilungsgrundlage landwirtschaftlicher Böden ist dringend notwendig, da gerade Agrarflächen im Vergleich zu anderen Standorttypen wenig untersucht, zugleich jedoch in Hinsicht auf den Erhalt ihrer biologischen Funktionen stark gefährdet sind. Als Untersuchungsstandorte wurden insbesondere landwirtschaftliche Lehr-, Versuchs- und Fachzentren in Bayern vorgeschlagen, um diesen im Rahmen ihres Bildungsangebotes konkrete Daten und

Zahlen zur Biodiversität, Artenzusammensetzung und Siedlungsdichte von Bodentieren zur Verfügung zu stellen. Zusätzlich können die vor Ort erhobenen Daten etwa dazu dienen, Auszubildenden der Landwirtschaft und Teilnehmern von Lehrgängen die funktionale Bedeutung der Bodentiere als Teil eines gesunden, biologisch aktiven Bodens im Rahmen einer nachhaltigen Landwirtschaft aufzuzeigen.

In landwirtschaftlich genutzten Böden weist ein guter (z. B. in Bezug auf die Regenwurmdichte: Mehr als 60 Individuen/m² bzw. mehr als 4 Arten (Walter & Burmeister 2017)) und vielfältiger Bestand an Bodentieren auf einen gesunden, biologisch aktiven und fruchtbaren Boden hin. Bodentiere beschleunigen den Abbau organischen Materials und damit die Nährstoffnachlieferung, und grabende Tiere wie die Regenwürmer haben eine positive strukturprägende, lockernde und belüftende Wirkung auf den Boden. Die natürlichen Funktionen des Bodens, u. a. auch als Lebensraum für Bodenorganismen, sind nach § 2 des Bundesbodenschutzgesetzes (1998) nachhaltig zu sichern. Eine Beurteilung dieser Funktion ist allerdings nur schwer möglich. Um Daten zur Biodiversität für viele Fragestellungen zugänglicher zu machen, wurde in einem ersten Schritt, im Auftrag des Bundesministeriums für BildungundForschung(BMBF), die Datenbank Edaphobase (www.edaphobase.org, aufgerufen am 02.10.2019) erstellt, in der bundesweit Daten zur Biodiversität von Bodentieren und ökologischen Hintergrundinformationen ihrer Fundorte zusammengetragen werden. Ein Ziel dieser Datenbank ist es, für ausgewählte Tiergruppen und Lebensräume erste Erwartungswerte (Referenzwerte) hinsichtlich des Vorkommens von Bodentieren abzuleiten, Abhängigkeiten zu Boden- und Standortsbedingungen aufzuzeigen und, soweit wie möglich, geeignete biologische Indikatoren zu ermitteln (siehe auch Kap. 2).

Auswertungen der ersten Projektphase zu Edaphobase zeigen, dass nur selten am gleichen Standort mehrere verschiedene Bodenorganismengruppen mit einheitlichen methodischen Standards untersucht wurden. Daher wurden Artenzusammensetzung und Siedlungsdichte der verschiedenen Bodentiergruppen mit einheitlichen Methoden beprobt: Regenwürmer, Hundertfüßer, Tausendfüßer, Kleinringelwürmer, Springschwänze und Hornmilben, und zwar jeweils im Frühjahr und Herbst 2015. Jeder Beprobungstermin wurde mit dem Bewirtschafterrechtzeitig abgestimmt, um den Ablauf der Bewirtschaftung nicht zu beeinträchtigen und um Artefakte bei der Probenahme zu vermeiden. Details des Untersuchungsprogramms sind Kap. 4 zu entnehmen. Die dabei erzielten Ergebnisse, primär zur Diversität aber auch zur Abundanz dieser Gruppen, wurden in die Datenbank Edaphobase aufgenommen und sollen der Ermittlung, Weiterentwicklung und Validierung von Erwartungswerten zur Zusammensetzung der Bodenfauna auf diesen Standorttypen dienen. Anschließend wurden diese Ergebnisse mit den für diese drei Biotoptypen vorliegenden Referenzwerten (= Informationen zur Artenzahl, Artenzusammensetzung, Abundanz, teils auch Biomasse) verglichen. Mit dieser biologischen Bodenqualitätsbeurteilung wurden Aussagen zur Erfüllung der Funktion des Bodens als Lebensraum an diesen Standorten möglich. Eine Aufklärung eventueller Abweichungen zwischen den aktuellen Fangzahlen und den Referenzwerten war dabei nicht primäres Ziel der Länderstudie. Zusätzlich wurde die Fragestellung der biologischen Bodenqualitätsbeurteilung durch Einbeziehung eines Vergleichs von ökologisch bzw. konventionell bewirtschafteten Standorten "aufgewertet" (z. B. Beprobung ersterer, gefolgt von einem Vergleich mit Daten zu letzteren aus Edaphobase (soweit vorhanden)).

Ausgehend von den oben schon formulierten Zielen wurden von der Bayerischen Landesanstalt für Landwirtschaft (LfL) in Bayern drei als besonders relevant angesehene Biotoptypen ausgewählt. Kriterien dafür waren neben ihrer weiten Verbreitung in Bayern der generell für diese Biotoptypen in Deutschland bestehende geringe bodenbiologische Kenntnisstand. In Bayern gelten landwirtschaftliche Standorte als gut untersucht (R. Walter, pers. Mittl.), allerdings sind bisher relativ wenige dieser Daten publiziert worden. Anschließend wurden von der gleichen Institution in enger Zusammenarbeit mit regionalen LfL-Vertretern jeweils drei repräsentative Standorte pro Biotoptyp für die konkrete Beprobung ausgewählt:

- drei Äcker auf Löss-Standorten;
- drei Äcker auf Kalkstandorten (Muschelkalk);
- drei intensiv bewirtschaftete Grünlandflächen mittlerer Feuchte.

Nach der Probennahme, Extraktion (soweit erforderlich) und Bestimmung des erfassten Tiermaterials wurde eine Beurteilung der jeweiligen Ergebnisse vorgenommen. In einem ersten Schritt wurde als Grundlage einer weitergehenden Beurteilung der bodenbiologische Ist-Zustand beschrieben. Für eine vorläufige Bewertung wurden daraufhin die ermittelten Daten mit den bislang in Edaphobase etablierten Referenzwerten für den jeweiligen Biotoptyp verglichen. Aufgrund der schlechten Datenlage in Edaphobase für viele Biotoptypen (insbesondere Äcker) war ein solcher Vergleich mehrfach nur auf höherer Ordnung des Biotoptyps möglich (z. B. «Äcker», statt «Kalk-Äcker».)

Zusätzlich können weitere Ansätze, wie z. B. die durch das LfL empfohlenen Werte zur Regenwurmbesiedlung (Abundanz und Diversität) für eine bodenbiologische Einschätzung der Standorte herangezogen werden (Walter & Burmeister 2017).

7.2 Untersuchungsgebiet7.2.1 Geografische Lage

Der Freistaat Bayern liegt im Südosten Deutschlands. Mit mehr als 70.500 Quadratkilometern ister das flächenmäßig größte und mit rund 12,8 Millionen Einwohnern nach Nordrhein-Westfalen das zweitbevölkerungsreichste deutsche Bundesland. Der Freistaat hat im Süden Anteil am Hochgebirge der Ostalpen und dem bis zur Donau reichenden flachen Alpenvorland einschließlich der Schotterebene. Nördlich der Donau bestimmen Mittelgebirge wie etwa das Fichtelgebirge oder die Schichtstufen der Fränkischen und Schwäbischen Alb das Landschaftsbild. Während zwischen den Alpen und südlich der Donau das Gelände flach bis hügelig ist, liegen nördlich davon mehrere Gebirge, die eine Höhe

von über tausend Metern erreichen. Die Fränkische Alb als geologische Fortsetzung des Schweizer Juras und der Schwäbischen Alb zieht sich um einen Bogen durch den Norden Bayerns. Das Fränkische Keuper-Lias-Land, in dem etwa Aischgrund, Steigerwald und Frankenhöhe liegen, geht in die Mainfränkische Platten über. Die östliche Hälfte Bayerns wird hingegen von Mittelgebirgen wie dem Bayerischen Wald oder dem Frankenwald geprägt.

7.2.2 Klima

Das Klima geht vom Nordwesten (relativ ausgeglichen) nach Osten ins Kontinentalklima über (LfU 2018). Im Jahresdurchschnitt (1971-2000) beträgt die Temperatur

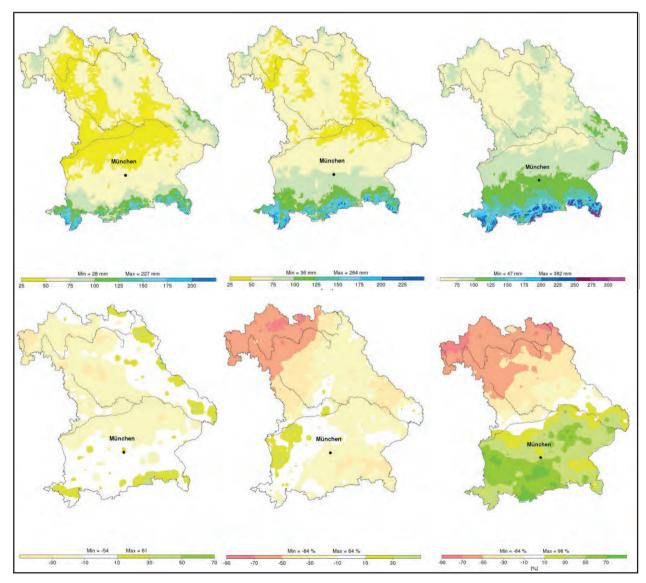


Abb. 72: Niederschläge der Frühjahrsmonate in Bayern. Oben: Mittelwerte der Jahre 1961-1990, unten: Abweichung im Jahr 2015 (Quelle: DWD).

7,8 °C und an etwa 100 Tagen liegt sie unter null Grad Celsius. Im gleichen Zeitraum wurden im Mittel 933 mm Niederschlag gemessen. Die mittlere jährliche Sonnenscheindauer beträgt 1600 bis 1900 Stunden. Der wärmste Monat ist meist der Juli, kältester der Januar. Der Norden Bayerns ist trockener und wärmer als der Süden; die Region um Würzburg weist die

meisten Sonnentage Süddeutschlands auf. Im Jahr der Probenahme (2015) zeichnete sich das Klima in Bayern vor allem durch geringere Niederschläge im Vergleich zum langjährigen Mittel aus. Konkret regnete es im Norden Bayerns deutlich weniger (Abb. 72), wodurch die Böden im Untersuchungszeitraum entsprechend trocken waren.

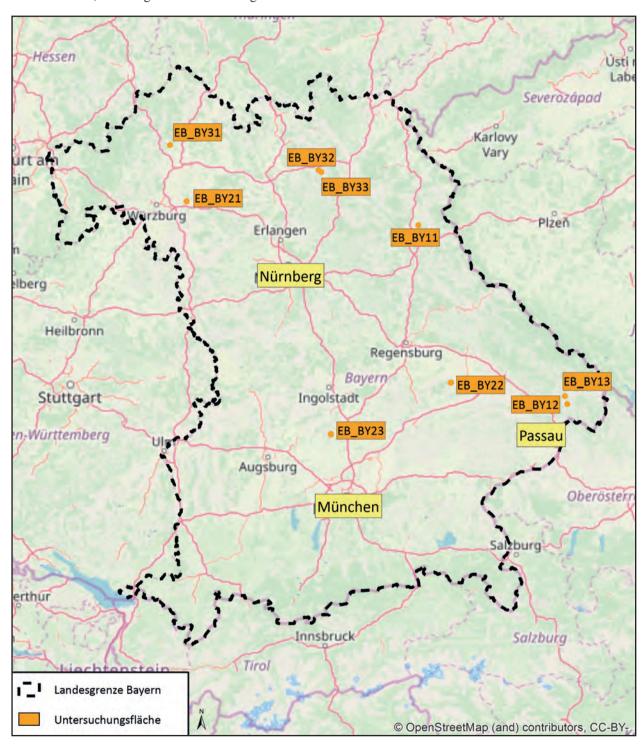


Abb. 73: Lage der neun Versuchsstandorte im Norden und Osten des Freistaats Bayern.

7.2.3 Untersuchungsflächen

Die neun Untersuchungsflächen sind nicht gleichmäßig über Bayern verteilt, sondern finden sich in Abhängigkeit von den jeweiligen Bodeneigenschaften vor allem im Norden und Osten des Freistaats (Abb. 73). Dabei liegen die drei Graslandstandorte im Osten (nahe der tschechischen Grenze) und die Kalk-Äcker primär im Norden (Franken), während die Löss-Äcker sich auf Mainfranken (einer) sowie das Alpenvorland südlich der Donau (zwei) verteilen. Hinsichtlich der Höhenlage der Standorte gibt es lediglich geringe Unterschiede, da alle Flächen zwischen 230 und 512 m ü. NHN liegen.

Ihre Auswahl erfolgte in enger Absprache mit dem LfL Freising, wobei - nach Einigung auf die entsprechende Landnutzung bzw. Biotoptypen auch Praktikabilitätskriterien wie die Erreichbarkeit sowie speziell die Kooperation mit den jeweiligen Flächeneignern eine Rolle spielten. An dieser Stelle ist darauf hinzuweisen, dass die Zusammenarbeit (z. B. bei der Identifikation der jeweiligen Probenahmestellen oder die Zurverfügungstellung von Daten für den jeweiligen Standort) mit diesen Personen bzw. Institutionen sehr gut funktioniert hat. Laut Selbstauskunft wurden die drei Graslandstandorte und auch die drei Kalkäcker ökologisch bewirtschaftet. Auf den drei Lössäckern wurde in Sulzthal chemischer Pflanzenschutz betrieben, während von den beiden anderen Standorten keine entsprechenden Informationen vorliegen.

Im Folgenden werden die neun Flächen jeweils in Form eines standardisierten Steckbriefs kurz vorgestellt.

7.3 Ergebnisse zur Standortcharakterisierung7.3.1 Bodenkundliche Angaben

Die gemessenen Habitatparameter-Werte wurden in **Tab. 68** (Teil I) und **Tab. 69** (Teil II) zusammengefasst.

Die Messung der aktuellen Bodenfeuchte ist lediglich als Momentaufnahme zu bewerten. Ein Vergleich mit den Feuchtezahlen (siehe **Tab. 70**, Ergebnisse der Ellenbergzahlen) zeigt, dass die Pflanzen auf allen Flächen, auf denen die Ableitung einer Feuchtezahl möglich war (auf dem Löss-Acker EB_BY21 wurden keine Wildkrautarten gefunden) frische Standortbedingungen anzeigen. Der pH-Wert der neun Untersuchungsflächen lag zwischen pH=5,30 (Intensivgrünland EB_BY12) und pH=7,29 (Kalk-Acker EB_BY31). Somit waren alle Untersuchungsflächen als mäßig saure bis schwach alkalische Standorte einzustufen (Schachtschabel et al. 1998).

Die Werte des Gesamt-Kohlenstoffs (Cgesamt) erreichten Zahlen zwischen 1,36 % [Masse] auf dem Löss-Acker EB BY23 und 6,51 % [Masse] auf der Intensivgrünland-Fläche EB BY11. Im Mittel war der Gesamtkohlenstoffgehalt Biotoptyp Intensivgrünland erwartungsgemäß höher als der der anderen beiden Biotoptypen. Der Carbonat-Anteil am Gesamtkohlenstoffgehalt meisten Untersuchungsflächen war mit Werten < 5 g/kg gering (Arbeitsgruppe Boden 1996). Der Gesamtstickstoffgehalt war auf der Löss-Ackerfläche EB_BY23 am niedrigsten (0,16% [Masse]), während die Fläche EB BY11 des Biotoptyps Intensivgrünland den höchsten Gesamtstickstoffgehalt aufwies (0.65%

Tab. 68: Ergebnisse der bodenkundlichen Messungen Teil I.

Untersuchungs-	Bodenfeuchte	n II Wout	C/N-	Cgesamt	Ngesamt	Carbonat
fläche	/% [Masse]	pH-Wert	Verhältnis	/% [Masse]	/% [Masse]	/g/kg
EB_BY11	27,5	6,36	10,10	6,51	0,65	3,73
EB_BY12	33,6	5,30	9,96	5,81	0,59	1,18
EB_BY13	25,0	5,73	9,84	4,65	0,47	1,08
Mittelwert	28,7	5,80	9,97	5,66	0,57	2,00
EB_BY21	10,6	6,68	8,06	1,57	0,20	2,47
EB_BY22	14,3	6,22	8,30	1,56	0,19	0,44
EB_BY23	14,3	6,01	8,51	1,36	0,16	0,92
Mittelwert	13,1	6,30	8,29	1,50	0,18	1,28
EB_BY31	15,2	7,29	14,75	3,44	0,24	1,25
EB_BY32	17,1	6,09	9,07	2,67	0,31	0,75
EB_BY33	15,0	5,75	9,18	1,72	0,19	0,13
Mittelwert	15,8	6,38	11,00	2,61	0,25	0,71

(1): Standortname: Almesbach Stallkoppel

Replikat: Grünland 1

(2): Standortname: Kringell 1 Bergkoppel Replikat: Grünland 2

Total S. Darkar

Standortkennung: EB BY11

Koord. (**WGS 84**): 50.50398°N/6.32881°E

Standortbeschreibung: Grünland

Vegetationseinheit: Arrhenatheretalia-Basalgesellgesellschaft,

Fettwiese frischer Standorte

Biotoptyp

BTL D: 34.08.01.01 Intensiv genutztes, frisches

Dauergrünland der planaren bis

submontanen Stufe

EUNIS: E2.6 Agriculturally-improved, re-seeded and

heavily fertilized grassland, including sports

fields and grass lawns

Hangneigung: 1°/Süd-Ost Höhe ü. NHN: 431 m Bodentyp: Braunerde pH-Wert: 6,36

Bodenart: Mittel schluffiger Sand (Su3)

Humusform: Nicht angebbar **Cges**: 6,51%

Weitergehende Maßnahmen:

Zu jedem Schnitt ca. 25 m³ Rindergülle mit 6 % TS: Jeweils zum ersten Aufwuchs noch zusätzlich ca. 40 kg N/ha in Form von Kalkammonsalpeter oder Ammonsulfatsalpeter (mit Schwefel); keine Pflanzenschutzmittel

Sonstige Flächeninformationen:

Durchschnittstemperatur: 7,9 °C Mittl. Niederschlag: 677 mm

Fruchtfolge: Keine (Grasland)

Standortkennung: EB BY12

Koord. (WGS 84): 50.52131°N/6.34056°E

Standortbeschreibung: Grünland

Vegetationseinheit: Arrhenatheretalia-Basalgesellgesellschaft,

Fettwiese frischer Standorte

Biotoptyp:

BTL D: 34.08.01.01 Intensiv genutztes, frisches

Dauergrünland der planaren bis

submontanen Stufe

EUNIS: E2.6 Agriculturally-improved, re-seeded

and heavily fertilized grassland, including

sports fields and grass lawns

Hangneigung: 0°
Höhe ü. NHN: 421 m
Bodentyp: Braunerde
pH-Wert: 5,30

Bodenart: Sandig-lehmiger Schluff (Uls)

Humusform: Nicht angebbar **Cges**: 5,81 %

Weitergehende Maßnahmen:

Jährlich ca. 10 t Kompost/ha + 2 * Gülle, je 18 m³ (ca. 6 % TS)

Sonstige Flächeninformationen:

Durchschnittstemperatur: 8,0 °C Mittl. Niederschlag: 946 mm

Fruchtfolge: Keine (Grasland)

(3): Standortname: Kringell 2 Legrechtingerwiese

Replikat: Grünland 3

Standortkennung: EB BY13

Koord. (**WGS 84**): 50.55002°N/6.34147°E

Standortbeschreibung: Grünland

Vegetationseinheit: Arrhenatheretalia-Basalgesellgesellschaft,

Fettwiese frischer Standorte

Biotoptyp:

BTL D: 34.08.01.01 Intensiv genutztes, frisches

Dauergrünland der planaren bis

submontanen Stufe

EUNIS: E2.6 Agriculturally-improved, re-seeded and

heavily fertilized grassland, including sports

fields and grass lawns

Hangneigung: 5°/Süd Höhe ü. NHN: 434 m Bodentyp: Braunerde pH-Wert: 5,73

Bodenart: Sandig-lehmiger Schluff (Uls)

Humusform: Nicht angebbar

Cges: 4,65%

Weitergehende Maßnahmen:

Jährlich ca. 10 t Kompost/ha + 2 * Gülle je 18 m³ (ca. 6 % TS)

Sonstige Flächeninformationen:

Durchschnittstemperatur: 7,8 °C Mittl. Niederschlag: 951 mm

Fruchtfolge: Keine (Grasland)

(4): Standortname: Schwarzenau Rödersacker

Replikat: Löss-Acker 1

Standortkennung: EB BY21

Koord. (**WGS 84**): 50.54022°N/6.33821°E

Standortbeschreibung: Intensiv bewirtschaftete Ackerfläche

Vegetationseinheit: Stellarietea-Basalgesellgesellschaft,

Ackerwildkrautflur

Biotoptyp:

BTL D: 33.04.03 Intensiv bewirtschafteter Acker

auf Löss-, Lehm- oder Tonboden mit stark verarmter oder fehlender Segetalvegetation

EUNIS: I1.1 Intensive unmixed crops

Hangneigung: 0°
Höhe ü. NHN: 230 m
Bodentyp: Braunerde
pH-Wert: 6,68

Bodenart: sandiger Schluff (Us) **Humusform**: Nicht angebbar

Cges: 1,57%

Weitergehende Maßnahmen:

Düngemaßnahmen:

26.02.2015: 80 kg N/ha (Yara Sulfan 24N, 6S) 25.03.2015: Biogassubstrat 21 m³/ha, 60 kg N/ha

Sonstige Flächeninformationen (Betreiber):

Durchschnittstemperatur: 9,2 °C Mittl. Niederschlag: 600 mm

Fruchtfolge: Winterweizen (2013), Zuckerrüben (2014),

Winterweizen (2015)

(5): Standortname: Leiblfing, Haidersberger Acker vorn; Replikat: Löss-Acker 2

Standortkennung: EB BY22

Koord. (**WGS 84**): 48,78837°N/12,48265°E

Standortbeschreibung: Intensiv bewirtschaftete Ackerfläche

Vegetationseinheit: Stellarietea-Basalgesellgesellschaft,

Ackerwildkrautflur

Biotoptyp:

BTL D: 33.04.03 Intensiv bewirtschafteter Acker auf

Löss-, Lehm- oder Tonboden mit stark verarmter oder fehlender Segetalvegetation

EUNIS: I1.1 Intensive unmixed crops

Hangneigung: 0° **Höhe ü. NHN**: 395 m

Bodentyp: (Para)Braunerde

pH-Wert: 6,22

Bodenart: Sandiger Schluff (Us) **Humusform**: Nicht angebbar

Cges: 1,56%

Weitergehende Maßnahmen:

Pflanzenschutzmittel (2012, 2013, 2014): jeweils Herbizid- und Fungizideinsatz

Bodenbearbeitung (2012, 2013, 2014): jeweils 2 x Einsatz von

Düngemaßnahmen: Klärschlamm + Ammoniumnitrat-Harnstoff-Lösung (AHL) (2012), AHL + Gülle (2013), 2 x Klärschlamm + Gülle (2014), AHL + Gülle (2015)

Sonstige Flächeninformationen:

Durchschnittstemperatur: 7-8 °C Mittl. Niederschlag: 750-850 mm

Fruchtfolge: Weizen (2012), Raps (2013), Weizen (2014),

Weizen (2015)

Regenwurmbeprobung durch die TU München (2009-2011)

(6): Standortname: Scheyern Replikat: Löss-Acker 3

Standortkennung: EB BY23

Koord. (WGS 84): 50.56977°N/6.36014°E

Standortbeschreibung: Intensiv bewirtschaftete Ackerfläche

Vegetationseinheit: Stellarietea-Basalgesellgesellschaft,

Ackerwildkrautflur

Biotoptyp:

BTL D: 33.04.03 Intensiv bewirtschafteter Acker

auf Löss-, Lehm- oder Tonboden mit stark verarmter oder fehlender Segetalvegetation

EUNIS: I1.1 Intensive unmixed crops

Hangneigung: 2°/Süd-Ost Höhe ü. NHN: 462 m Bodentyp: Braunerde pH-Wert: 6,01

Bodenart: Sandiger Schluff (Us) **Humusform**: Nicht angebbar

$We itergehende\ Maßnahmen:$

Nicht bekannt.

Sonstige Flächeninformationen:

Durchschnittstemperatur: 8,1 °C Mittl. Niederschlag: 805 mm

Teil des Versuchsguts Scheyern (langjährige landwirtschaftliche Erhebungen sowie bodenbiologische Beprobungen auf Nachbarflächen) (7): Standortname: Sulzthal Replikat: Kalk-Acker 1

Standortkennung: EB BY31

Koord. (WGS 84): 50.58027°N/6.50202°E

Standortbeschreibung: Extensiv bewirtschaftete Ackerfläche

Vegetationseinheit: Papaveretalia-Basalgesellgesellschaft,

Klatschmohn-Gesellschaft

Biotoptyp:

BTL D: 33.01.01 Extensiv bewirtschafteter

flachgründiger und skelettreicher Kalkacker

mit vollständiger Segetalvegetation

EUNIS: I1.2 Arable land with unmixed crops grown

by low-intensity agricultural methods

Hangneigung: 0° Höhe ü. NHN: 344 m Rendzina **Bodentyp**: pH-Wert: 7,29

Bodenart: Schwach toniger Schluff (Ut2)

Humusform: Nicht angebbar Cges: 3,44%

Weitergehende Maßnahmen:

2012/13: Tiefes Pflügen, einebnen des Gemenges mit Egge vor Dinkel, 2013/2014: Unterpflügen der Zwi-schenfrucht und Eggen; 2014/15: Grubbern, vor Zwischenfrucht tiefes Pflügen, im Frühjahr

Einebnung mit Eggen.

Sonstige Flächeninformationen:

Durchschnittstemperatur: 8,6 °C Mittl. Niederschlag: 734 mm

Fruchtfolge: 2013 Wicken-Senf Gemenge gemulcht und

als Zwischenfrucht nachgebaut Dinkel 2014 Wicken-Senf Gemenge als Zwischenfrucht; 2015 Hafer

(8): Standortname: Großenhül Flur

Replikat: Kalk-Acker 2

Standortkennung: EB BY32

Koord. (**WGS 84**): 50.62629°N/6.41537°E

Standortbeschreibung: Extensiv bewirtschaftete Ackerfläche

Vegetationseinheit: Papaveretalia-Basalgesellgesellschaft,

Klatschmohn-Gesellschaft

Biotoptyp:

BTL D: 33.01.01 Extensiv bewirtschafteter

> flachgründiger und skelettreicher Kalkacker mit vollständiger

Segetalvegetation

EUNIS: I1.2 Mixed crops of market gardens and

horticulture

Hangneigung: Kuppenlage Höhe ü. NHN: 512 m Bodentyp: Rendzina pH-Wert: 6,09

Bodenart: Schwach toniger Schluff (Ut2)

Humusform: Nicht angebbar

Cges: 2,67%

Weitergehende Maßnahmen:

Pflug-Kulturegge, Sämaschinen-Walze

Sonstige Flächeninformationen:

Durchschnittstemperatur: 7,4 °C Mittl. Niederschlag: 891 mm

Fruchtfolge: 2013 Erbsen, 2014 Gerste (Untersaat Klee),

2015 Klee

2013 Beprobung der Regenwürmer durch LfL (Frau R. Walter)

(9): Standortname: Großenhül In der Huh

Replikat: Kalk-Acker 3

Standortkennung: EB BY33

Koord. (**WGS 84**): 50.62028°N/6.49382°E

Standortbeschreibung: Extensiv bewirtschaftete Ackerfläche

Vegetationseinheit: Papaveretalia-Basalgesellgesellschaft,

Klatschmohn-Gesellschaft

Biotoptyp:

BTL D: 33.01.01 Extensiv bewirtschafteter

> flachgründiger und skelettreicher Kalkacker mit vollständiger

Segetalvegetation

EUNIS: I1.2 Mixed crops of market gardens and

horticulture

Hangneigung: Höhe ü. NHN: 507 m **Bodentyp**: Rendzina pH-Wert: 5.75

Bodenart: Schwach toniger Schluff (Ut2)

Humusform: Nicht angebbar

Cges: 1,72%

Weitergehende Maßnahmen:

Pflug-Kulturegge, Saat-Walze 2014: ca. 20 t Pferdemist auf 1,87 ha

Sonstige Flächeninformationen:

Durchschnittstemperatur: 7,5 °C Mittl. Niederschlag: 896 mm

2013 Winter-Weizen, 2014 Erbsen, Fruchtfolge:

2015 Triticale

Da auf den Untersuchungsflächen mit höherem 7.3.2 Gesamtkohlenstoffgehalt auch ein höherer Gesamt- 7.3.2.1 Arrhenatheretalia-Basalgesellschaft stickstoffgehalt gemessen wurde, ergaben die jeweiligen C/N-Verhältnisse jedoch relativ ähnliche Werte zwischen 8,06 (Löss-Acker EB BY21) und 14,75 (Kalk-Acker Formation: EB BY31).

Die Messungen der Korngrößenverteilungen ergaben, dass der Anteil des Schluffes auf allen Untersuchungsflächen mit Werten zwischen 55,9% (Intensivgrünland EB BY13) und 81,3 % (Kalk-Acker EB_BY33) am größten war. Die Bodenart der einzelnen Untersuchungsflächen war somit als Schluff mit unterschiedlichen Ton-, Lehm- und Sandanteilen zu Ordnung: bezeichnen (Tab. 69 und Arbeitsgruppe Boden 1996). Die einzige Ausnahme bildete der Intensivgrünland-Standort EB BY11, der mit einem Sandanteil von Typ: 58,9% als mittel schluffiger Sand anzusehen ist.

Die Ellenbergzahlen der nachgewiesenen Pflanzenarten wurden in Tab. 70 zusammengefasst. Entsprechend der gemessenen mäßig sauren bis schwach alkalischen pH-Werte liegen sie alle im basischen Bereich. Die Stickstoffzahlen entsprechen eutrophen EUNIS: Standortbedingungen, und die Feuchtezahl weist auf frische Habitate hin. Die Ellenbergzahlen zeigen Offenland entsprechend Volllicht-Verhältnisse an und liegen im (mäßig) warmen Temperaturbereich.

Vegetationskundliche Aufnahme (Fettwiese frischer Standorte)

VII. Tritt- und Flutrasen,

Rasengesellschaften des

Wirtschaftsgrünlandes, Graudünen, Halbtrockenrasen und Magerrasen,

Hochgebirgsrasen

Molinio-Arrhenatheretea Tx. 1937 Klasse:

> Gesellschaften des Wirtschaftsgrünlandes

Arrhenatheretalia Tx. 1931, Fett-

oder Frischwiesen und -weiden

sowie Vielschur-Rasen

Arrhenatheretalia-Basalgesellschaft,

Fettwiese frischer Standorte

Biotoptyp

BTL D: 34.08.01.01 Intensiv genutztes,

frisches Dauergrünland der planaren

bis submontanen Stufe

E2.6 Agriculturally-improved, re-

seeded and heavily fertilized

grassland, including sports fields and

grass lawns

Die Arrhenatheretalia fassen alle Wirtschaftsgrünländer 7.3.2.2 Stellarietea mediae-Basalgesellschaft d. h. Wiesen und Weiden frischer Standorte. Zugehörige Bestände bilden die produktivsten Futterwiesen und Viehweiden und sind somit in der modernen Landwirtschaft weit verbreitet. Die intensive Nutzung, d. h. Düngung und/oder Umbruch und Neueinsaat, führt zu einer starken Verarmung und somit zu Klasse: fragmentarischen Beständen (Dierschke 1997). Die im Projekt untersuchten Flächen EB BY11, EB BY12 und EB BY13 gehören alle zu einem intensiv genutzten Grünlandtyp (Tab. 71), der weitgehend Typ: artenarm an Wiesen- und Weidenarten ist und somit Arrhenatheretalia-Basalgesellschaft eingestuft wird. In allen Aufnahmen ist eine Grasart der Gattung Lolium dominant. L. multiflorum ist als Einsaatgras bekannt. Die geringe Artenzahl in der Fläche EB BY11 zeigt ebenso einen stark fragmentarischen Charakter, vermutlich durch eine Einsaat in der Vergangenheit.

(Ackerwildkrautflur auf Löss)

Formation: III. Therophytenreiche

> Pioniervegetation (mit Ausnahme des unmittelbaren Küstenbereiches)

Stellarietea mediae Tx. et al. ex

von Rochow 1951

Ackerwildkrautfluren und ruderale

Einjährigen-Gesellschaften

Stellarietea-Basalgesellgesellschaft,

Ackerwildkrautflur

Biotoptyp

33.04.03 Intensiv bewirtschafteter BTL D:

Acker auf Löss-, Lehm- oder Tonboden mit stark verarmter oder

fehlender Segetalvegetation

EUNIS: I1.1 Intensive unmixed crops

Tab. 69: Ergebnisse der bodenkundlichen Messungen Teil II, Korngrößenverteilung (in Masse-%) und Bodenart. Su3: mittel schluffiger Sand; Uls: sandig-lehmiger Schluff; Us: sandiger Schluff; Ut2: schwach toniger Schluff (Arbeitsgruppe Boden 1996).

Untersuchungs-fläche		Korngrößenverteilung				
	Ton /%	Schluff /%	Sand /%			
EB_BY11	7,4	33,8	58,9	Su3		
EB_BY12	11,0	58,9	30,1	Uls		
EB_BY13	9,2	55,9	34,9	Uls		
EB_BY21	7,8	76,1	16,1	Us		
EB_BY22	7,0	75,1	17,9	Us		
EB_BY23	7,0	75,1	17,9	Us		
EB_BY31	9,5	79,6	10,9	Ut2		
EB_BY32	9,5	80,7	9,8	Ut2		
EB_BY33	8,4	81,3	10,4	Ut2		
EB_BY32	17,1	6,09	9,07	2,67		
EB_BY33	15,0	5,75	9,18	1,72		

Tab. 70: Mediane der Ellenbergzahlen für die Bodenreaktion, den Stickstoffgehalt sowie die Feuchte-, Licht- und Temperaturbedingungen auf den Untersuchungsflächen in Bayern.

		Reaktion	Stickstoff	Feuchte	Licht	Temperatur
	EB_BY11	7,0	7,0	5,0	7,0	5,0
Intensiv- grünland	EB_BY12	7,0	6,0	5,0	7,0	5,5
grumanu	EB_BY13	6,0	6,5	5,0	7,5	5,5
	EB_BY21	-	-	-	-	-
Löss-Acker	EB_BY22	7,0	7,0	5,0	6,0	-
	EB_BY23	6,5	8,0	5,5	7,0	6,0
	EB_BY31	7,0	6,5	4,5	7,0	6,0
Kalk-Acker	EB_BY32	7,0	7,0	5,0	7,0	5,0
	EB_BY33	7,0	7,0	5,0	7,0	5,0

Reaktion		Stickstoff		Feuchte		Licht		Temperatur	
sauer	0-4,0	mager	0-4,0	trocken	0-4,0	schattig	0-4,0	kühl	0-4,0
neutral	4,1-5,5	mäßig	4,1-5,5	frisch	4,1-5,5	halblicht	4,1-5,5	mäßig warm	4,1-5,5
basisch	5,6-10	eutroph	5,6-10	feucht	5,6-10	volllicht	5,6-10	warm	5,6-10

systematische Trennung der Ackerunkrautgesellschaften ist heute aufgrund der nivellierenden Wirkung der Stickstoffdüngung sowie dem Pestizideinsatz auf den Ackerstandorten meist nicht mehr durchzuführen. Zudem führten eine verbesserte Saatgutreinigung sowie ein zunehmender Fruchtwechsel zur Vereinheitlichung der Wildkrautvegetation (Pott 1992). Die untersuchten Flächen auf den Löss-Äckern in Bavern, EB BY21. EB BY22 und EB BY23, zeigten eine sehr gering ausgeprägte Wildkrautvegetation (Tab. 72), was auf deren 7.4 intensive Bekämpfung an den Standorten zurückzuführen ist. Aufgrund des sehr spärlichen Bewuchses kann die Vegetation nur sehr allgemein als Stellarietea-Basalgesellschaft bezeichnet werden. Beeindruckend ist, dass auf Fläche EB BY21 keine einzige Wildkrautart neben der Kulturart gefunden werden konnte, wobei auf den beiden anderen Flächen zumindest Einzelexemplare anderer Arten aufgefunden wurden. Alle Flächen können als sehr intensiv bewirtschaftet eingestuft werden.

6.3.2.2 Papaveretalia-Basalgesellschaft (Klatschmohn-Gesellschaft)

Formation: III. Therophytenreiche

Pioniervegetation (mit Ausnahme des

unmittelbaren Küstenbereiches)

Klasse: Stellarietea mediae Tx. et al. ex

von Rochow 1951

Ackerwildkrautfluren und ruderale

Einjährigen-Gesellschaften

Unterklasse: Violenea arvensis Hüppe &

Hofmeister 1990

Ordnung: Papaveretalia rhoeadis Hüppe &

Hofmeister 1990

Typ: Papaveretalia-

Basalgesellgesellschaft, Klatschmohn-Gesellschaft

Biotoptyp

BTL D: 33.01.01 Extensiv bewirtschafteter

flachgründiger und skelettreicher Kalkacker mit vollständiger

Segetalvegetation

EUNIS: I1.2 Arable land with unmixed crops

grown by low-intensity agricultural

methods

Die Flächen EB_BY31, EB_BY32 und EB_BY33 können als Klatschmohn-Basalgesellschaft bezeichnet werden (**Tab. 73**). Es handelt sich im vegetationskundlichen Sinne um eine Winter- und Sommerfruchtgesellschaft auf basenreichen Böden. Die Zuordnung der Vegetation ist nur sehr schwach, da kennzeichnende Arten der Ordnung

wie *Papaver rhoeas, Sinapis arvensis Veronica persica* etc. nur mit wenigen Einzelexemplaren aufzufinden waren. Insgesamt konnten auf den zugehörigen Flächen zwischen 12 und 15 Wildkrautarten gefunden werden. Die höchsten Deckungsgrade der Wildkräuter wurden auf EB_NW32 festgestellt. Hier erreichte die Kamille einen Deckungsgrad von 26 % und die Bastard-Luzerne 50 %.

7.4 Ergebnisse und Diskussion der einzelnen Bodentiergruppen

7.4.1 Oribatida

7.4.1.1 Allgemeine Angaben zu Individuen- und Artenzahlen

Insgesamt wurden auf allen untersuchten Flächen 2055 Individuen aus 43 Arten nachgewiesen (vgl. **Tab. 74**). Die entsprechenden Rohdaten sind dem Anhang (**Tab. Anhang 1, 36-38**) zu entnehmen.

Der individuenreichste Biotoptyp war das Intensivgrünland (insgesamt 833 Individuen an allen drei Standorten), der individuenärmste der Löss-Acker (insgesamt 526 Tiere auf den drei Flächen). Innerhalb der Biotoptypen unterschieden sich die Untersuchungsflächen hinsichtlich ihrer Individuenzahlen teilweise deutlich: So wurden beispielsweise auf den Löss-Äckern zwischen 43 (EB_BY22) und 381 (EB_BY21) Oribatiden erfasst. Beim Vergleich der Frühjahrs- und der Herbstprobenahme fällt auf, dass im Frühjahr auf allen Flächen weniger Individuen gezählt wurden als im Herbst.

Die Artenzahl lag zwischen insgesamt 16 (Kalk-Äcker) und 29 (Intensivgrünländer) Arten. Die häufigste Art der Untersuchung war *Oppiella nova* (584 Individuen), gefolgt von *Tectocepheus* group *velatus* (559 Individuen), *Zygoribatula excavata* (329 Individuen), *Scheloribates laevigatus* (129 Individuen) und *Scheloribates holsaticus* (120 Individuen). Diese fünf häufigsten Arten machten somit 84% aller gefangenen Individuen aus. 26 Arten wurden als Einzelindividuen nachgewiesen (siehe **Tab. Anhang 36-38**).

7.4.1.2 Beschreibung der ermittelten Artengruppen der Biotoptypen

Die sortierte Kreuztabelle (**Tab. 75**) zeigt, dass für keinen der drei Biotoptypen Intensivgrünland, Löss-Acker oder Kalk-Acker eine Kennartengruppe identifiziert werden konnte, da keine der nachgewiesenen Arten ausschließlich innerhalb eines Biotoptyps stetig vorkam. Anhand der vorliegenden Daten konnten auch keine sonstigen edaphischen Artengruppen ermittelt werden. Beim Vergleich der Ergebnisse dieser Untersuchung

Tab. 71: Arrhenatheretalia-Basalgesellschaft (Fettwiese frischer Standorte).

Standort	EB_BY11	EB_BY12	EB_BY13
Artenzahl	9	14	11
Ordnung: Arrhenatheretalia			
Achillea millefolium L.		+	1
Bellis perennis L.		1	1
Dactylis glomerata L.	1		
Klasse: Molinio-Arrhenatheretalia			
Alopecurus pratensis L.	2	2	3
Cardamine pratensis L.		1	
Cerastium holosteoides Fr.		+	
Poa pratensis L.		1	2
Ranunculus acris L.			1
Taraxacum officinale agg.	1	+	2
Trifolium repens L.		2	2
Begleitarten			
Capsella bursa-pastoris (L.) Med.	+		
Lamium purpureum L.	+		
Lolium multiflorum Lam.	3	1	
Lolium perenne L.		3	3
Plantago lanceolata L.		+	1
Poa trivialis L.	3		
Ranunculus ficaria L.		1	
Ranunculus repens L.		1	1
Rumex obtusifolius L.	1	1	1
Stellaria media agg.	1		

 $\textbf{Tab. 72}: \textit{Stellarietea mediae} \text{ -} Basalgesellschaft (Ackerwildkrautflur auf L\"{o}ss); L\"{o}ss-Acker ohne Wildkr\"{a}uter (EB_BY21), wildkrautarmer L\"{o}ss-Acker (EB_BY22, EB_BY23).$

Standort	EB_BY11	EB_BY12	EB_BY13
Artenzahl	1	5	6
Kulturpflanze			
Triticum aestivum	5	5	5
Begleitarten			
Beta vulgaris L. agg.		+	•
Cirsium juvenil spec.			+
Galium aparine L.			1
Matricaria spec.		+	
Poa annua L.			+
Spinacia oleracea		+	
Veronica hederifolia L.			+
Veronica persica Poir.		+	+

mit denen der gesamten Länderstudie (Kap. 5, 6, 8) ist Arten auf den intensiv bewirtschafteten Flächen weniger jedoch eine Artengruppe um Suctobelbella sarekensis zu erkennen, die auf den Grünländern (Borstgrasrasen, Goldhaferwiesen, Halbtrockenrasen) in Sachsen-Anhalt stetig vorkommt (Edaphobase 2018). Diese Arten treten, wenn auch weniger stetig, in den intensiv bewirtschafteten Grünlandflächen dieser Studie (Tab. 75) auf und sind daher als Grundarten der Grünländer zu bewerten. Allerdings wird durch diesen Vergleich deutlich, dass die für die extensiv bewirtschafteten Grünländer typischen

abundant und stetig vorkommen. Die Art Nanhermannia nana wurde in der vorliegenden Studie ausschließlich in den intensiv bewirtschafteten Grünländern nachgewiesen. Sie ist in der Gesamtheit der Länderstudien jedoch als Begleitart eingestuft worden, so dass sie auch in der vorliegenden Studie als solche gewertet wurde. Die Art Zygoribatula excavata zeigt ein Schwerpunktvorkommen auf den Löss-Äckern und wurde auch auf einer Kalk-Ackerfläche (EB BY31) mit 16 Individuen nachgewiesen

Tab. 73: Papaveretalia-Basalgesellschaft (Klatschmohn-Gesellschaft), wildkrautarmer Kalk-Acker.

Standort	EB_BY31	EB_BY32	EB_BY33
Artenzahl	15	12	12
Kulturpflanze			
Avena sativa	2		
Hordeum vulgare		2	
Triticum aestivum x Secale cereale			4
Ordnung: Papaveretalia rhoeadis			
Papaver rhoeas L.	+		
Sinapis spec.	+		+
Veronica persica Poir.	+	+	1
Thlaspi arvense L.			+
Geranium dissectum L.	+		•
Unterklasse Violenea			
Viola arvensis Murray		1	
Lamium purpureum L.		+	1
Veronica arvensis L.		1	
Begleitarten			
Cerastium holosteoides Fr.			+
Cirsium arvense (L.) Scop.	+	+	
Galium aparine L.	+		1
Geranium molle L.			+
Geranium pusillum Burm.f.	+		
Matricaria spec.	+	3	
Medicago x varia Martyn		3	
Myosotis ramosissima Rochel ex Schult.		1	
Poa annua L.			1
Polygonum aviculare agg.	+		
Ranunculus acris L.	+		
Rumex obtusifolius L.		1	+
Senecio jacobaea L.	+		
Silene latifolia Poir.	+		
Stellaria media agg.		+	1
Taraxacum officinale agg.	+	1	
Veronica hederifolia L.	1		1

Tab. 74: Arten- und Individuenzahlen der Oribatiden.

			Individu	enzahlen		Artenza	hlen	
	BY11	Frühjahr	95	238		7	11	
	DIII	Herbst	143	236		8	11	
Intensiv-	BY12	Frühjahr	35	472	833	5	11	29
grünland	D112	Herbst	437	4/2	633	8	11	29
	BY13	Frühjahr	47	123		13	16	
	D113	Herbst	76	123		6	10	
	BY21	Frühjahr	56	381		7	9	
	D121	Herbst	325	361		6	9	
Löss-Acker	BY22	Frühjahr	7	43	526	3	6	19
LUSS-ACKEI		Herbst	36		320	4	O	19
	BY23	Frühjahr	35	102		5	9	
		Herbst	67	102		6	9	
	BY31	Frühjahr	128	320		7	10	
	D131	Herbst	192	320		8	10	
Kalk-Acker	BY32	Frühjahr	10	250	696	1	4	16
Kaik-Ackei	D 1 32	Herbst	240	230	090	4	4	10
	BY33	Frühjahr	40	126		5	7	
		Herbst	86	126		5	/	
Bayern 2015			Individu	Individuenzahl gesamt:		Artenza	hl gesamt:	43

Tab. 75: Sortierte Kreuztabelle der Hornmilben (Oribatida); Angaben in Individuen/m².

	lfd. Nr. 1: Almesbach Stallkoppel lfd. Nr. 2: Kringell 1 Büchelberger Wiese lfd. Nr. 3: Kringell 2 Prag			Röders lfd. Nr lfd. Nr	lfd. Nr. 4: Schwarzenau Rödersacker lfd. Nr. 5: Leiblfing lfd. Nr. 6: Scheyern			lfd. Nr. 7: Sulzthal lfd. Nr. 8: Großenhül Flur lfd. Nr. 9: Großenhül In der Huh		
		vgrünland			Acker 33.0			cker 33.0		
Flächenkürzel Edaphobase	EB_BY1	1 EB_BY1	2 EB_BY	13 EB_BY	21 EB_BY	22 EB_BY2	23 EB_BY3	1 EB_BY3	2 EB_BY33	
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Grundarten der Grünländer										
Suctobelbella sarekensis	:	16	16							
Eupelops occultus	<u>.</u>		140							
Grundarten intensive Nutzung										
Zygoribatula excavata	16	62		4709	16	62	249			
Begleitarten										
Begleiter mit hoher Stetigkeit										
Tectocepheus group velatus	47	16	917	591	575	1119	839	3823	762	
Oppiella (O.) nova	1181	6559	544	93		218	155	16	311	
sonstige Begleiter										
Oribatida juvenil	16	47				31	16	16		
Microppia minus	16	466			31		16			
Scheloribates laevigatus	109	47					1679		171	
Achipteria coleoptrata			31		16		31			
Dissorhina ornata			16			47			16	
Punctoribates punctum	16			16			1181			
Oribatida spec.	16			78	•	16		•	16	

Zusätzlich (zwei Untersuchungsflächen): Brachychthoniidae (2:31; 3:16), *Limnozetes ciliatus* (1:16; 5:16), *Lucoppia burrowsi* (4:62; 7:762), *Microtritia minima* (2:16; 9:16), *Nanhermannia nana* (1:31; 2:16), *Oppiella* (0.) *falcata* (3:16; 6:16), *Ramusella insculpta* (4:311; 7:31), *Suctobelbella subcornigera* (2:31; 4:31)

Zusätzlich (eine Untersuchungsfläche): Adoristes ovatus (2:16), Ceratozetes mediocris (1:342), Ceratozetes minimus (6:31), Chamobates voigtsi (5:16), Conchogneta dalecarlica (6:16), Eniochthonius minutissimus (3:31), Eueremaeus cf. oblongus (8:16), Eupelops plicatus (3:47), Eupelops torulosus (3:47), Galumna flagellata (3:16), Hoplophthiracarus illinoisensis (3:16), Hermanniella punctulata (3:16), Hypochthonius luteus (3:16), Microremus brevipes (9:16), Mucronothrus nasalis (8:16), Oppiella (R.) obsoleta (6:16), Pantelozetes paolii (1:31), Platynothrus peltifer (3:16), Porobelba spinosa (3:16), Protoribates capucinus (4:16), Punctoribates hexagonus (2:16), Scheloribates holsaticus (1:1865), Scheloribates latipes (9:653), Sellnickochthonius immaculatus (7:16), Suctobelbella falcata (4:16), Zetorchestes falzonii (6:16)

Tab. 76: Oribatiden-Art des Biotoptyps artenarmes Intensivgrünland, deren Indikatorwert bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechende relative Abundanz und Frequenz. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_va	lue pvalue	rel_abundance	rel_frequency
34.08.01.01	artenarmes I	Intensivgrünland		
Oppiella nova	0,91	0,04	0,91	1,00

(Tab. Anhang 38). Zudem wurden wenige Individuen auf zwei Intensivgrünländern gefangen. In der Gesamtheit der Länderstudien (Kap. 5, 6, 8) wurde die Art nahezu ausschließlich auf diesen intensiv bewirtschafteten Flächen in Bayern nachgewiesen und wurde daher als schwache Grundart der intensiven landwirtschaftlichen Nutzung eingestuft.

Die Auswertung der Daten mit der Indikatorartenanalyse (ISA) ergab eine Indikatorart (*Oppiella nova*) für das artenarme Intensivgrünland (**Tab. 76**). Da diese Art jedoch auch auf den Ackerstandorten, wenn auch in geringerer Abundanz, vorkam, wurde sie nicht als Kennart für diesen Biotoptyp gewertet. Zudem ist entsprechend der Datenlage in Edaphobase (Abfrage der Datenbank mit dem Statistik-Tool Edaphoclass am 01.02.2018, **Tab. 77**, Hausen et al. 2017) *Oppiella nova* die stetigste Art an Ackerstandorten. Dieses Beispiel zeigt, dass die ISA stärker die Abundanz der Arten in die Analyse einbezog, und in der sortierten Kreuztabelle der Fokus auf der Präsenz/Absenz der Arten lag. Zudem floss Hintergrundwissen zu den Arten in die Sortierung der Kreuztabelle ein.

Die Korrespondenzanalyse (CA) der Oribatidendaten ergab eine schwache Auftrennung der Biotoptypen anhand der Artenspektren. Dabei waren die Unterschiede zwischen den Untersuchungsflächen jedoch teilweise größer als die Unterschiede zwischen den Biotoptypen und es sind Überlappungen zu erkennen (Abb. 74).

vorab durchgeführte Eine Kanonische Korrespondenzanalyse (CCA) gab den Sand-, Schluffund Tongehalt des Bodens sowie die Höhenlage als erklärende Umweltvariablen aus. Allerdings korrelierten die Umweltvariablen nur in geringerem Maße mit der ersten Achse des Diagramms bzw. mit dem den Daten zugrundeliegenden Gradienten, der den größten Erklärungsgehalt aufweist. Zudem ist jeder der drei Parameter (Sand-, Schluff- und Tongehalt des Bodens) mit den jeweils anderen korreliert. Obgleich daher der Erklärungsgehalt dieser Umweltparameter als eher schwach einzustufen ist, weist die Analyse auf den Einfluss der Bodenart auf die Oribatiden-Zönose hin. Die Höhenlage als erklärende Umweltvariable ist vermutlich eine zufällige Korrelation mit einem anderen, nicht in die Analyse eingeflossenen Faktor, wie z. B. dem untersuchten Gebiet, da die Biotoptypen in unterschiedlichen geografischen Regionen und damit auch auf unterschiedlicher Höhenlage lokalisiert sind.

Tab. 77: Stetigste Oribatidenarten der Biotoptypen 34. (Trockenrasen sowie Grünland trockener bis frischer Standorte) und 33. (Ackerland und Brachen) (Biotoptypen 1. Ordnung nach Riecken et al. 2003). Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 01.02.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps (Frequenz).

Trockenrasen sowie Grünland	
trockener bis frischer Standorte	
(Code: 34.), 32 Standorte	Frequenz
Tectocepheus velatus (Michael, 1880)	0,9
Eupelops occultus (C. L. Koch, 1835)	0,9
Liebstadia similis (Michael, 1888)	0,8
Punctoribates punctum (C. L. Koch, 1839)	0,8
Oppiella nova (Oudemans, 1902)	0,8
Achipteria coleoptrata (Linné, 1758)	0,7
Trichoribates novus (Sellnick, 1928)	0,7
Scheloribates laevigatus (C. L. Koch, 1835)	0,6
Ceratozetes mediocris Berlese, 1908	0,6
Scheloribates latipes (C. L. Koch, 1844)	0,6
Acker und Brache	
(Code: 33), 6 Standorte	Frequenz
Oppiella nova (Oudemans, 1902)	0,8
Tectocepheus velatus (Michael, 1880)	0,7
Punctoribates punctum (C. L. Koch, 1839)	0,7
Oppiella falcata (Paoli, 1908)	0,7
Dissorhina ornata (Oudemans, 1900)	0,5
Achipteria coleoptrata (Linné, 1758)	0,3
Scheloribates laevigatus (C. L. Koch, 1835)	0,3
1	0.2
Oribatula tibialis (Nicolet, 1855)	0,3
Oribatula tibialis (Nicolet, 1855) Atropacarus striculus (C. L. Koch, 1835)	0,3

7.4.1.3 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Da das Artenspektrum der Oribatiden kein differenziertes Muster bzw. keine deutliche Ausbildung von Kennartenoder edaphischen Gruppen bildet (siehe Kap. 7.4.1.2), wird auf eine Charakterisierung der einzelnen Biotoptypen verzichtet.

Insgesamt besteht das vorgefundene Artenspektrum aus zwei hoch stetigen und abundanten Arten (Oppiella

nova, Tectocepheus group velatus), zwei sehr schwachen Grundartengruppen sowie sonstigen Begleitern. Verglichen mit den Artenspektren anderer Studien, wie z. B. den Länderstudien aus Sachsen, Sachsen-Anhalt oder dem Nationalpark Eifel (Kap. 5, 6, 8, Edaphobase 2018), scheinen die Lebensgemeinschaften der beiden untersuchten Äcker und des Intensivgrünlands nahezu ausschließlich aus Begleitarten zu bestehen; differenzierende Artengruppen fehlen weitgehend.

Mit Hilfe des Analyse-Tools Edaphoclass wurde die Datenbank Edaphobase hinsichtlich der stetigsten Arten innerhalb der Biotoptypen 1. Ordnung (Ackerland und Brache (33.) und Trockenrasen sowie Grünland trockener bis frischer Standorte (34.), Riecken et al. 2003) abgefragt (siehe **Tab. 77**). Der Vergleich des in dieser Studie ermittelten Artenspektrums mit den häufigsten Acker/Brachland- und Grünland-Taxa zeigte, dass jeweils acht der 10 häufigsten Arten auch in dieser Studie gefunden wurden. Insbesondere die beiden stetigsten und individuenreichsten Arten der vorliegenden Studie, *Oppiella nova* und *Tectocepheus* group *velatus*, gehören biotopübergreifend zu den häufigsten Arten der beiden Offenland-Lebensräume.

Vier der gefangenen Arten zeigten in geringem Maße ein Schwerpunktvorkommen an: Nanhermannia nana, Suctobelbella sarekensis und Eupelops occultus kamen nur in den Intensivgrünländern, und Zygoribatula excavata kam vermehrt auf den Ackerflächen vor (siehe Kap. 7.4.1.2, **Tab. 75**). Entsprechend der bestehenden Literatur gelten N. nana und S. sarekensis als eurytope Arten mit breitgefächerter Habitatpräferenzen, E. occultus und Z. excavata dagegen werden als typische Arten des Grünlands bzw. Wirtschaftsgrünlands beschrieben (Weigmann & Kratz 1981, Weigmann

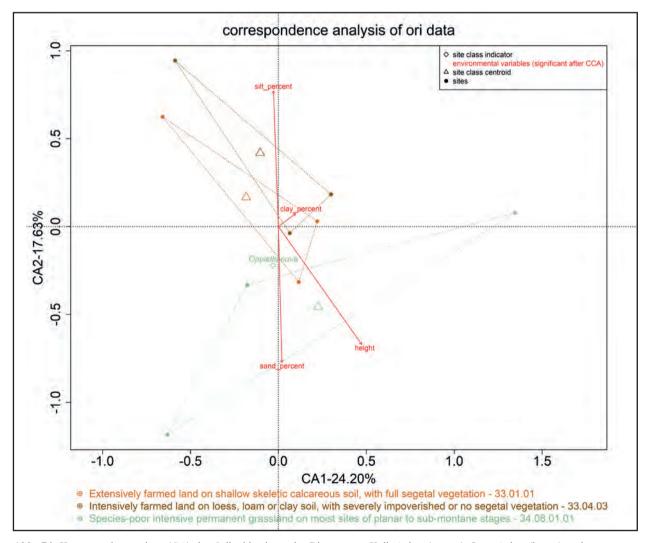
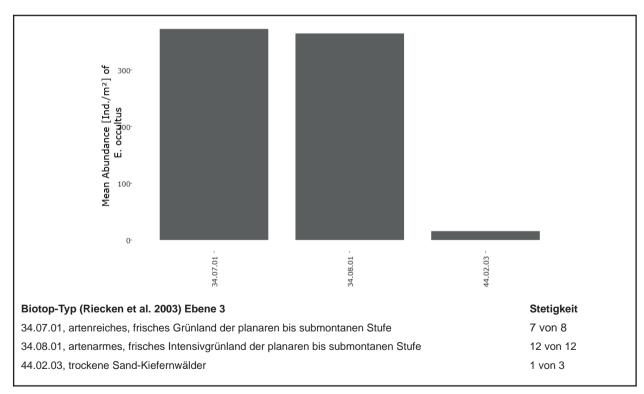


Abb. 74: Korrespondenzanalyse (CA) der Oribatidendaten der Biotoptypen Kalk-Acker (rostrot), Löss-Acker (braun) und artenarmes Intensivgrünland (graugrün) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart aus der Indikatorartenanalyse; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

2006). Auch eine Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) zeigt die deutliche Präferenz von *E. occultus* für Grünlandstandorte an (**Abb. 75**).

Verglichen mit anderen Untersuchungen und Standorten sind die Biotoptypen dieser Studie bezüglich ihrer Oribatiden-Lebensgemeinschaft als verarmt einzustufen (vgl. Kap. 5, 6, 8, Edaphobase 2018). Da kein deutliches Muster bzw. keine differenzierenden Gruppierungen identifiziert werden können, sind die Oribatiden, zumindest entsprechend dieses Datensatzes, zur Charakterisierung verschiedener Intensivgrünlandund Acker-Lebensraumtypen kaum geeignet.


7.4.2 Collembola

7.4.2.1 Allgemeine Angaben zu Individuen- und Artenzahlen

Insgesamt wurden auf allen untersuchten Flächen 10.626 Individuen aus 38 Arten nachgewiesen (vgl. **Tab. 78**). Ähnlich wie bei den Oribatiden war das Intensivgrünland der individuenreichste Biotoptyp (insgesamt 5.839 Individuen an den drei Standorten), gefolgt vom Kalk- (2.880 Individuen) und Löss-Acker (1.907 Individuen).

Für die höheren Individuenzahlen der Collembolen im Intensivgrünland ist vermutlich das geringere Störungsregime im Vergleich zu den Ackerflächen verantwortlich. Allerdings unterschieden sich die Fangzahlen der drei Intensivgrünlandflächen deutlich: Auf der Fläche EB_BY11 wurden 3.395 Collembolen erfasst, wohingegen die Fangzahlen auf den Flächen EB_BY12 (815 Individuen) und EB_BY13 (1.629 Individuen) deutlich niedriger lagen. Beim Vergleich der Frühjahrs- und der Herbstprobenahme fiel auf, dass im Intensivgrünland auf allen drei Flächen im Herbst mehr Individuen erfasst wurden als im Frühjahr – auf den Kalk-Ackerflächen dagegen war das Muster durchgängig gegenläufig.

Die Artenzahl unterschied sich nur geringfügig zwischen den Biotoptypen, mit dem höchsten Wert im Intensivgrünland (insgesamt 26 Arten). Die Individuenzahlen der fünf häufigsten Arten der Untersuchung waren sehr ähnlich (*Lepidocyrtus cyaneus*: 1.726 Individuen, *Parisotoma notabilis*: 1.462 Individuen, *Lepidocyrtus lanuginosus*: 1.085 Individuen, *Folsomia quadrioculata*: 1.060 Individuen, *Folsomia manolachei*: 1.015 Individuen). Zusammen mit der Artengruppe *Isotoma viridis* group (1.160 Individuen) machten diese Arten 71 % aller gefangenen Individuen aus (siehe **Tab. Anhang 2, 39-41**).

Abb. 75: Eupelops occultus: Biotoptypen, in denen E. occultus nachgewiesen wurde (20 Nachweise auf 116 in der Analyse berücksichtigten Standorten). Angegeben ist die mittlere Abundanz (Individuen/m2) innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der untersuchten Flächen dieser Studie. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 22.03.2018).

			Individue	enzahlen		Artenza	hlen	
	BY11	Frühjahr Herbst	1068 2327	3395		15 11	17	
Intensiv-	BY12	Frühjahr	304	815		9	16	
grünland	D112	Herbst	511	613	5839	13	10	26
	BY13	Frühjahr	782	1620		15	10	
		Herbst	847	1629		13	18	
	BY21	Frühjahr	381	565		10	16	
	D121	Herbst	184	303		14	10	
	BY22	Frühjahr	152	417	4005	13	20	2.4
Löss-Acker	D122	Herbst	265	117	1907	13	20	24
	BY23	Frühjahr	228	925		8	13	
		Herbst	697	923		11	13	
	BY31	Frühjahr	282	503		10	17	
	D131	Herbst	221	303		15	1 /	
17 - 11 - A - I	DV22	Frühjahr	809	1244	2000	12	1.4	25
Kalk-Acker	BY32	Herbst	435	1244	2880	12	14	25
	BY33	Frühjahr	779	1122		13	10	
		Herbst	354	1133		17	19	
Ba	avern	2015	Individue	enzahl gesamt:	10626	Artenza	hl gesamt:	38

Tab. 78: Arten- und Individuenzahlen der Collembola auf den Untersuchungsflächen in Bayern.

7.4.2.2 Faunistische Anmerkungen und kritische Arten

Kritische/seltene Collembolenarten wurden in dieser Studie nicht nachgewiesen. Interessant ist das Auftreten der Art *Folsomia candida* in den Intensivgrünländern und vereinzelt in den Löss-Äckern. Diese Art wird häufig als Testorganismus für verschieden Laborstudien genutzt (z. B. in der Ökotoxikologie).

7.4.2.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Biotoptypen in Bayern

Kennarten

In Bayern konnten keine speziellen Kennarten innerhalb der Collembolen für die untersuchten Biotoptypen (Intensivgrünland, Löss-Acker, Kalk-Acker) nachgewiesen werden (siehe **Tab. 79**). Zumindest konnten aber zwei Grundarten für Grünländer (*Mesaphorura macrochaeta* und *Friesea mirabilis*) identifiziert werden, die in dieser Untersuchung entsprechend in den Intensivgrünländern auftraten. *Mesaphorura macrochaeta* konnte auch in anderen Untersuchungen in Grünlandhabitaten nachgewiesen werden (vgl. z. B. Salamon et al. 2004). Ein weiterer Verbreitungsschwerpunkt dieser Art sind Wälder (siehe z. B. Albers 1996, Salamon 2001). *Friesea mirabilis*

ist eine vorwiegend räuberische Collembolenart, die sich z. B. von Rotatorien, Tardigraden, Proturen oder Eiern anderer Collembolen ernährt (Petersen 1971, Usher & Booth 1984, Palacios-Vargas & Acosta 1994) - hier könnte das potentielle Beutespektrum in Grünländern wesentlich günstiger sein als z. B. in Ackerflächen.

Bezogen auf die Säuregruppen können *Orchesella villosa* als Grundart für basische Ackerstandorte und *Pseudosinella alba* als Grundart für basenreiche Grünlandund Ackerstandorte eingestuft werden. *Pseudosinella alba* tritt auch in anderen Untersuchungen verstärkt auf basenreichen Standorten auf, wie Ackerflächen auf fruchtbaren Auelehmböden (Christiansen 2000) oder Grasländern auf kalkreichem Untergrund (z. B. im Schweizer Jura, siehe Salamon et al. 2004). Christiansen (2000) konnte *Orchesella villosa* auch auf den bereits genannten Ackerflächen auf Auelehmböden nachweisen.

Kombinierter Ansatz aus Korrespondenzanalyse (CA), Kanonischer Korrespondenzanalyse (CCA) und Indikatorartenanalyse

Innerhalb der Korrespondenzanalyse (CA) trennten sich die drei Biotoptypen (Intensivgrünland, Löss-Acker, Kalk-Acker) zwar voneinander, die beiden Acker-Typen wiesen jedoch eine große Ähnlichkeit zueinander auf (siehe **Abb. 76**). Signifikante Umweltvariablen (p < 0,05), die mit Hilfe der Kanonischen Korrespondenzanalyse (CCA) identifiziert und in das Ordinationsdiagramm

Tab. 79: Sortierte Kreuztabelle der Springschwänze (Collembola); Angaben in Individuen/m².

	Stallkop	•		Röders				7: Sulztha 8: Großen	
	Büchelb	2: Kringel berger Wie	se		5: Leiblfin 6: Scheyer	U	lfd. Nr. Huh	9: Großen	hül In der
		3: Kringel	l 2 Prag 34.08.01.01	Löss-A	cker 33.04	L03	Kalk-A	cker 33.0	1.01
Flächenkürzel Edaphobase		~	2 EB BY13						
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Grundarten der Grünländer									
Mesaphorura macrochaeta	31	16	16	٦.					
Friesea mirabilis	839	357	93	1.					
Säuregruppen				_					
Grundarten basenreiche Grünla	and- und	Ackersta	ndorte						
Pseudosinella alba		16		47	249	311	47	311	280
Grundarten basenreiche Ackers	tandorte				'	'			
Orchesella villosa				16	47		1.	47	93
Begleitarten									
Begleiter mit hoher Stetigkeit									
Parisotoma notabilis	6388	218	2704	1430	140	3373	901	4989	2580
Isotomiella minor	668	497	435	31	466	684	187	93	560
Sminthurinus aureus	870	2098	793	171	668	435	140	295	357
Protaphorura armata	2891	47	2922	31	187	1228	1243	653	777
Lepidocyrtus cyaneus	12481	2922	3792	730	870	1989	373	2580	1088
Folsomia quadrioculata		1461	7476	1274	155	3388	1539	249	933
Lepidocyrtus juvenil	187	16	47	622	171	31	62		124
Lepidocyrtus lignorum	1414		218	249	404	513	730	482	140
Lepidocyrtus lanuginosus	7056	233	435	2362	1321	0.10	1321	3264	870
Artengruppen mit hoher Stetigk		233	155	2302	1321	•	1321	3201	070
Isotoma viridis group	8548	78	824	746	591	979	342	3000	2922
sonstige Begleiter	05 10	70	021	7 10	371	717	312	5000	2,22
Sphaeridia pumilis	124	1927	435		31	78	16		62
Folsomia manolachei	121	2471	2922	•	249	933	357	3062	5782
Cryptopygus thermophilus	8175	24/1	762	715	62	755	16	16	218
Isotomurus graminis	47	31	702		93	16	10	109	140
Heteromurus nitidus	964	31	•		16	78	62	10)	93
Protaphorura juvenil	16	•	93	16	31	233		•	93
Sminthurus juvenil	93	31	31	16	16	233	•	•	•
Entomobryidae juvenil	73	31	16	16	10	•	31	16	•
Sminthurus viridis	218	16	10		•	. 21	31	10	•
	218	10	205	16 16	•	31	•	•	•
Folsomia candida	124	•	295	16	200	16		•	•
Isotoma juvenil	1104	•	•	. 21	280	31	62		
Lepidocyrtus violaceus	1104			31				•	16
Isotomidae juvenil				124	47		62	•	•
Pseudosinella juvenil			16		78	62		•	
Bourletiella viridescens		16		16	16	•		•	
Entomobrya lanuginosa		16		47			155	•	
Folsomia juvenil				•	16	•	31	•	47
Folsomia spinosa			249	•	47	•	•	•	•
Mesaphorura juvenil	31	16							
Neanura juvenil	16			16					
Isotomodes productus	187		124						
Ceratophysella denticulata	482						31		

Zusätzlich eine Untersuchungsfläche: Arrhopalites caecus (2:171), Bourletiella juvenil (2:31), Bourletiella radula (3:16), Brachystomella parvula (9:435), Ceratophysella juvenil (1:31), Desoria violacea (5:47), Dicyrtomina juvenil (3:16), Entomobrya marginata (4:16), Hypogastruridae juvenil (9:16), Isotomurus juvenil (5:31), Isotomurus palustris (7:78), Lepidocyrtus paradoxus (8:171), Megalothorax minimus (5:109), Neanuridae juvenil (9:47), Neelidae juvenil (5:16), Protaphorura humata (9:16), Onychiurus jubilarius (9:16), Orchesella juvenil (4:47), Stenaphorura denisi (7:31), Stenaphorura quadrispina (3:544), Willemia anophthalma (5:31)

integriert wurden, waren die Ellenbergzahlen für die hohen Ellenbergzahlen für die Lichtbedingungen. Bodenreaktion (reaction ellen), die Temperatur- (temp ellen) und Lichtbedingungen (light ellen), sowie der prozentuale Schluff- (silt percent) und Tonanteil (clay percent). Die Ellenbergzahlen für die Lichtbedingungen korrelierten positiv mit der Artenzusammensetzung der Intensivgrünlandstandorte, wohingegen die Ellenbergzahlen für die Bodenreaktion und der prozentuale Schluffanteil stark mit der Artenzusammensetzung der Löss- und Kalk-Ackerstandorte korreliert waren.

Im Rahmen der Indikatorartenanalyse (ISA) konnten die Collembolenarten Sphaeridia pumilis, Mesaphorura macrochaeta und Friesea mirabilis als Indikatorarten für das Intensivgrünland identifiziert werden (siehe Tab. 80), was sich auch in dem Ordinationsdiagramm der CA widerspiegelt (siehe Abb. 76). Alle drei Arten korrelierten somit gleichzeitig positiv mit

Indikatorarten für die Biotoptypen Löss- und Kalk-Acker konnten nicht identifiziert werden.

7.4.2.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Die Lebensbedingungen in Agrarökosystemen sind geprägt vom Ausmaß anthropogener Einwirkungen. Im Vergleich zu den Intensivgrünländern stellen auf den untersuchten Äckern besonders die Ernte und anschließende Bodenbearbeitung eine starke Belastung für Collembolen dar (siehe Heisler 1994, Christiansen 2000). Springschwanzarten, die eine kurze Generationszeit haben und viele Nachkommen erzeugen, können günstige Umweltbedingungen schnell

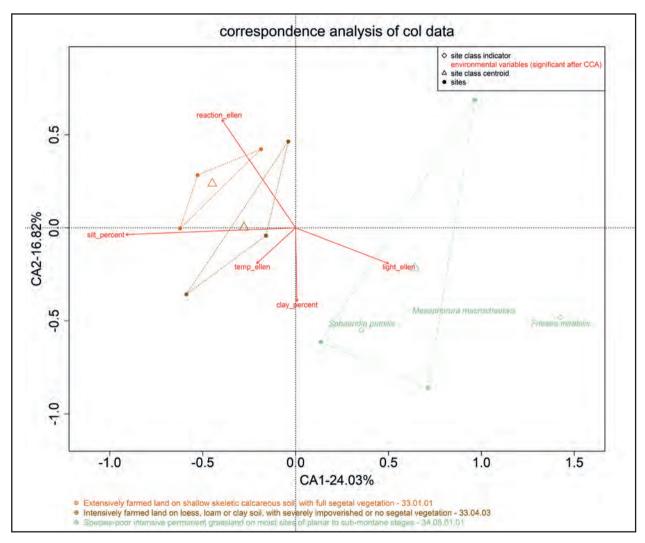


Abb. 76: Korrespondenzanalyse (CA) der Collembolendaten der Biotoptypen Intensivgrünland (grün), Löss-Acker (braun) und Kalk-Acker (orange) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

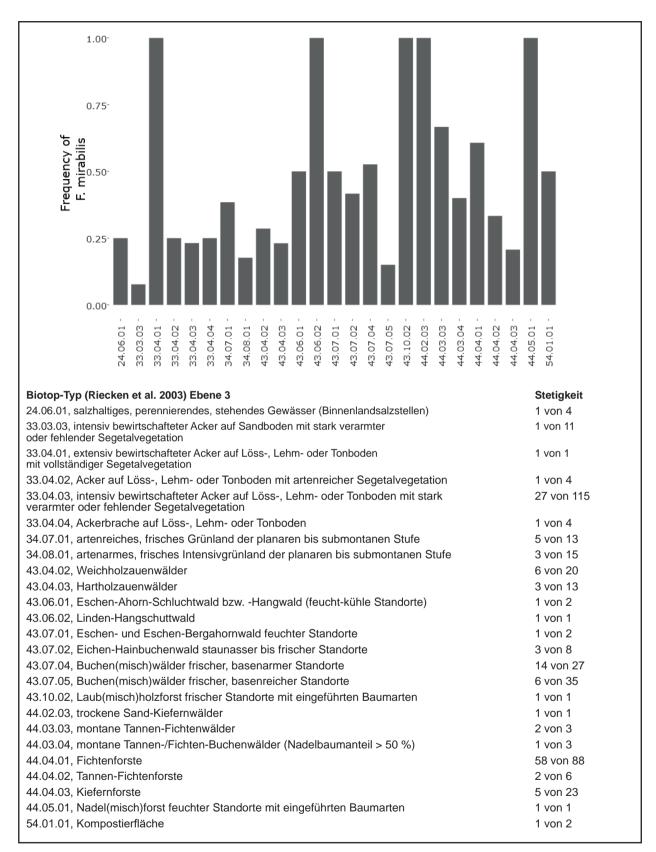
ausnutzen und haben gerade in gestörten Lebensräumen gegenüber anderen Arten Konkurrenzvorteile. Von den auf den untersuchten Löss- und Kalk-Ackerflächen häufigen Arten Parisotoma notabilis und Isotomiella minor ist die Fähigkeit zur Parthenogenese bekannt (Greensdale & Greensdale 1980, Hutson 1981). Dies ermöglicht ihnen, in kurzer Zeit hohe Populationsdichten aufzubauen. Die genannten Merkmale stellen Mechanismen dar, wie sie für r-Strategen bekannt sind und für eine hohe Abundanz von Collembolen auf Ackerflächen notwendig erscheinen (Kovac & Miklisova 1977, Heimann-Detlefsen 1991). Im Gegensatz zu den Intensivgrünländern konnten für die untersuchten Löss- und Kalk-Ackerstandorte allerdings keine Kennund/oder Indikatorarten identifiziert werden – trotzdem wird nachfolgend kurz auf die Charakteristika der Collembolengemeinschaft dieser Biotoptypen eingegangen.

Intensivgrünland

Wie auf den untersuchten Ackerflächen dominierten in den Intensivgrünländern ubiquistische Arten wie Parisotoma notabilis und Isotomiella minor und typische Offenlandarten wie Lepidocyrtus cyaneus (siehe z. B. Christiansen 2000, Salamon et al. 2011). Als Indikatorarten für das Intensivgrünland konnten in der vorliegenden Untersuchung Mesaphorura macrochaeta, Sphaeridia pumilis und Friesea mirabilis identifiziert werden. Hågvar (1983) stellte fest, dass Mesaphorura macrochaeta im Vergleich zu anderen Mesaphorura-Arten tiefere Bodenschichten besiedelt - eventuell ist daher Mesaphorura macrochaeta unempfindlicher gegenüber anthropogenen Störungen als andere Mesaphorura-Arten, die auf den untersuchten Intensivgrünländern nicht nachgewiesen wurden (z. B. Mesaphorura tenuisensillata). Wie bereits in Kap. 7.4.2.3 erwähnt, ist Friesea mirabilis eine vorwiegend räuberische Collembolenart (Petersen 1971, Usher & Booth 1984, Palacios-Vargas & Acosta 1994), die von einem potentiell günstigen Beutespektrum in den Intensivgrünländern profitieren könnte.

Tab. 79 weist *Friesea mirabilis* und *Mesaphorura* macrochaeta zudem als Grundarten für Grünländer

aus, beide Arten konnten z.B. auch in Grasländern auf kalkreichem Untergrund nachgewiesen werden (z. B. im Schweizer Jura, siehe Salamon et al. 2004). Auch in verschiedenen Waldökosystemen sind die genannten Arten zu finden (Hågvar 1982, Salamon et al. 2001). Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 10.4.2018 zeigt, dass die räuberische Collembolenart Friesea mirabilis bezogen auf Offenlandsysteme in sehr verschiedene Biotoptypen vorkommt, wie extensiv bewirtschaftete Äcker auf Löss-, Lehm- und Tonböden mit vollständiger Segetalvegetation (Code 33.04.01) oder Kompostierflächen (Code: 54.01.01) (Abb. 77). Die Eignung dieser Art als Indikatorart für Intensivgrünländer ist daher zu diskutieren – eventuell ist das existierende Beutespektrum dieser Art eher der limitierende Faktor für ihr Auftreten als z. B. die vorherrschende Vegetation.


Löss-Acker/Kalk-Acker

Da sich die Collembolengemeinschaften der untersuchten Löss- und Kalk-Äcker sehr ähnelten (in beiden Ackertypen dominierten r-Strategen wie *Parisotoma notabilis* und *Isotomiella minor* (siehe Maraun et al. 2004) sowie typische Offenlandarten wie *Lepidocyrtus cyaneus* (Salamon et al. 2011)) und sich weder für die Löss- noch für Kalk-Äcker Kennund Indikatorarten identifizieren ließen, werden beide Biotoptypen in diesem Kapitel kurz zusammen diskutiert.

Auffallend war. dass beide Biotoptypen Collembolenarten aufwiesen, die bezogen auf die Säuregruppen charakteristisch für basenreiche Ackerstandorte sind (Orchesella villosa, Pseudosinella alba). Wie bereits in Kap. 7.4.2.3 erwähnt, trat Pseudosinella alba auch in anderen Untersuchungen verstärkt auf basenreichen Standorten auf, wie Ackerflächen auf fruchtbaren (Christiansen 2000) oder Grasländern auf kalkreichem Untergrund (z. B. im Schweizer Jura, siehe Salamon et al. 2004). Christiansen (2000) konnte Orchesella villosa in Ackerflächen auf Auelehmböden nachweisen, deren Boden-pH-Werte zwischen 7,2 und 7,5 lagen.

Tab. 80: Collembolen-Arten des Biotoptyps Intensivgrünland, deren Indikatorwert bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
34.08.01.01	Intensivgrünland			
Sphaeridia pumilis	0,93	0,04	0,93	1,00
Mesaphorura macrochaeta	1,00	0,04	1,00	1,00
Friesea mirabilis	1,00	0,04	1,00	1,00

Abb. 77: *Friesea mirabilis*: Biotoptypen, in denen *F. mirabilis* nachgewiesen wurde. Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps nach Riecken et al. (2003). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 22.05.2018).

7.4.3 Diplopoda

7.4.3.1 Allgemeine Angaben zu Individuen- und Artenzahlen

Insgesamt wurden in der Länderstudie 395 Diplopoden mit Hilfe der Bodenfallen erfasst (vgl. Tab. Anhang 3, 42). Davon wurden 394 Individuen bis zur Art determiniert (Tab. 81). Diese verteilen sich auf 19 Arten aus fünf Familien. Dabei ist die Familie der Schnurfüßer (Julidae) mit 10 Arten und 236 Individuen am zahlreichsten vertreten. Bei dem nicht auf Artniveau identifizieren Tier handelt es sich um ein Weibchen der Familie Julidae, für deren Bestimmung bisher kein Schlüssel vorliegt (Hauser & Voigtländer 2009). Mittels Bodenstecher konnten insgesamt nur neun bis zur Art determinierbare Individuen an nur zwei der Untersuchungsflächen nachgewiesen werden. Die Ergebnisse sind jedoch insofern relevant, als dass die Methode im Gegensatz zum Bodenfallenfang den Nachweis für Blaniulus guttulatus bei Großenhül Flur (EB BY32) erbrachte.

Der Großteil der Doppelfüßer konnte auf den fränkischen Kalk-Äckern erfasst werden, wobei es sich vor allem um Exemplare der Arten *Cylindroiulus caeruleocinctus*, *Unciger foetidus* und im Falle von EB_BY33 um *Propolydesmus testaceus* handelte. Sehr wenige DoppelfüßerArten und Individuen beherbergten die intensiven Grünländer EB_BY12 und EB_BY13 bei Passau. Alle anderen Standorte sind bezüglich ihrer Artenzahlen mehr oder weniger miteinander vergleichbar.

7.4.3.2 Faunistische Anmerkungen und kritische Arten

Megaphyllum unilineatum (C.L. Koch, 1838)

Die eher pannonisch verbreitete (Spelda 1999), in Deutschland insgesamt als selten eingestufte Art (Reip et al. 2016) Megaphyllum unilineatum wurde in Bayern bereits relativ zahlreich nachgewiesen (Abb. 78). Trotz der vielen Funde aus anthropogen beeinflussten, theoretisch ungefährdeten Biotopen wird die Art in den Roten Listen Bayern (Spelda 2004) und Baden-Württemberg (Spelda 1998) aufgrund einer unzureichenden Datenlage als Art mit Gefährdung unklaren Ausmaßes (G) geführt, da sie in neueren Untersuchungen immer seltener nachgewiesen werden kann. Laut Befunden von Spelda (1999) handelt es sich bei der attraktiven Art um eine ausgesprochen xerotherm auftretende Offenlandart, die schwerpunktmäßig in extensiv genutzten Trockenbiotopen erfasst wurde. Diese Beobachtung kann durch den Fund im Rahmen der Länderstudie in einem sehr extensiv bewirtschafteten Kalk-Acker bei Sulzthal (EB_BY31) unterstrichen werden. Die angenommene Gefährdung ergibt sich demzufolge aus der zunehmenden Intensivierung der Landwirtschaft und dem damit einhergehenden Verlust geeigneter Habitate (Spelda 2004).

7.4.3.2 Beschreibung der ermittelten Artengruppen in den drei untersuchten Acker- und Graslandtypen

Die sortierte Kreuztabelle (Tab. 82) wurde für die Diplopoden ausschließlich aus den für diese Tiergruppe als relevant angesehen Bodenfallenfängen erstellt (vgl. Kap. 3.2.4, 4.4.2 und 7.4.3.1). Wie auch bei der Länderstudie im NP Eifel liegen der Sortierung der Kreuztabelle ausschließlich die Diplopoden-Daten der Länderstudie in Bayern zugrunde (vgl. Anmerkungen in Kap. 5.4.3.3). Als Kennart innerhalb der vorliegenden Studie konnte nur Unciger foetidus angesprochen werden, welche auf den Äckern, nicht aber im Grünland nachgewiesen wurde. Weitere spezielle, nur für einen Biotoptyp charakteristische Arten wurden bezüglich der Diplopoden innerhalb der vorliegenden Studie nicht festgestellt. Demnach sind alle anderen erfassten Arten den mehr oder weniger steten Begleitern zuzurechnen. Auffallend sind hohe Aktivitätsdichten und/oder eine Dominanz einzelner Arten an Einzelstandorten wie bspw. Polydesmus testaceus an EB BY33, Cylindroiulus caeruleocinctus an EB BY11, EB BY21 und EB BY32 oder Melogona voigtii an EB BY22. Diese Arten fehlten wiederum auf den meisten der anderen Standorte, was zu einer hohen Variabilität auch innerhalb der Vergleichsgruppen (= Biotoptypen) führt.

Laut Indikatorartenanalyse (ISA) erreicht nur *Unciger foetidus* einen Indikatorwert von über 0,8 (**Tab. 83**). Sie kann demnach der statistischen Analyse zufolge als Indikatorart für die extensiven Kalk-Äcker angesprochen werden. In der Kreuztabelle wurde die Art als Kennart der Äcker gewertet, da sie im Grünland fehlte und bis auf einen Standort auf allen Äckern zu finden war. Da die ISA stärker auf Differenzen der Aktivitätsdichten reagiert, führten die hohen Individuenzahlen der Art auf den Kalk-Äckern zu der erwähnten Einordnung.

Die CA zeigt, dass sich insbesondere die Diplopoden-Zönosen der extensiven Kalk-Äcker deutlich voneinander unterscheiden (Abb. 79). Die auch innerhalb der individuenarmen Löss-Äcker und intensiven Grünländer vorhandene Variabilität der Artenspektren (Tab. 82) ist in der CA kaum zu erkennen. Dies ist darin begründet, dass relativ wenige Arten und eine geringe Varianz dazu führen, dass für die Analyse sowie die damit verbundene Reduktion der Dimensionen zu wenige Daten zur

Tab. 81: Arten- und Individuenzahlen der in der Länderstudie nachgewiesenen Diplopoda.

			Individue	enzahlen		Artenza	hlen	
Grünland	BY11	Falle	23	23		5	5	
Gruinanu	DIII	Stecher	0	23		0	3	
	BY12	Falle	3	3	28	3	3	9
	D112	Stecher	0	3	20	0	3	9
	BY13	Falle	2	2		2	2	
	B113	Stecher	0			0		
	BY21	Falle	36	36		6	6	
	B121	Stecher	0	30		0	O	
Löss-Acker	BY22	Falle	21	21	67	4	4	8
LOSS-ACKEI		Stecher	0	21	07	0	4	o
	BY23	Falle	10	10		6	6	
		Stecher	0			0	0	
	BY31	Falle	33	33		6	6	
	D131	Stecher	0	33		0	O	
Kalk-Acker	BY32	Falle	95	99	308	4	5	9
Kaik-Ackei	D I 32	Stecher	4	99	308	2	3	9
	BY33	Falle	171	176		5	5	
	D133	Stecher	5	170		1	J	
	Bayern 2015		Individu	enzahl Fallen:	394	Artenza	hl Fallen:	19
Bayern 2015			Individue	enzahl Stecher:	9 Artenzahl Stecher:			2
			Individue	enzahl gesamt:	403	Artenza	Artenzahl gesamt: 1	

Abb. 78: Fundpunkte von Megaphyllum unilineatum (605 Beobachtungen an 192 Orten, Edaphobase am 27.02.2018).

Verfügung stehen und die abundant auftretenden Arten übergewichtet werden. Ein großer Anteil der Varianz (63,83 %, **Abb. 79**) dieses Datensatzes wird durch die erste Achse und damit primär durch die wenigen abundanten Arten erklärt.

Mittels Abfrage der Datenbank Edaphobase via Edaphoclass konnten die zehn häufigsten in bestimmten landwirtschaftlich geprägten Biotoptypen (34.08 artenarmes Intensivgrünland frischer Standorte, 33.04 Äcker und Ackerbrache auf Löss-, Lehm- oder Tonböden und 33.01 flachgründige, skelettreiche Kalkäcker und Kalkackerbrache (nach Riecken et al. 2003)) erfassten Diplopodenarten ausgegeben werden (**Tab. 84**). Bis auf *Mycogona germanica* und *Glomeris marginata*

konnten alle diese Arten auch in der vorliegenden Studie nachgewiesen werden. Die Abfrage spiegelt dabei sehr gut die Ergebnisse der Länderstudie wider. Demnach wurde *Unciger foetidus* entsprechend der Datenlage in Edaphobase bisher ebenfalls nicht auf artenarmen Grünländern, jedoch auf Kalk-Äckern und sogar hoch stetig auf Löss-Äckern erfasst. *Cylindroiulus caeruleocinctus* konnte in den meisten Erfassungen der in der Abfrage berücksichtigten Biotoptypen nachgewiesen werden. Auch in der Länderstudie ist die Art ein stetiger Begleiter, der nur in den generell artenarmen Wiesen bei Passau (EB_BY12 und EB_BY13) und dem Löss-Acker bei Leiblfing (EB_BY22) nicht gefunden wurde. Ebenfalls eine typische Art der Kulturlandschaft ist

Tab. 82: Sortierte Kreuztabelle der in den Bodenfallen nachgewiesenen Doppelfüßer (Diplopoda); Angaben in Individuen/Standort; Punkte: keine Tiere gefunden; durchgezogene Rahmen: kennzeichnende Artengruppe.

unkte: ke	eine Tiere gefunden; durchgezo							101		
			. 1: Alme			r. 4: Schwa			r. 7: Sulzth	
			r. 2: Kring			r. 5: Leiblí	υ		r. 8: Großei	
			. 3: Kring			r. 6: Schey		lfd. Nr. 9: Großenhül Huh Kalk-Acker 33.01.01		
	Plat to tP1 t t			d 34.08.01.01						
	Flächenkürzel Edaphobase	EB_BY		/12 EB_BY1						
	lfd. Nr.:	1	2	3	4	5	6	7	8	9
<i>y</i> = 0 0	rten der Grünländer			•						
Gr	rundarten basenreiche Grünl	and- un	d Ackerst	andorte						
	Unciger foetidus				ŀ	3	4	17	25	22
Begleita										
	Cylindroiulus caeruleocinctus	18			12		1	9	68	37
	Propolydesmus testaceus				1			1		104
	Polydesmus denticulatus	2			5	8	2		1	3
	Brachyiulus pusillus				11	1				
	Melogona voigti					9	1			
	Blaniulus guttulatus				1					5
	Brachydesmus superus				6					
	Allaiulus nitidus							3		
	Choneiulus palmatus		1				1			
	Megaphyllum unilineatum							2		
	Ophyiulus pilosus			1			1			
	Polydesmus inconstans	1		1						
	Enantiulus nanus		1			•				
	Glomeris hexasticha	1								
	Julus scandinavius		1							
	Leptoiulus proximus							1		
	Polydesmus complanatus	1								
	Tachypodoiulus niger								1	
Artengri	uppen									
	Julidae	1								

Tab. 83: Diplopoden-Arten der Biotoptypen: intensives Grünland frischer Standorte, intensiver Löss-Äcker und extensiver Kalk-Acker, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
33.01.01	extensiver Kalk-Ack	er		
Unciger foetidus	0,90	0,04	0,90	1,00

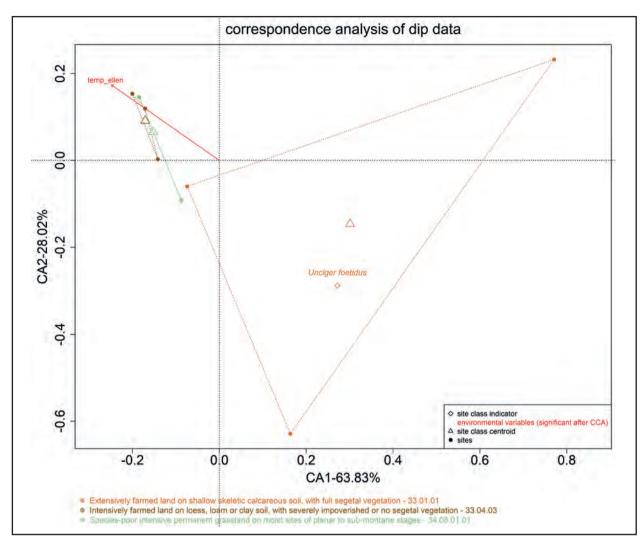


Abb. 79: Korrespondenzanalyse (CA) der Diplopoden-Daten der Biotoptypen artenarmes Intensiv-Grünland (grün), intensiver Löss-Acker (braun) und extensiver Kalk-Acker (orange) sowie die mit der Kanonischer Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 84: Stetigste Diplopodenarten der Biotoptypen 34.08 artenarmes Intensivgrünland frischer Standorte, 33.04 Äcker und Ackerbrache auf Löss-, Lehm- oder Tonböden und 33.01 flachgründige, skelettreiche Kalkäcker und Kalkackerbrache (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 26.02.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps).

Biotoptyp	34.08	33.04	33.01	
Anzahl Standorte	5	9	9	
Cylindroiulus caeruleocinctus	0,60	1,00	0,89	
Polydesmus denticulatus	0,40	0,67	0,33	
Unciger foetidus		1,00	0,22	
Polydesmus inconstans	0,20	0,44	0,33	
Brachydesmus superus	0,20	0,56	0,11	
Allajulus nitidus			0,67	
Blaniulus guttulatus		0,33	0,33	
Tachypodoiulus niger	0,20		0,44	
Mycogona germanica	0,40		0,22	
Glomeris marginata	0,40		0,11	

in der Länderstudie vor allem auf Löss-Äckern, aber auch im Grünland und auf Kalk-Äckern, beobachtet wurde. Allajulus nitidus wird stetig auf Kalk-Äckern

Polydesmus denticulatus, die generell (Tab. 84) und wurde diese Art ausschließlich auf einem Kalk-Acker nachgewiesen. Eine Präferenz für Ackerstandorte zeigt Blaniulus guttulatus, die in dieser Studie ausschließlich auf zwei Ackerflächen gefunden wurde (siehe Tab. 82). nachgewiesen, fehlt aber bisher in den anderen beiden Allgemein gelten Diplopoden als ausgesprochen sen-Biotoptypen. Auch in der vorliegenden Untersuchung sibel gegenüber landwirtschaftlicher Bewirtschaftung,

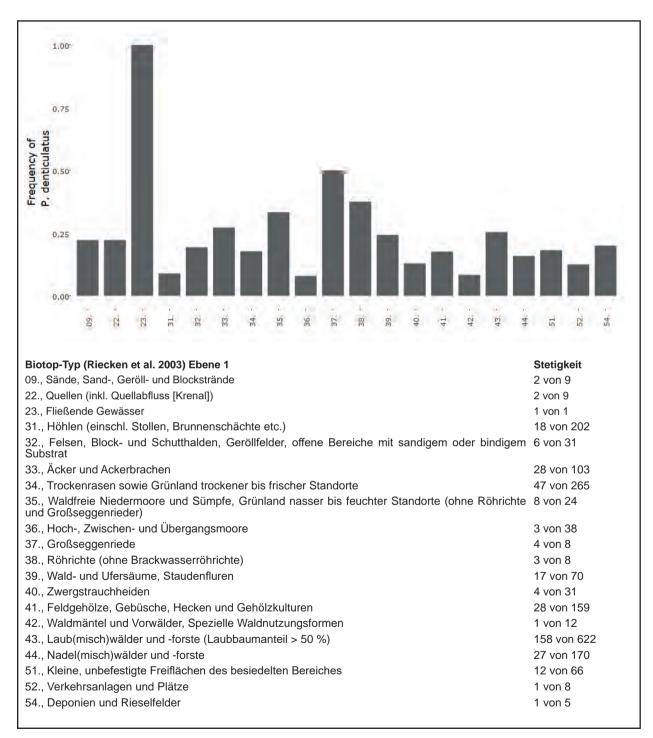
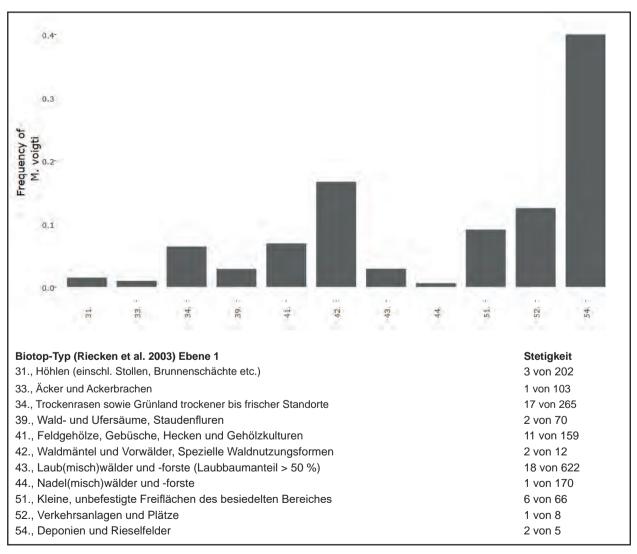



Abb. 80: Polydesmus denticulatus: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotoptypen erster Ebene nach Riecken et al. (2003) (319 Nachweise in 986 in der Analyse berücksichtigten Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.02.2018).

weshalb sie in Agrarökosystemen im Vergleich zu ungestörten Habitaten wie beispielsweise Wäldern häufig nur mit geringen Arten- wie Individuenzahlen auftreten (Wolters & Ekschmitt 1993). Dies wird unterstrichen durch die Ergebnisse von bspw. Remus (1962, Grünland), Scheu (1999, Kalk-Acker), Schmitt & Roth (1999, Löss-Acker) und Haase et al. (2018, Kap. 6.4.3, Sand-Acker), die teilweise nur 0-3 Arten in verschiedenen Kultur-Formationen vorfanden. Auf extensiv genutzten Flächen in Hessen wurden dementgegen relativ hohe Artenzahlen von bis zu 12 Arten mit ausgeglichener Dominanzstruktur erfasst (Klinger 1992). Im Normalfall dominieren jedoch, wie in der Länderstudie, einige wenige Arten, die gegenüber den regelmäßigen Störungen relativ unempfindlich und weit verbreitet sind (Ehrnsberger 1993, Martens 2007). Die Diversität wird dabei insbesondere durch die Bewirtschaftungsintensität (Martens 2007), die angebaute Kultur bzw. die sich daraus ergebenden Bearbeitungsschritte (Klimm 1985) sowie die Bodenart und das Mikrorelief geprägt. Letztere sind eng verbunden mit den Feuchtigkeitsverhältnissen eines Standorts, die demzufolge einen großen Einfluss auf die Diplopoden-Zönosen aufweisen (Hossfeld 1963, Schmitt & Roth 1999). Dies wird innerhalb der Länderstudie durch eine hohe Variabilität der Gemeinschaften verdeutlicht. Die Standorte können innerhalb der gewählten Gruppen zwar demselben Biotoptyp zugeordnet werden, unterscheiden sich hinsichtlich vieler anderer Faktoren jedoch deutlich voneinander. Tischler (1958) bemerkte zudem große Schwankungen der Aktivitätsdichten einzelner Arten, wie z. B. Polydesmus denticulatus, zwischen mehreren Untersuchungsjahren, die er mit einer hohen Anfälligkeit gegenüber zu hoher Feuchtigkeit bzw. Austrocknung der Äcker erklärte. Insgesamt ist die Diplopoden-Fauna von

Abb. 81: *Melogona voigti*: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotoptypen erster Ebene nach Riecken et al. (2003) (48 Nachweise in 986 in der Analyse berücksichtigten Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.02.2018).

Äckern und intensivem Grünland daher kleinräumig variabel, abhängig von vielen Faktoren und durch einige wenige eurytope Arten mit hoher Resistenz gegenüber störenden, anthropogenen Einflüssen geprägt.

7.4.3.3 Charakterisierung der iotoptypen anhand der zoologischen Daten

Intensiv-Grünland

Die Diplopoden-Gemeinschaften der in der Länderstudie untersuchten intensiven Grünländer EB BY12 und EB BY13 sind durch sehr geringe Aktivitätsdichten sowie Artenzahlen charakterisiert. Die wenigen vorkommenden Arten sind größtenteils eurytop mit Bevorzugung (Ophyulus pilosus, Polydesmus inconstans, Choneiulus palmatus) oder zumindest Toleranz (Julus scandinavius, Enantiulus nanus) synanthroper Standorte (Hauser & Voigtländer 2009). Die nahezu vollständig anders zusammengesetzte Arten-Gemeinschaft auf der Fläche EB BY11 wird zum größten Teil ebenfalls von eurytopen Arten mit Verbreitungsschwerpunkt in anthropogenen Habitaten geprägt (Polydesmus denticulatus (Abb. 80), P. inconstans, Cylindroiulus caeruleocinctus). Alle erwähnten Arten eint die Bevorzugung eher mittlerer Feuchtebedingungen (Hauser & Voigtländer 2009), ausgesprochen hygrophile oder xerophile Arten konnten nicht erfasst werden.

Intensiver Löss-Acker

Auch die Löss-Äcker unterscheiden sich relativ stark voneinander. Als äußerst typische, relativ stetige Ackerarten gelten Brachydesmus superus, Brachyiulus pusillus, Polydesmus denticulatus und Unciger foetidus (Hossfeld 1963, Klimm 1985, Klinger 1992, Martens 2007). Wichtigste Arten der lehmigen Äcker Mitteleuropas sind Blaniulus guttulatus und Cylindroiulus caeruleocinctus (Tischler 1958). Alle erwähnten Arten eint eine relativ hohe Unempfindlichkeit gegenüber regelmäßiger Störung (Martens 2007). Die auf zwei Löss-Äckern auftretende Art Melogona voigti bevorzugt nach Hauser & Voigtländer (2009) feuchte Wälder und Gebüschformationen, in Thüringen auch Trocken- und Halbtrockenrasen. Die beiden Nachweise sind die ersten auf Äckern in Edaphobase (Abb. 81). Unter natürlichen Bedingungen scheint eine Bindung an Kalk gegeben zu sein (Hauser & Voigtländer 2009).

Extensiver Kalk-Acker

Auffällig sind auf den Kalk-Äckern vor allem die erhöhten Aktivitätsdichten der Arten *Unciger foetidus* und *Cylindroiulus caeruleocinctus* gegenüber den Löss-Äckern. Wahrscheinlich hängen die generell höheren

Fangzahlen mit der Bewirtschaftungsintensität zusammen. Bemerkenswert ist außerdem das Massenvorkommen von *Propolydesmus testaceus* an dem Standort EB_BY33. Trotz geringer räumlicher Entfernung fehlt die Art an dem Standort EB_BY32 völlig. Spelda (1999) beschreibt die Art als eine Art mit hohem Wärmebedürfnis, die bevorzugt Waldränder besiedelt. Waldnähe und stärkere Insolation im Vergleich zum Standort EB_BY32 könnte für dieses Vorkommen verantwortlich sein.

7.4.4 Chilopoda

7.4.4.1 Allgemeine Angaben zu Individuen- und Artenzahlen

Während der Länderstudie konnten insgesamt 144 Chilopoden mittels Bodenfallen und 27 mit Hilfe des Bodenstechers erfasst werden (vgl. **Tab. Anhang 4, 43**), von denen 144 bzw. 17 Individuen bis zur Art bestimmt wurden. Diese verteilen sich auf 8 bzw. 5 Arten (**Tab. 85**).

7.4.4.2 Faunistische Anmerkungen und kritische Arten

Strigamia transsilvanica (Verhoeff, 1928)

Nach Koren (1986) wird die Art morphologisch von Strigamia crassipes vor allem durch das Fehlen des dunklen Medianstreifens der Rumpfsternite, eine höhere Variabilität der Beinzahl und größere Endbeinporen differenziert. Des Weiteren ist S. transsilvanica gegenüber S. crassipes kälteresistenter und zumindest in Kärnten auch weiter verbreitet (Koren 1986). Spelda (1999) hingegen negiert eine ökologische Differenzierung und vermutet, dass es sich bei den beiden Arten lediglich um Varietäten von S. crassipes handelt. Diese These wird unterstützt durch aktuelle, noch nicht veröffentlichte molekulargenetische Analysen, wonach die fehlenden Chitinstreifen lediglich eine innerartliche Variabilität widerspiegelt (Decker mdl. 2018). Nachweise von S. transsilvanica liegen vor allem aus den Mittelgebirgsregionen Mitteldeutschlands, Ostdeutschland und Südwestdeutschland vor, auch in den Alpen wurde die Art relativ häufig gefunden (Abb. 82). Innerhalb der Länderstudie wurde ein Individuum des Taxons auf einem Löss-Acker bei Schwarzenau am Main in Unterfranken erfasst (EB BY21).

Geophilus ribauti Brölemann, 1908

Erwähnenswert ist der Fund von zwei Individuen der selten erfassten (Reip et al. 2016) Art *Geophilus ribauti* auf einem fränkischen Kalk-Acker (EB_BY31, insgesamt nun 71 Funde an 49 Standorten, Edaphobase 2018). Das

Tab. 85: Arten- und Individuenzahlen der in der Länderstudie nachgewiesenen Chilopoda.

			Individuen	zahlen		Artenzahle	n	
	BY11	Falle	33	38		2	3	
	БПП	Stecher	5	36		3	3	
Grünland	BY12	Falle	69	73	139	1	1	4
Gruinand	B 1 12	Stecher	4	/3	139	1	1	4
	BY13	Falle	26	20		2	2	
	B113	Stecher	2	28		1	2	
	BY21	Falle	2	2		2	2	
	B121	Stecher	0	2		0	2	
Löss-Acker	BY22	Falle	1	2	10	1	1	3
LOSS-ACKET	B122	Stecher	1	2	10	1	1	3
	BY23	Falle	6	6		1	1	
	D123	Stecher	0			0	1	
	BY31	Falle	1	3		1	2	
	B131	Stecher	2	3		1	2	
Kalk-Acker	BY32	Falle	5	7	12	2	3	5
Kaik-Acker	B132	Stecher	2	/	12	2	3	3
	BY33	Falle	1	2		1	2	
	Б133	Stecher	1			1		
			Individuenzahl Fallen:		144	Artenzahl Fallen:		8
Bayern 2015			Individuen	zahl Stecher:	17	Artenzahl Stecher:		5
			Individuen	zahl gesamt:	161	Artenzahl gesamt:		9

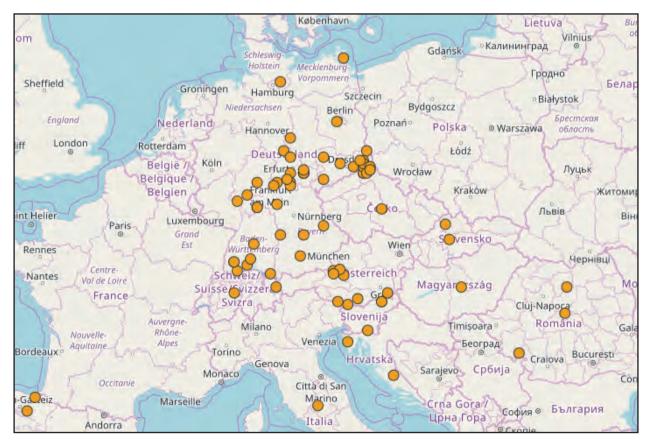


Abb. 82: Fundpunkte von Strigamia transsilvanica, 187 Beobachtungen an 140 Orten (Abfrage von Edaphobase am 28.02.2018).

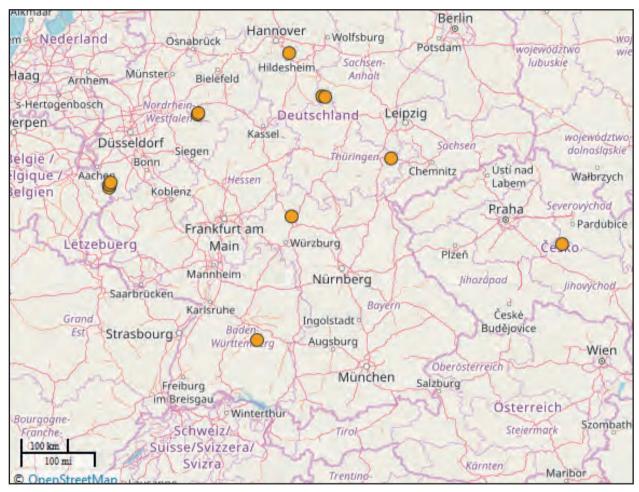


Abb. 83: Fundpunkte von Geophilus ribauti, 71 Beobachtungen an 46 Orten (Abfrage von Edaphobase am 07.02.2018).

Taxon wurde erst kürzlich in den Artstatus erhoben (Bonato & Minelli 2014) und wurde in der Vergangenheit als Unterart von *Geophilus truncorum* geführt, was die bisher wenigen Nachweise in den Mittelgebirgen erklärt. Die endogäisch lebende Art *G. ribauti* kommt laut Decker et al. (2015) schwerpunktmäßig in kühlfeuchten Wäldern der Mittelgebirge Mittel-, Westund Süddeutschlands vor (**Abb. 83**). Offenbar ist sie auch in der Lage, zumindest extensiv bewirtschaftete Agrarökosysteme zu besiedeln.

7.4.4.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Acker- und Graslandtypen

Für die Darstellung der Artengruppen innerhalb der Kreuztabelle wurden für die Chilopoden sowohl die Nachweise aus den Bodenkernen als auch die Funde der Bodenfallen berücksichtigt (**Tab. 86**). Die Notwendigkeit ergibt sich aus der Lebensweise von Vertretern dieser Artengruppe, die teilweise endogäisch, teilweise epigäisch

aktiv sind. Wie bei den Diplopoden wurden auch bei den Chilopoden zur Sortierung der Kreuztabelle ausschließlich die Daten der Länderstudie in Bayern berücksichtigt (vgl. Anmerkungen in Kap. 5.4.3.3, 7.4.3.3).

Keiner der drei Biotoptypen enthält charakteristische Differentialarten. Als schwache Kennarten, die die Biotoptypen innerhalb der vorliegenden Studie charakterisieren, können *Lamyctes emarginatus* aufgrund der erhöhten Aktivität im Grünland, und *Geophilus electricus* angesprochen werden. Letztere wurde nur in den Kalk-Äckern bei Großenhül (EB_BY32, EB_BY33) gefunden, aber nicht in Sulzthal (EB_BY31). Bis auf *Geophilus flavus*, welcher unregelmäßig in allen Biotoptypen erfasst wurde, konnten die sonstigen Arten nur an je einem der Standorte gefangen werden.

Nur eine der erfassten Arten, Lamyctes emarginatus, wurde mit Hilfe der Indikatorartenanalyse als statistisch signifikante Indikatorart ermittelt und erreichte einen Indikatorwert von über 0,8 (**Tab. 87**). Wie in der Kreuztabelle abgebildet, ist Lamyctes emarginatus abundant in den intensiven Grünländern aufgetreten, wurde aber auch in zwei der drei Löss-Äcker gefunden.

Tab. 86: Sortierte Kreuztabelle der in den Bodenstecherproben und Bodenfallen nachgewiesenen Hundertfüßer (Chilopoda); Angaben in Individuen pro Standort; Bodenstecher/Bodenfalle; Punkte: keine Tiere gefunden; gepunktete Rahmen: schwach kennzeichnende Artengruppen.

	Stallkop lfd. Nr. Büchelb lfd. Nr.	lfd. Nr. 1: Almesbach Stallkoppel lfd. Nr. 2: Kringell 1 Büchelberger Wiese lfd. Nr. 3: Kringell 2 Prag Grünland 34.08.01.01			lfd. Nr. 4: Schwarzenau Rödersacker lfd. Nr. 5: Leiblfing lfd. Nr. 6: Scheyern Löss-Acker 33,04.03			lfd. Nr. 7: Sulzthal lfd. Nr. 8: Großenhül Flur lfd. Nr. 9: Großenhül In der Huh Kalk-Acker 33.01.01		
Flächenkürzel Edaphobase	· · · · · · · · · · · · · · · · · ·								32 EB BY33	
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Begleitarten										
Lamyctes emarginatus	1/32	4 / 69	2 / 25		1 / 1	0/6		·		
Geophilus electricus								1 / 4	0 / 1	
Geophilus flavus	1 / 0			0 / 1				1 / 0	1 / 0	
Lithobius microps	3 / 1									
Geophilus ribauti							2/0			
Lithobius forficatus						•		0 / 1		
Lithobius mutabilis			0 / 1							
Stenotaenia linearis							0 / 1			
Strigamia transsilvanica				0 / 1						
Artengruppen										
Lithobius spec.	5 / 0	3 / 0					1 / 0		1 / 0	

Tab. 87: Chilopoden-Arten der Biotoptypen: intensives Grünland frischer Standorte, intensiver Löss-Acker und extensiver Kalk-Acker, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency			
34.08.01.01	intensives Grünland						
Lamyctes emarginatus	0,94	0,04	0,94	1,00			

Zwischen den Chilopoden-Gemeinschaften der Ackerstandorte existieren kaum Unterschiede, die mit der Korrespondenzanalyse visualisiert werden können (Abb. 84). Die durch die kleinen Artenzahlen und die sehr niedrigen Aktivitätsdichten verursachte geringe Varianz der Ackerstandorte führt dazu, dass sich die Grünländer relativ deutlich von den Äckern abheben. Diese Varianz wird nahezu ausschließlich durch die erste Achse widergespiegelt, die wiederum das Auftreten von Lamyctes emarginatus repräsentiert. Charakteristische Lebensgemeinschaften der drei untersuchten landwirtschaftlichen Biotoptypen konnten für die Chilopoden somit nicht nachgewiesen werden.

Eine Abfrage der Daten in Edaphobase mit Hilfe des Tools Edaphoclass konnte die häufigsten in bestimmten Biotoptypen der zweiten Ebene (34.08 artenarmes Intensivgrünland frischer Standorte, 33.04 Äcker und Ackerbrache auf Löss-, Lehm- oder Tonböden und 33.01 flachgründige, skelettreiche Kalkäcker und Kalkackerbrache (nach Riecken et al. 2003)) gefundenen Chilopodenarten ermitteln (**Tab. 88**). Die Auflistung zeigt alle sieben Arten, die bisher in den sehr wenigen Beobachtungen, die für die o. g. Biotoptypen in Edaphoclass vorliegen, nachgewiesen wurden. Aufgrund

der stark eingeschränkten Aussagekraft dieser wenigen Daten wurde für die Ackerstandorte eine Abfrage auf erster Biotoptypen-Ebene (33 Acker und Ackerbrachen) durchgeführt. Diese zeigt bspw. den relativ häufigen Fang der in der Länderstudie (Bayern) aktivsten Art Lamyctes emarginatus auf Ackerstandorten. Andere Arten kommen nur unregelmäßig vor.

Agrarökosysteme, wie sie in der Länderstudie in Bayern untersucht wurden, waren bisher nur ausgesprochen selten Gegenstand chilopodenfaunistischer Erhebungen, so dass für die Acker-Standorte nur auf der übergeordneten Biotoptypen-Ebene (Acker und Ackerbrachen, Biotoptyp 33 nach Riecken et al. 2003, vgl. Tab. 88) Vergleichsuntersuchungen zur Verfügung standen. Aus diesem Grund verfügen die dargestellten Daten, obschon sie nur eine Grundlage bilden und vertiefende Analysen darauf aufbauen sollten, über eine hohe Relevanz. Ähnlich wie die Diplopoden (Kap. 7.4.3) reagieren Chilopoden sehr empfindlich auf regelmäßige Störungen, wie sie in Agrarökosystemen stattfinden, weshalb sie dort im Vergleich zu anderen Habitaten in der Regel arten- und individuenarm auftreten (Wolters & Ekschmitt 1993). Dies wird durch die vorgestellte Untersuchung bestätigt. Auch fanden bspw. Schmitt & Roth (1999,

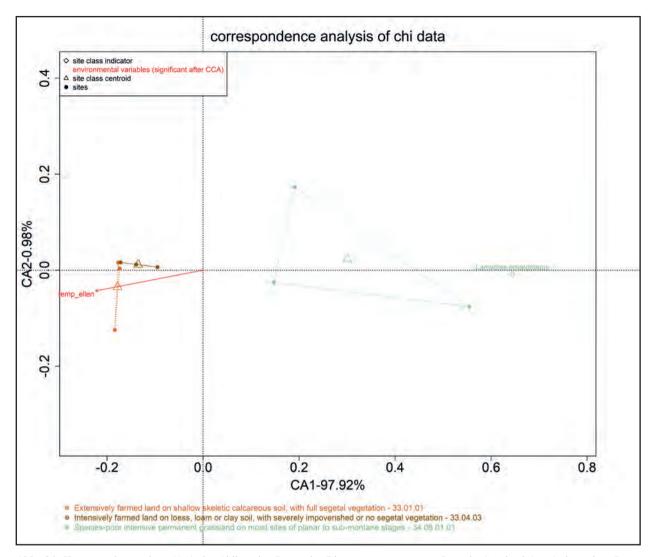


Abb. 84: Korrespondenzanalyse (CA) der Chilopoden-Daten der Biotoptypen artenarmes Intensiv-Grünland (grün), intensiver Löss-Acker (braun) und extensiver Kalk-Acker (orange) sowie die mit der Kanonischer Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 88: Stetigste Chilopodenarten der Biotoptypen 34.08 artenarmes Intensivgrünland frischer Standorte sowie 33 Acker und Ackerbrachen (nach Riecken et al. 2003); Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 26.02.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps.

Biotoptyp	34.08	33
Anzahl Standorte	2	65
Geophilus flavus	1,00	0,23
Lithobius forficatus	0,50	0,17
Geophilus electricus		0,08
Lithobius calcaratus		0,08
Lithobius piceus	0,50	
Lamyctes emarginatus		0,37
Lithobius mutabilis		0,22
Lithobius microps		0,14
Lithobius muticus		0,09
Schendyla nemorensis		0,09
Strigamia acuminata		0,08

Löss-Acker, Grünland) nur 1-2 Arten auf Löss-Äckern und intensivem Grünland, Klinger (1992) erfassten hingegen bis zu 6 Arten auf Löss-Äckern bei Frankfurt (Main). Auch Tischler (1958) verweist auf insgesamt geringe Artenzahlen und Aktivitätsdichten, bemerkt jedoch, dass *Lamyctes emarginatus* auf den von ihm untersuchten Feldern häufig anzutreffen ist und 70 von 95 der dort gefundenen Chilopoden dieser Art angehören. Generell wird durch die Länderstudie und andere Untersuchungen deutlich, dass sich auf Agrarstandorten keine regelmäßigen Hundertfüßer-Gemeinschaften ausbilden und die gefundenen Arten auch abhängig sind von den Umgebungsbiotopen, von denen aus sie einwandern können (Tischler 1958).

7.4.4.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Artenarmes Intensiv-Grünland

Die Grünland-Standorte werden vor allem von Lamyctes emarginatus besiedelt. Diese einjährige Pionierart bewohnt bevorzugt insbesondere Äcker, Grünland, (Halb)trockenrasen und Überflutungsgebiete, wo sie aufgrund ihrer jagenden Lebensweise oft in großen Individuenzahlen gefangen wird (Rosenberg 2009). Auf dem intensiven Grünland bei Almesbach wurden zudem Geophilus flavus und Lithobius microps nachgewiesen. Diese beiden relativ wärmeliebenden Arten kommen regelmäßig auf Äckern vor (Rosenberg 2009), bevorzugen schwerpunktmäßig jedoch verschiedene Wälder und Saumbiotope (Spelda 1999). Auch Lithobius mutabilis gilt demnach als typische (Laub)Wald-Art, die nicht selten auf Äckern nachgewiesen wird.

Intensiver Löss-Acker

Die Chilopodenfauna der intensiv bewirtschafteten Löss-Äcker ist als ausgesprochen verarmt zu bewerten. Neben der Pionierart *Lamyctes emarginatus* (Rosenberg 2009) wurden hier nur wenige Individuen der beiden Arten *Geophilus flavus* und *Strigamia transsilvanica* (**Tab. 86**) erfasst.

Extensiver Kalk-Acker

Charakteristisch auf den extensiven Kalk-Äckern ist das Vorkommen der Art *Geophilus electricus* an zwei der drei Standorte. Die Wälder bevorzugende Art bewohnt tiefere Bodenschichten (Rosenberg 2009) wärmebegünstigter Regionen (Spelda 1999). Sie könnte also auch ein Indikator der schonenderen Bodenbearbeitung der beiden Standorte EB_BY32 und EB_BY33 sein und weniger eine Kennart eines bestimmten Biotoptyps, wie auch **Tab. 88** vermuten lässt. Die Länderstudie erbrachte darüber hinaus den ersten

Nachweis von *Geophilus ribauti* an Ackerstandorten, eine Art, welche schwerpunktmäßig kühl-feuchte Wälder der Mittelgebirge besiedelt (Decker et al. 2015).

7.4.5 Lumbricidae

7.4.5.1 Allgemeine Angaben zu Individuen- und Artenzahlen

An den neun Standorten in Bayern wurden bei den beiden Probenahmen im Frühjahr und Herbst 2015 insgesamt 3.742 Regenwürmer aus 10 Arten bzw. 5 Gattungen gefunden (**Tab. 89**, **Tab. Anhang 5**, **44-46**). Eine detaillierte Darstellung, aufgeschlüsselt nach den jeweils drei Standorten pro Biotoptyp, ist den **Tab. Anhang 44-46** zu entnehmen.

Die meisten Lumbriciden wurden an den drei Intensivgrünland-Standorten (insgesamt 2.795 Individuen, verteilt auf 9 Arten) gefangen, während ihre Zahl an den beiden Ackerstandorttypen um ca. den Faktor 5 (Löss-Äcker: 551) bzw. den Faktor 7 (Kalk-Äcker: 396) niedriger lag. Dementsprechend geringer war auch die Artenzahl (Löss-Äcker: 7; Kalk-Äcker: 5). Die drei Grünlandstandorte unterschieden sich nur geringfügig hinsichtlich Abundanz (maximal Faktor 2) und Artenzahl (in toto 5-7), weder insgesamt noch nach Probenahmezeitpunkt. Demgegenüber war jeweils ein Standort bei beiden Ackertypen deutlich geringer besiedelt: Bei den Löss-Äckern lag dieser Unterschied der Abundanz beim Faktor von 8, der der Kalk-Äcker sogar beim Faktor 35. Bei der Artenzahl war es umgekehrt: praktisch kein Unterschied bei den Artenzahlen (3 vs. 4) der Kalk-Äcker, aber ein Unterschied von 2 bis zu 6 bei den Löss-Äckern. Mit einer Ausnahme (Kalk-Acker EB BY32; um den Faktor 10 höhere Abundanz im Frühjahr) lagen Individuen- und Artenzahlen der beiden Probenahmen weniger als um den Faktor 2 auseinander.

Die überdurchschnittliche Trockenheit im Jahr 2015 spielte bei der Erfassung der Regenwürmer in Bayern insofern eine Rolle, dass zumindest im Vergleich zu früher, vor allem von LfL Bayern beprobten Standorten, Flächen mit ähnlichen Bodeneigenschaften sowie Landnutzung eine geringere Biomasse, teils auch Abundanz aufwiesen. Es liegt der Verdacht nahe, dass dieser Faktor eine große Rolle bei der Ausprägung der bayerischen Regenwurmgemeinschaft spielte.

7.4.5.2 Faunistische Besonderheiten der Lumbricidae in Bayern

Laut mündlicher Auskunft von Frau R. Walter (LfL Bayern) fiel bei früheren Erfassungen der bayerischen Regenwurmfauna auf, dass die in ganz Deutschland

sowie den angrenzenden östlichen und südöstlichen Nachbarstaaten (Csuzdi & Zicsi 2003) regelmäßig auftretende Art Aporrectodea longa nur im westlichen Bayern gefunden wurde. Diese Beobachtung wird durch die in Edaphobase vorhandenen Fundnachweise unterstützt (vgl. Abb. 85): Während zum Beispiel die in den gleichen Biotoptypen vorkommende Art Aporrectodea caliginosa in ganz Bayern nachgewiesen wurde, konnte A. longa im östlichen Bayern kaum gefunden werden. Gründe für dieses Verteilungsmuster sind nicht bekannt, doch kann jetzt anhand der Fundnachweise gezielt nach dessen Ursachen gesucht werden.

Ansonsten wurden keine faunistischen Besonderheiten in dieser Untersuchung gefunden, was auf den ersten Blick überraschen mag, da mehrere der aus Deutschland bekannten Lumbricidenarten (insgesamt 48) bisher nur bzw. überwiegend im südlichen Bayern gefunden wurden (z. B. Aporrectodea georgii (Michaelsen, 1890), A. handlirschi (Rosa, 1897), A. smaragdina Rosa, 1892, Lumbricus polyphemus (Fitzinger, 1833), Octodrilus argoviensis (Bretscher, 1899), O. transpadanus (Rosa, 1884)) (Lehmitz et al. 2014, Lehmitz et al. 2016). Diese Arten haben ihren Verbreitungsschwerpunkt im südosteuropäischen bzw. illyrisch-mediterranen Raum und wurden teils nahe der deutsch-österreichischen Grenze gefunden, meist an wenig gestörten Waldstandorten. Die hier untersuchten Standorte werden jedoch überwiegend intensiv genutzt; d. h. die

gefundenen Regenwurmarten gehören zur "typischen" Lumbricidenfauna Mitteleuropas für Ackerflächen.

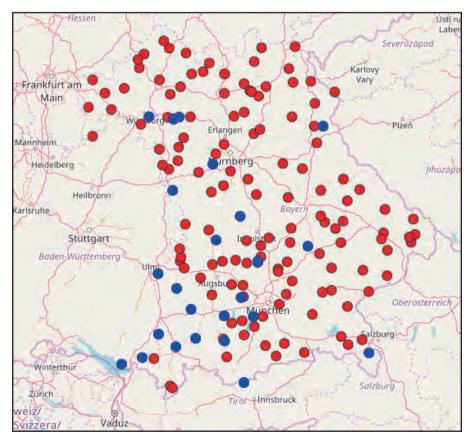
Zudem wurden innerhalb des vergangenen Jahrzehnts auf Ackerflächen im Landkreis Altötting zwei endogäische Arten (Octodrilus pseudolissaensioides Zicsi, 1994, Proctodrilus opisthoductus Zicsi, 1985) gefunden (LfL 2017), die bisher vor allem aus Südosteuropa, speziell Ungarn bekannt waren (Csuzdi & Zicsi 2003). Diese Beobachtung ist ein Beispiel dafür, dass ein bodenbiologisches Beurteilungssystem nicht und schematisch angewandt werden kann, sondern Veränderungen aktiv in den Beurteilungsprozess aufgenommen werden müssen. Konkret sind, wie in diesem Beispiel aus Bayern, neue Arten in ihrem Vorkommen zu dokumentieren, nicht aber sofort in das auf endemischen Arten fußende Beurteilungskonzept zu integrieren, um eine fehlerhafte Einschätzung der bodenbiologischen Oualität dieses Standorts zu vermeiden.

7.4.5.3 Beschreibung der ermittelten Artengruppen in den drei untersuchten Biotoptypen in Bayern

In der **Tab. 90** sind die Lumbricidenarten mit ihren Abundanzen nach der Häufigkeit ihres Vorkommens in den Biotoptypen angeordnet. Bezogen auf die Gesamtabundanz der adulten Tiere waren die drei häufigsten Arten (in abnehmender Reihenfolge) *Aporrectodea caliginosa*,

Tab. 89: Arten- und Individuenzahlen der Lumbricidae auf den Untersuchungsflächen in Bayern...

			Individuen	zahlen		Artenzahle	n	
	BY11	Frühjahr	498	945		6	7	
	DIII	Herbst	447	943		7	/	
Intensiv-	BY12	Frühjahr	599	1185	2795	7	7	9
grünland	D112	Herbst	586	1103	2193	4	/	9
	BY13	Frühjahr	388	665		4	5	
	B113	Herbst	277			4	3	
	BY21	Frühjahr	13	36		1	2	
	D121	Herbst	23	30		2	2	
Löss-Acker	BY22	Frühjahr	86	233	551	4	5	7
LOSS-ACKEI	D I 22	Herbst	147		331	4		/
	BY23	Frühjahr	125	282		4	6	
	B 1 23	Herbst	157	282		4	0	
	BY31	Frühjahr	5	7		2	3	
	D131	Herbst	2	/		1	3	
 Kalk-Acker	BY32	Frühjahr	125	142	396	3	3	5
Kaik-Acker	B 1 32	Herbst	17	142	390	3	3	3
	DV22	Frühjahr	134	247		4	4	
	BY33		3	4				
Bayern 2015			Individuen	zahl gesamt:	3742	Artenzahl g	gesamt:	10


Aporrectodea rosea und Lumbricus terrestris, die vusammen 86% dieser Altersklasse bzw. 26% aller Regenwürmer stellten. Eingerahmt und damit vorläufig als charakteristisch eingestuft sind Arten, die in zwei oder drei Replikaten eines Biotoptyps gefunden wurden, wobei die Gruppierung so vorgenommen wurde, dass Ähnlichkeiten und Unterschiede zwischen den drei untersuchten Biotoptypen hervorgehoben werden. Zugleich wurden Ähnlichkeiten und Unterschiede innerhalb eines Biotoptyps, d. h. zwischen den Replikaten, sichtbar gemacht. Jungtiere wurden bei diesem Ansatz nicht berücksichtigt, da sie an praktisch allen Standorten Tiere aus verschiedenen Arten enthalten können.

Anhand der Kreuztabelle sowie der Indikatorartenanalyse lassen sich folgende Gruppen identifizieren:

• Aporrectodea caliginosa, Aporrectodea rosea und Lumbricus terrestris wurden an allen drei Biotoptypen an mindestens zwei von drei Standorten gefunden. Sie bilden damit eine Säuregruppe für schwach saure bis neutrale Standorte. Diese Eingruppierung erfolgte insbesondere auch unter Berücksichtigung der Beobachtungen aus den übrigen Länderstudien (Kap. 5, 6, 8), in denen diese Arten an (stark) sauren Standorten fehlten.

- Unter der Hinzunahme der Informationen aus den übrigen Länderstudien (Kap. 5, 6, 8) kann Lumbricus rubellus als unter den Regenwürmern einzige Grundart (für Grasland- und Waldstandorte) angesehen werden. Dennoch wurde sie in der vorliegenden Untersuchung nur an einem der drei Graslandstandorte (und an jeweils einem der Ackerstandorte) nachgewiesen.
- Alle übrigen Regenwurmarten (Allolobophora chlorotica, Aporrectodea longa, Dendrobaena attemsi, Lumbricus castaneus, Octolasion cyaneum, Octolasion tyrtaeum) sind an diesen Standorten als sporadische Begleitarten anzusehen.

In der Indikatorartenanalyse (**Tab. 91**) wurde *A. rosea* als einzige Art identifiziert, die für den Biotoptyp Intensivgrünland als relevant und signifikant eingestuft wurde. Darüber hinaus wurden auch die Juvenilen der Gattungen *Lumbricus* und *Octolasion* als Indikatoren für diesen Biotoptyp erkannt. Dies ist somit eine zusätzliche Information zu der Darstellung der Artengruppen in den sortierten Kreuztabellen, in denen juvenile Lebensstadien sowie die Abundanz nicht berücksichtigt wurden.

Abb. 85: Vergleich der Verbreitung von *Aporrectodea caliginosa* (rote Punkte) und *Aporrectodea longa* (blaue Punkte) im Freistaat Bayern (Abfrage von Edaphobase am 21.05.2018; Kartendarstellung: Edaphobase).

Mit Hilfe des in das Edaphobase-Portal integrierten Auswerte-Werkzeugs Edaphostat (Hausen et al. 2017) können die ökologischen Profile der im Datenbestand enthaltenen Arten angezeigt werden. Es wurden Daten von Standorten in Deutschland ausgewählt, an denen das Artenspektrum der Lumbriciden quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung auch Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Damit standen Daten von insgesamt 407 Standorten für 32 verschiedene Lumbricidenarten zur Verfügung. Für den Vergleich mit

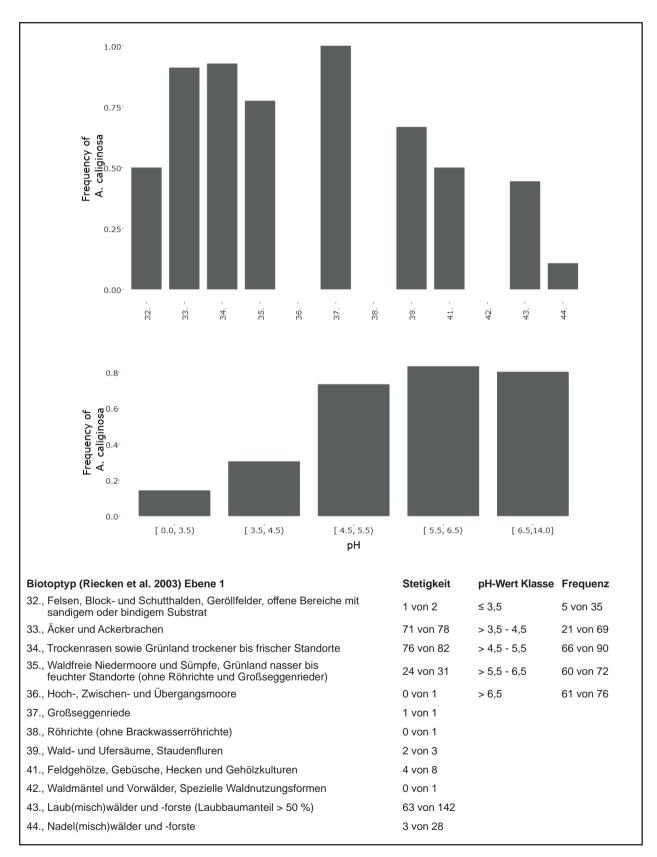
Daten von den untersuchten Standorten in Bayern werden beispielhaft zwei Arten hervorgehoben: Aporrectodea caliginosa als diejenige Art mit dem insgesamt höchsten Dominanzanteil und Lumbricus terrestris, die als einzige Art an acht von neun untersuchten Standorten nachgewiesen wurde. Als Standortfaktoren werden exemplarisch zwei dargestellt, die für die vorliegende Untersuchung als besonders relevant anzusehen sind: Biotoptyp (1. Ebene) sowie Boden-pH-Wert. Aus Abb. 86 und 87 wird ersichtlich, dass die in Bayern gemachten Beobachtungen konsistent mit den ökologischen Profilen beider Arten sind. Sowohl Aporrectodea caliginosa als auch Lumbricus terrestris sind Arten mit einer klaren

Tab. 90: Sortierte Kreuztabelle der Lumbriciden. Angaben in Ind./m². Biotoptyp: Vgl. Riecken et al. (2003).

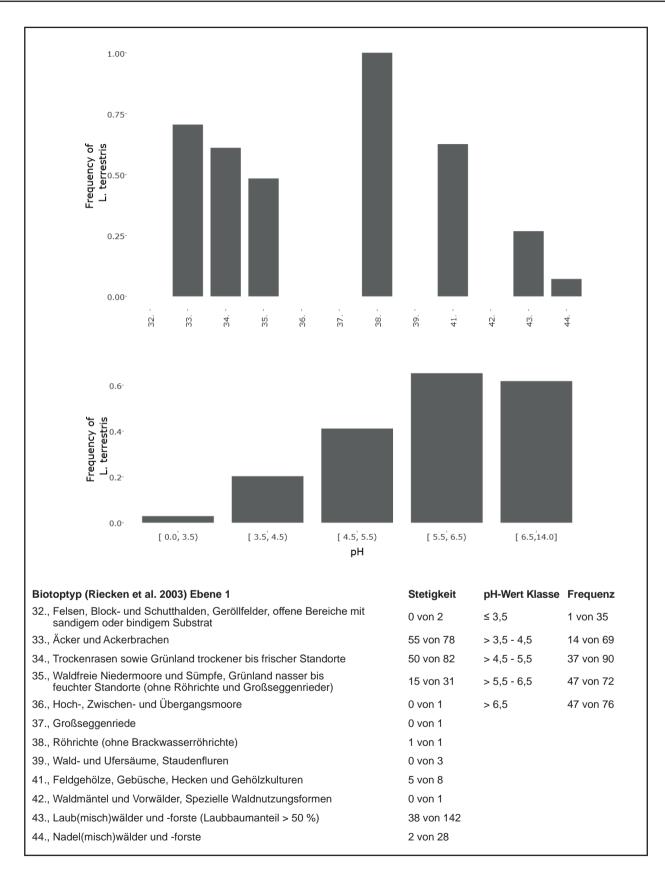
	Stallkop lfd. Nr. Büchell lfd. Nr.	Ifd. Nr. 1: Almesbach Stallkoppel Ifd. Nr. 2: Kringell 1 Büchelberger Wiese Ifd. Nr. 3: Kringell 2 Prag		Röders lfd. Nr. lfd. Nr.	lfd. Nr. 4: Schwarzenau Rödersacker lfd. Nr. 5: Leiblfing lfd. Nr. 6: Scheyern			lfd. Nr. 7: Sulzthal lfd. Nr. 8: Großenhül Flur lfd. Nr. 9: Großenhül In der Huh		
P11 1 1.P1.1.1		nd 34.08.01			Löss-Acker 33.04.03			Acker 33.0		
Flächenkürzel Edaphobase									32 EB_BY33	
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Säuregruppen	u d out o									
schwach saure bis neutrale Sta		26.4	25.2	1	20.2	12.6	1	12.0	26.4	
Aporrectodea caliginosa	43,2	26,4	25,2	.	29,2	13,6	1.	12,8	26,4	
Aporrectodea rosea	26,4	82,4	21,2	-	4,4	2,8	1.	0,8	4,4	
Lumbricus terrestris	13,6	14,4	20,4	<u> · </u>	5,6	5,2	0,4	3,6	2	
Grundarten										
Grasland- und Waldstandorte		· · · · · · · · · · · · · · · · · · ·		·· :	0.0				0.4	
Lumbricus rubellus	19,2			: ·	0,8				0,4	
Begleitarten										
schwach saure bis neutrale Sta										
Allolobophora chlorotica	5,2	2,4	1,2	8	6,8	0,8				
Aporrectodea longa						0,4				
Dendrobaena attemsi		0,4					•			
Lumbricus castaneus	9,6	2								
Octolasion cyaneum	4,4									
Octolasion tyrtaeum		2,4					0,8			
Juvenile Lebensstadien										
<i>Aporrectodea</i> sp. sensu lato	171,2	224,4	113,2	5,6	24,4	57,6	0,8	33,6	54,4	
Dendrobaena sp.		1,6								
Lumbricus sp.	59,6	51,2	49,6	0,8	9,6	18,4		2	2,4	
Octolasion sp.	3,6	6,4	0,4	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1,2		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
endogäische Adulte	79,2	113,6	47,6	8	40,4	17,2	0,8	13,6	30,8	
epigäische Adulte	28,8	2,4			0,8				0,4	
anözische Adulte	13,6	14,4	20,4		5,6	5,6	0,4	3,6	2	
Total	378	474	266	14,4	93,2	112,8	2,8	56,8	98,8	
Artenzahl	7	7	5	2	5	6	3	3	4	

Tab. 91: Indikatorwerte (indicator_value) der Lumbriciden-Arten der Biotoptypen Intensivgrünland, Löss-Acker und Kalk-Acker sowie die entsprechenden relativen Abundanzen (rel_abundanze) und Stetigkeiten (rel_frequency). Ein Indikatorwert > 0,8 wird als relevant angesehen und ist signifikant bei einer Irrtumswahrscheinlichkeit (pvalue) ≤ 0,1. Ängabe des Biotoptyps nach Riecken et al. (2003).

		,		
	indicator_value	pvalue	rel_abundance	rel_frequency
34.08.01.01		Ir	ntensivgrünland	
Aporrectodea sp. sensu lato	0,74	0,03	0,74	1,00
Aporrectodea caliginosa	0,54	0,24	0,54	1,00
Aporrectodea rosea	0,91	0,04	0,91	1,00
Dendrobaena attemsi	0,33	1,00	1,00	0,33
Dendrobaena sp.	0,33	1,00	1,00	0,33
Lumbricus castaneus	0,67	0,29	1,00	0,67
Lumbricus rubellus	0,31	1,00	0,94	0,33
Lumbricus sp.	0,83	0,04	0,83	1,00
Lumbricus terrestris	0,74	0,04	0,74	1,00
Octolasion cyaneum	0,33	1,00	1,00	0,33
Octolasion tyrtaeum	0,25	1,00	0,75	0,33
Octolasion sp.	0,90	0,09	0,90	1,00
33.04.03			Löss-Acker	
Allolobophora chlorotica	0,64	0,18	0,64	1,00
Aporrectodea longa	0,33	1,00	1,00	0,33
33.01.01			Kalk-Acker	


Präferenz für schwach saure bis neutrale Standorte sowie bestand ein Vergleich zwischen den in Bayern unterfür Offenlandbiotope. Zuweilen werden Laubwälder, suchten Flächen und anderen deutschen Standorten jedoch nur sehr selten Nadelwälder besiedelt.

CA-Diagramm (Abb. 88) visualisiert die Unterschiedlichkeit der drei Biotoptypen. Demnach korreliert die anhand der Regenwurmgemeinschaft festgelegte Anordnung der Standorte im Diagramm mit dem Boden-pH-Wert sowie der Höhenlage: Von links schwach sauren und höher gelegenen zu rechts neutralen und niedriger gelegenen Standorten. Es zeigt sich eine deutliche Überlappung der drei Biotoptypen. Jeweils ein Standort pro Biotoptyp setzt sich in der Ordination von den übrigen ab. Bei den Intensivgrünländern ist dies der Standort Almesbach Stallkoppel, vor allem bedingt durch das Vorkommen weiterer Lumbricus-Arten in relativ hoher Abundanz (L. rubellus, L. castaneus). Bei den Acker-Standorten handelt es sich um die beiden sehr artenarmen Standorte Schwarzenau und Sulzthal, bei denen vor allem die sonst überall auftretenden Vertreter der Säuregruppe für schwach saure bis neutrale Standorte (A. caliginosa, A. rosea, L. terrestris) fast vollständig fehlten.


7.4.5.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Mit dem Edaphobase Auswerte-Werkzeug Edaphoclass ließ sich aus dem in Edaphobase enthaltenen Daten-

suchten Flächen und anderen deutschen Standorten vornehmen. Da nicht für alle in dieser Studie untersuchten Biotoptypen der 3. bzw. 4. Ebene (z. B. Biotoptyp 34.08.01.01: Intensiv genutztes, frisches Dauergrünland der planaren bis submontanen Stufe, Riecken et al. 2003) eine ausreichende Anzahl Datensätze in Edaphobase vorhanden war, erfolgte die Abfrage auf der übergeordneten 2. Biotoptypenebende (Tab. 92). Voraussetzung für die Vergleichbarkeit war, dass das Artenspektrum der Lumbriciden auch an den Vergleichsstandorten quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung zudem Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Nach der nach diesen Kriterien erfolgten Filterung standen 18 Standorte des Biotoptyps 34.08: artenarmes Intensivgrünland frischer Standorte, 44 Standorte des Biotoptyps 33.04: Äcker und Ackerbrache auf Löss-, Lehm- oder Tonboden, sowie 8 Standorte des Biotoptyps 33.01: flachgründige, skelettreiche Kalkäcker und Kalkackerbrache für einen Vergleich zur Verfügung. Für diese Standorte wurde die Stetigkeit der Lumbricidenarten berechnet. Diese Stetigkeit ist somit ein Maß dafür, mit welcher Wahrscheinlichkeit eine einzelne Art an einem Standort des jeweiligen Biotoptyps erwartet werden kann.

Abb. 86: *Aporrectodea caliginosa*: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.04.2018).

Abb. 87: Lumbricus terrestris: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.04.2018).

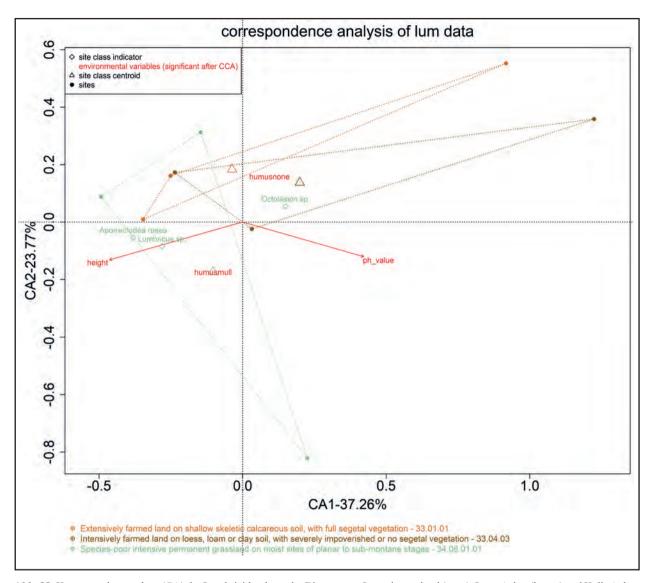


Abb. 88: Korrespondenzanalyse (CA) der Lumbricidendaten der Biotoptypen Intensivgrünland (grün), Löss-Acker (braun) und Kalk-Acker (orange) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Intensivgrünland

Aus den in **Tab. 92** enthaltenen Werten ist erkennbar, dass an Standorten des Biotoptyps 34.08 vier Arten mit einer hohen Wahrscheinlichkeit erwartet werden können: *Aporrectodea caliginosa*, *Aporrectodea rosea*, *Lumbricus rubellus* und *Lumbricus terrestris*. Drei dieser Arten wurden an allen drei Standorten dieses Typs in Bayern nachgewiesen, *Lumbricus rubellus* hingegen nur an einem. Darüber hinaus wurde ebenfalls an allen drei Standorten *Allolobophora chlorotica* gefunden. Außerdem trat an zwei Standorten *Lumbricus castaneus* auf, sowie an jeweils einem Standort *Dendrobaena attemsi*, *Octolasion cyaneum* sowie *Octolasion tyrtaeum*. *D. attemsi* wurde bislang nicht an solchen Standorten

nachgewiesen (**Tab. 92**). Die dominante Art an den Standorten EB_BY11 (Almesbach Stallkoppel) und EB_BY13 (Kringell 2 Legrechtingerwiese) war *A. caliginosa* (36% bzw. 37% der Adulti); am Standort EB_BY12 (Kringell 1 Bergkoppel) war dies *A. rosea* (63%). Das Artenspektrum war somit zwischen den drei Standorten sehr ähnlich, der Standort Kringell 2 Legrechtingerwiese zeigte jedoch eine etwas niedrigere Artenzahl und epigäische Adulte fehlten gänzlich. Auch die Gesamtabundanz unterschied sich zwischen den Standorten nicht wesentlich (< Faktor 2). Insgesamt zeigt sich, dass die drei Intensivgrünland-Standorte keine Auffälligkeiten haben und somit als typisch für diesen Biotoptyp (2. Ebene) anzusehen sind. Die Arten, die mit

hoher Wahrscheinlichkeit zu erwarten waren, wurden fast alle gefunden, und es wurden keine zusätzlichen Arten festgestellt, die hier überhaupt nicht zu erwarten gewesen wären.

Löss-Acker

Gemäß der in **Tab. 92** angegeben Stetigkeiten der verschiedenen Arten können an Standorten dieses Biotoptyps (2. Ebene) drei Arten mit hoher Wahrscheinlichkeit erwartet werden: Aporrectodea caliginosa, Aporrectodea rosea sowie Lumbricus terrestris. Diese wurden auch an zweien der drei Standorte in Bayern nachgewiesen, am Standort Schwarzenau Rödersacker hingegen nicht, was eindeutig als eine Auffälligkeit angesehen werden muss. Zusätzlich wurde an allen drei Standorten Allolobophora chlorotica gefunden, die in Schwarzenau Rödersacker die einzigen adulten Tiere stellte. Darüber hinaus wurden dort einzelne Juvenile der Gattung Lumbricus gefunden, sodass mindestens eine weitere Art vertreten sein muss. Am Standort Leiblfing wurde außerdem Lumbricus rubellus nachgewiesen, sowie in Scheyern Aporrectodea longa. Diese beiden Standorte ähnelten sich im Artenspektrum insgesamt stark und sind als typisch für diesen Biotoptyp anzusehen, während dies für den Standort Schwarzenau Rödersacker nicht der Fall ist. Dies war auch der Standort

mit der geringsten Abundanz, die um den Faktor fünf bzw. zwei niedriger lag als an den Standorten Leiblfing bzw. Scheyern. Mögliche Gründe für diesen Effekt liegen in der bei der Probenahme beobachteten starken Bodenverdichtung und Trockenheit. Zudem war dies die einzige Fläche, auf der Biogassubstrat als C/N-Dünger ausgebracht wurde (persönliche Auskunft des Flächenbetreibers).

Kalk-Acker

Für diesen Biotoptyp (2. Ebene) standen in Edaphobase Daten von acht weiteren Standorten für einen Vergleich zur Verfügung (**Tab. 92**). Vier Arten sind hier mit einer hohen Wahrscheinlichkeit zu erwarten: Aporrectodea caliginosa, Aporrectodea rosea, Lumbricus terrestris und Octolasion tyrtaeum. Von diesen wurde L. terrestris auch an allen drei Kalk-Äckern in Bayern nachgewiesen, A. caliginosa und A. rosea fehlten hingegen am Standort Sulzthal, an dem zusätzlich zu L. terrestris nur Octolasion tyrtaeum vorkam. Letzterer fehlte dagegen an den beiden anderen Standorten, Am Standort Großenhül In der Huh wurde außerdem noch Lumbricus rubellus erfasst. Somit ist das Artenspektrum der beiden Standorte in Großenhül sehr ähnlich und typisch für diesen Biotoptyp (2. Ebene), die Abundanz war am Standort Großenhül In der Huh um den Faktor 2,3 höher. Laut persönlicher Mitteilung von Frau

Tab. 92: Angaben der Stetigkeiten der Lumbricidenarten innerhalb der Biotoptypen 34.08 artenarmes Intensivgrünland frischer Standorte, 33.04 Äcker und Ackerbrache auf Löss-, Lehm- oder Tonboden sowie 33.01 flachgründige, skelettreiche Kalkäcker und Kalkackerbrache (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 21.06.2018).

Biotoptyp	34.08	33.04	33.01	
Anzahl Standorte	18	44	8	
Aporrectodea caliginosa	0,94	0,89	0,88	
Allolobophora chlorotica	0,44	0,30	0,25	
Aporrectodea cupulifera		0,07		
Aporrectodea icterica		0,02	0,12	
Aporrectodea limicola	0,28	0,09		
Aporrectodea longa	0,06	0,45	0,12	
Aporrectodea rosea	0,72	0,84	0,75	
Dendrobaena octaedra	0,06			
Dendrodrilus rubidus		0,07		
Eiseniella tetraedra		0,02		
Lumbricus castaneus	0,50	0,14	0,38	
Lumbricus festivus		0,02		
Lumbricus rubellus	0,67	0,43	0,38	
Lumbricus terrestris	0,67	0,75	0,62	
Murchieona minuscula	0,06			
Octolasion cyaneum	0,28	0,30	0,12	
Octolasion tyrtaeum	0,39	0,36	0,50	
Proctodrilus antipae	0,06	0,05		

R. Walter (LfL Bayern) wurden zwei Kalkäcker desselben Landwirtes auf Regenwürmer mittels Austreibung (0,2% iger Formaldehydlösung) und anschließender Handauslese im Jahr 2013 untersucht (jeweils 10 Stichproben/Acker). Dabei lag die Regenwurmbiomasse mit 78 g/m² und 103,2 g/m² doppelt so hoch wie in der vorliegenden Untersuchung mit 32,2 und 50,3 g/m². Im Gegensatz dazu war die Abundanz der Regenwürmer auf den beiden Äckern mit 103,2 bzw. 101,6 Ind/m² (Probenahme im Frühjahr 2013; R. Walter, Bayerische Landesanstalt für Landwirtschaft, pers. Mittl., 10.08.2018) bzw. 56,8 und 98,8 Ind/m² (Projekt Edaphobase II 2015) ähnlicher. Beim Artenspektrum zeigten sich dagegen keine Unterschiede zwischen beiden Untersuchungen. Die Unterschiede zwischen beiden Erhebungen dürften v. a. auf die Trockenheit im Jahr 2015 zurückzuführen sein.

Der Standort Sulzthal ist dagegen angesichts seiner sehr niedrigen Abundanz und Artenzahl sowie seiner Artenzusammensetzung als auffällig anzusehen. Die Lumbricidenzönose war hier stark verarmt. Dies ist vermutlich der im Jahre 2015 örtlich sehr starken Trockenheit (ca. 600 mm Niederschlag) sowie der Bodenbearbeitung geschuldet (zweimaliges Tiefpflügen in den letzten drei Jahren; persönliche Auskunft des Flächenbetreibers).

7.4.6 Enchytraeidae

7.4.6.1 Allgemeine Angaben zu Individuen- und Artenzahlen

Insgesamt wurden auf allen untersuchten Flächen 9.811 Individuen aus 53 Arten und 7 Gattungen

nachgewiesen (Tab. 93). Darunter sind 11 noch nicht beschriebene Formen, die möglicherweise neue Arten darstellen. Dominante Gattungen hinsichtlich Abundanz und Artenzahl sind Fridericia und Enchytraeus. Der individuenreichste Biotoptyp waren die drei Intensivgrünland-Standorte mit insgesamt 5.853, der individuenärmste die drei Kalkäcker mit insgesamt 1.074 Individuen. Innerhalb der Biotoptypen wiesen die Äcker stärkere Individuenschwankungen auf als das Grünland. Innerhalb einer Fläche unterschieden sich die Individuenzahlen zwischen Frühjahrs- und Herbstprobenahme um den Faktor 1.3-9.4, wobei keine bevorzugte Jahreszeit zu erkennen war. Die summierte Artenzahl lag zwischen 23 (Lössäcker) und 38 (Intensivgrünländer). Die fünf häufigsten Arten waren (in abnehmender Reihefolge) Fridericia galba, Enchytraeus buchholzi, Fridericia christeri, Marionina communis und Enchytraeus bulbosus. Sie machten 65,6% aller gefangenen Individuen aus. Innerhalb der Biotoptypen wiesen die Äcker stärkere Schwankungen der Artenzahl auf als das Grünland (siehe auch Tab. Anhang 6, 47-49).

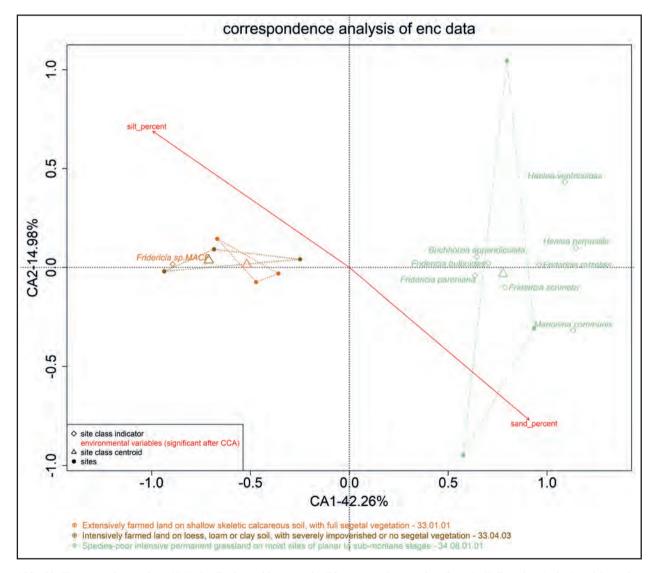
7.4.6.2 Beschreibung der ermittelten Artengruppen in den drei untersuchten Biotoptypen in Bayern

In Tabelle 94 sind die Arten mit ihren Abundanzen nach der Häufigkeit ihres Vorkommens in den jeweiligen Biotoptypen geordnet. Eingerahmt und damit vorläufig als charakteristisch eingestuft sind Arten, die in zwei oder drei Replikaten eines Biotoptypes gefunden

Tab. 93: Arten- und Individuenzahlen der Enchytraeiden auf den bayerischen Untersuchungsflächen.

			Individue	enzahlen		Artenza	hlen	
	BY11	Frühjahr	883	1379		17	23	
	БТП	Herbst	496	1379		19	23	
Intensiv-	BY12	Frühjahr	699	1592	5854	21	25	38
grünland	D112	Herbst	893	1392	3634	18	23	36
	BY13	Frühjahr	837	2883		17	23	
	B113	Herbst	2046	2883		19	23	
	BY21	Frühjahr	45	61		5	5	
	B121	Herbst	16	01		4	3	
Löss-Acker	BY22	Frühjahr	276	1710	2874	8	19	23
Loss-Acker	B 1 22	Herbst	1434	1/10	28/4	16	19	23
	BY23	Frühjahr	223	1103		16	19	
	B123	Herbst	880	1103		10	19	
	BY31	Frühjahr	325	486		12	16	
	B131	Herbst	161	480		12	10	
Kalk-Acker	BY32	Frühjahr	75	83	1074	6	6	25
Kaik-Acker	B 1 32	Herbst	8	83	10/4	2	6	23
	DW22	Frühjahr	372	505		15	19	
	BY33	Herbst	133			13	19	
Bayern 2015			Individue	enzahl gesam	t: 9802	Artenza	hl gesamt:	54

wurden, wobei die Gruppierung so vorgenommen wurde, dass Ähnlichkeiten und Unterschiede zwischen den drei untersuchten Biotoptypen zum Vorschein kommen. Zugleich wurden Ähnlichkeiten und Unterschiede innerhalb eines Biotoptyps, d. h. zwischen den Replikaten, sichtbar gemacht.


Der Einteilung in Kennarten, Grundarten und Begleitarten (Kap. 4.5) liegt der gesamte Datensatz aller vier Länderstudien zugrunde (vgl. Kap. 5, 6, 8). Außerdem wurden Arten ohne besondere Biotopbindung, aber mit spezifischer pH-Präferenz, in sog. Säuregruppen eingeteilt. So wurden übergeordnete Muster erkennbar gemacht, die aus der isolierten Betrachtung nur des Datensatzes aus dem Freistaat Bayern nicht erkennbar wären. Beispiele hierfür sind die Unterscheidung der Kennarten, der Säuregruppen für basenreiches und

frisches bzw. schwachsaures Grünland sowie der Grundarten für Offenland.

Das CA-Diagramm (**Abb. 89**) visualisiert die Unterschiedlichkeit der drei Biotoptypen. Begleitarten, die in allen drei untersuchten Biotoptypen häufig vorkommen, bestehen vorwiegend aus r-Strategen und/oder Störungszeigern (Schmelz 2003):

- *Enchytraeus* sp.: Mehrere Eier pro Kokon, kurze Generationszeit, Selbstbefruchtung.
- Fridericia christeri: Parthenogenese.
- Fridericia galba: Komplex aus sexuellen Exemplaren und parthenogenetischen Klonen.

Die Grünlandstandorte sind deutlich von den Ackerstandorten abgesetzt (**Tab. 94**, **Abb. 89**), wobei als trennender edaphischer Parameter die Bodenart

Abb. 89: Korrespondenzanalyse (CA) der Enchytraeidenarten der Biotoptypen Löss-Acker (braun), Kalk-Acker (ocker) und Intensiv-Grünland (grün). Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

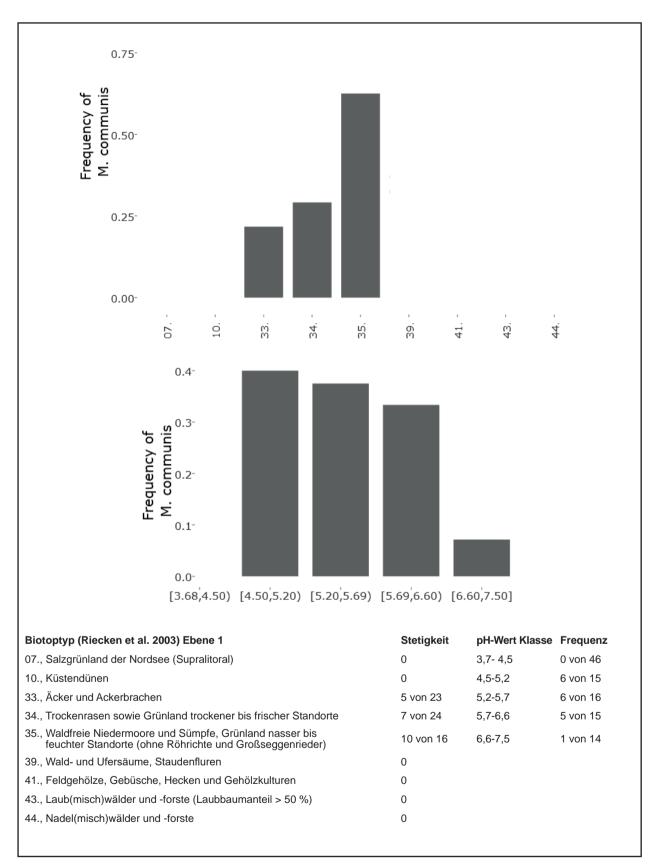
identifiziert werden kann; Arten- und Gattungszahl ist auf den Grünlandstandorten höher, was auch den Erwartungen entspricht. Die beiden Ackerstandorte hingegen sind im CA-Diagramm nicht getrennt (Abb. 89), obwohl geringfügige Unterschiede darstellbar sind (Tab. 94).

Jeder der drei Biotoptypen ist durch exklusive Arten vom je anderen abgesetzt, wobei es sich aber zumeist nicht um Kennarten handelt. Generell ist die Habitatbindung bei Enchytraeiden gering; ihr Vorkommen ist eher von edaphischen Faktoren wie pH-Wert, Feuchte, C-Gehalt, Bodenart oder dem Vorhandensein oder Fehlen einer Streuauflage bestimmt. Deshalb sind in Tab. 94 die meisten Arten als Begleitarten ausgewiesen. Eine Ausnahme bildet Marionina communis (hier: Säuregruppe "basenreich, frisch"), die als Grundart Grünlandstandorte frischer und schwachsaurer angesprochen werden kann; sie fehlt in Wäldern und ist auf Äckern selten (Abb. 90).

Typisch für Grünlandstandorte ist die höhere Arten- und Gattungsdiversität im Vergleich zum Acker: *Henlea* sp. und *Buchholzia appendiculata* bevorzugen humusreiche Mikrohabitate, *Marionina communis* und *Enchytronia parva* sind Frischezeiger. Die Ackerstandorte sind zwar artenärmer als die Grünlandstandorte, sie weisen jedoch eine höhere Anzahl noch unbeschriebener Arten auf.

Typisch für Äcker ist die Dominanz störungsresistenter Mineralbodenbewohner der Gattungen *Enchytraeus* und *Fridericia* (siehe **Tab. 94**). Die geringfügigen Unterschiede zwischen den beiden Acker-Biotoptypen können auf die Nutzung (intensiv vs. extensiv) zurückgehen. Sie sind aber aufgrund der Inhomogenität der Replikate, hervorgerufen durch geringe Abundanz und Diversität an zwei Lokalitäten (EB BY21, EB BY32), nicht schlüssig interpretierbar.

7.4.6.3 Charakterisierung der Biotoptypen anhand der zoologischen Daten


Intensivgrünland (Biotoptyp 34.08.01.01)

Die Auswertung der Enchytraeiden-Daten mit der Indikatorartenanalyse (ISA) ergab 8 relevante Indikatorarten für das Grünland (**Tab. 95**). Alle 8 Grünlandindikatoren sind auf mindestens zwei der drei untersuchten Grünlandstandorte vertreten. Hervorzuheben ist hier *Marionina communis*, eine Grundart frischer, basenreicher Grünlandstandorte, sowie ihre Stetigkeit und hohe Abundanz (**Tab. 94**). Die anderen Arten sind durchweg "häufige" Arten und auch in Äckern oder Wäldern zu finden (vgl. Edaphobase-Länderstudien, gesamter Datensatz, Kap. 5, 6, 8). Ihrem hohen Indikatorwert für Intensivgrünland liegt also die hohe

Tab. 94: Sortierte Kreuztabelle der Enchytraeiden. Angaben in Ind./m². Angabe des Biotoptyps nach Riecken et al. (2003).

	Ifd. Nr. 1: Almesbach Stallkoppel Ifd. Nr. 2: Kringell 1 Büchelberger Wiese Ifd. Nr. 3: Kringell 2 Prag		lfd. Nr. 4: Schwarzenau Rödersacker lfd. Nr. 5: Leiblfing lfd. Nr. 6: Scheyern			lfd. Nr.	lfd. Nr. 7: Sulzthal lfd. Nr. 8: Großenhül Flur lfd. Nr. 9: Großenhül In der Huh		
	Grünla	nd 34.08.0	1.01	Löss-A	cker 33.04	4.03	Kalk-A	cker 33.0	1.01
Flächenkürzel Edaphobase	EB_BY1	11 EB_BY1	2 EB_BY1	3 EB_BY2	21 EB_BY2	22 EB_BY2	3 EB_BY3	B1 EB_BY	32 EB_BY33
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Kennarten									
Intensivgrünland				_					
Enchytraeus cf. luxuriosus	20		41						•
Enchytraeus christenseni		1969	1360	_].					
Löss-Acker							_		
Fridericia glandulosa					61	41] .		
Fridericia sp. (PULR)				.	162	41	.		
Fridericia sp. (UNID)				1.	162	284	.		
Grundarten						· ·	_		
Offenland									
Enchytraeus bulbosus	345	183		244	6598	1502	3289	426	873
Enchytronia sp. (MINO)				\rceil.	41	41	1401		1644
Säuregruppen						'			'
Grünland, basenreich, frisch									
Henlea ventriculosa	41	4243	467	٦.					
Marionina communis	2355	954	5867	1.					•
Offenland, basenreich		1		_					
Fridericia christeri	9419	1502	954	548	1766	1279	771	325	1198

	Stallko lfd. Nr. Büchell lfd. Nr.	1: Almesb ppel 2: Kringell berger Wies 3: Kringell and 34.08.03	l 1 se l 2 Prag	Röders lfd. Nr. lfd. Nr.	. 4: Schwarz sacker . 5: Leiblfing 6: Scheyerr	g 1	lfd. Nr. lfd. Nr. Huh	7: Sulztha 8: Großer 9: Großer	nhül Flur nhül In der
Flächenkürzel Edaphobase									32 EB BY33
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Fridericia galba	2619	4121	7653	142	7531	7572	2964	183	2152
schwach sauer, Grünland		-							
Fridericia bisetosa	1238		1015	٦.					20
Fridericia dura	81		81	1.					
Begleitarten			-	_					
Begleitarten mit hoher Stetigke	it								
Buchholzia appendiculata	20	284	4121			20			20
Enchytraeus buchholzi	8080	4628	22655	264	15002	3532	812	528	2436
Enchytraeus lacteus		629	528		102	102			20
Enchytraeus sp. (GRAN)	223	162	61		386	4182	20		589
Fridericia paroniana	1198	1786	2436			20	61	·	
Fridericia sp. (INVE)				41	102	203	142		20
Marionina mendax	41				325	1157	142	102	345
sonstige Begleiter		•							
Achaeta sp.		20							41
Buchholzia fallax	•	-0	20	·	•	•	·	•	
Buchholzia sp. (PAPP)	•	•	20	•	203	•	•	•	•
Buchholzia sp. (PFAL)	•		•	•	203	•	20	•	•
Enchytr. gen. sp. 1		20	•	•	·	•	20	•	•
Enchytraeus dichaetus	122	20	20	•	•	•	•	•	•
Enchytraeus sp. (FGRA)	20		20	•	812	•		•	•
Enchytracia sp. (1 GR1) Enchytronia (id)3XI	20	162	•	•	012	•	•	•	•
Enchytronia parva		447	954	•	•	•	•	•	•
Enchytronia sp. (OMNI)	•	122		•	•	•	•	•	•
Fridericia benti			162	•	•	•	•	•	•
Fridericia bulboides	487	1786	1401	•	•	223	•	•	•
Fridericia connata	707	1700	223	•	•		•	•	142
Fridericia deformis	•	•	223	•	•	20	•		142
	61	•	•	•	•	20	•		•
Fridericia hegemon Fridericia isseli	01	•	•	•	954	426	61		284
Fridericia isseii Fridericia minor	•	•	2781	•	934	420	01	•	204
Fridericia minor Fridericia nemoralis	365	•	2/01		•	•	•	•	•
		•	•		•	•	•	•	•
Fridericia perrieri Fridericia ratzeli s.s.	386 20	81	192	•	•		•	•	•
			183		•	•	•	•	162
Fridericia schmelzi Fridericia semisetosa	305	1015	2395	•	122	61		•	162 41
	•	•	•			01		•	41
Fridericia singula	•	•	•		. 41		20		
Fridericia sp. (MACF)	•	•			41	•	61	122	20
Fridericia sp. (NGLI)	Q1	1220			•	•	20	•	•
Fridericia sp. (PERT)	81	1238	•	•	20	•	•	•	
Fridericia sylvatica	•		•	•	20		•	•	223
Fridericia tubulosa		61	•			1.605			•
Fridericia ulrikae					325	1685	61		
Henlea perpusilla	467	6740	3147			•			
Marionina sambugarae	•	102	•	•		•	•		
Marionina vesiculata	•	41		•	•	•	•	•	•

Abb. 90: *Marionina communis*: Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.04.2018).

Stetigkeit und Abundanz zugrunde. Darüber hinaus sind 5 der 6 Arten, die mit einer Wahrscheinlichkeit von > 75 % im Intensivgrünland zu erwarten sind, auf den Standorten in Bayern vertreten (**Abb. 91**). Die Artenzahlen liegen ebenfalls innerhalb der Erwartungswerte, wie sie für ähnliche Biotope in Norddeutschland erhoben worden sind (Beylich & Graefe 2009, Grünland, Lehm > 14 %: 14-28 Arten). Die untersuchten Grünlandstandorte passen sich also gut in das bereits bekannte Muster dieses Habitattyps ein und können als "typisch" angesprochen werden.

Löss-Acker (Biotoptyp 33.04.03), Kalk-Acker (Biotoptyp 33.01.01)

Für die beiden Acker-Habitattypen konnte mit der Indikatorartenanalyse (ISA) insgesamt eine relevante Indikatorart ermittelt werden (*Fridericia* sp. MACF für die Kalk-Äcker). **Tab. 96** zeigt jeweils die zwei Arten mit dem höchsten Indikatorwert und geringsten p-Wert.

Der Habitattyp Kalk-Acker wurde hier zum ersten Mal hinsichtlich seiner Enchytraeidenfauna untersucht, es liegen also keine Vergleichsdaten in Edaphobase bereit. Die Stetigkeiten von Enchytraeiden-Arten auf Löss-, Lehm oder Ton-Äckern (pH > 6,5) zeigt Abb. 92. Es fällt auf, dass von den neun Arten, die mit einer Wahrscheinlichkeit > 75 % zu erwarten sind, vier nur ieweils auf einer der drei Flächen zu finden sind oder gänzlich fehlen. Allerdings erschwert die geringe Abundanz und Diversität an Lokalität EB BY21 eine schlüssige Interpretation der Daten. Die Artenzahlen beider Ackerstandorte liegen innerhalb der Erwartungswerte, wie sie für ähnliche Biotope in Norddeutschland erhoben worden sind (Beylich & Graefe 2009, Acker, Lehm > 8%: 8-17 Arten). Häufig in beiden Acker-Biotoptypen sind r-Strategen und Störungszeiger wie die parthenogenetische Art Fridericia christeri

Tab. 95: Indikatorwerte (indicator_value) einiger Enchytraeiden-Arten des Biotoptyps Intensiv-Grünland sowie die entsprechenden relativen Abundanzen (rel_abundance) und Stetigkeiten (rel_frequency). Ein Indikatorwert > 0,8 wird als relevant angesehen und ist signifikant bei einer Irrtumswahrscheinlichkeit (pvalue) ≤ 0,1. Es wurden Arten mit den jeweils höchsten Indikatorwerten für den jeweiligen Biotoptyp ausgewählt. Relevante Indikatorarten, sofern vorhanden, sind vollständig aufgelistet. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
34.08.01.01	,	I	ntensivgrünland	
Fridericia ratzeli s. str.	1,00	0,03	1,00	1,00
Henlea perpusilla	1,00	0,03	1,00	1,00
Henlea ventriculosa	1,00	0,03	1,00	1,00
Marionina communis	1,00	0,03	1,00	1,00
Buchholzia appendiculata	0,99	0,09	0,99	1,00
Fridericia paroniana	0,99	0,03	0,99	1,00
Fridericia schmelzi	0,96	0,03	0,96	1,00
Fridericia bulboides	0,94	0,03	0,94	1,00

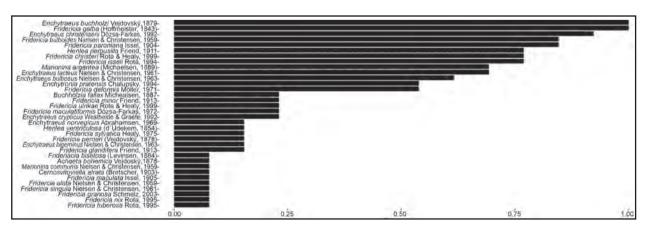


Abb. 91: Stetigkeiten der Enchytraeiden-Arten im untersuchten Biotoptyp 34.08, ermittelt mit dem Edaphobase-Werkzeug Edaphoclass unter Ausschluss der in dieser Studie erhobenen Daten (Abfrage vom 25.06.2018). Enchytraeidenarten (von oben nach unten): E. buchholzi, F. galba, E. christenseni, F. bulboides, F. paroniana, H. perpusilla, F. christeri, F. isseli, M. argentea, E. lacteus, E. bulbosus, E. pratensis, F. deformis, B. fallax, F. minor, F. ulrikae, F. maculatiformis, E. crypticus, E. norvegicus, H. ventriculosa, F. sylvatica, F. perrieri, E. bigeminus, F. glandifera, F. bisetosa, A. bohemica, M. communis, C. atrata, F. maculata, F. slata, F. singula, F. granosa, F. nix, F. tuberosa.

Tab. 96: Indikatorwerte (indicator value) einiger Enchytraeiden-Arten der Biotoptypen Kalk-Acker und Löss-Acker sowie die entsprechenden relativen Abundanzen (rel_abundance) und Stetigkeiten (rel_frequency). Ein Indikatorwert > 0,8 wird als relevant angesehen und ist signifikant bei einer Irrtumswahrscheinlichkeit (pvalue) ≤ 0,1. Es wurden Arten mit den jeweils höchsten Indikatorwerten für den jeweiligen Biotoptyp ausgewählt. Relevante Indikatorarten, sofern vorhanden, sind vollständig aufgelistet. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
33.01.01	,		Kalk-Acker	
Fridericia sp. MACF	0,83	0,08	0,83	1,00
Enchytronia sp. MINO	0,65	0,26	0,97	0,67
33.04.03			Löss-Acker	
Fridericia sp. INVE	0,68	0,15	0,68	1,00
Fridericia glandulosa	0,67	0,21	1,00	0,67

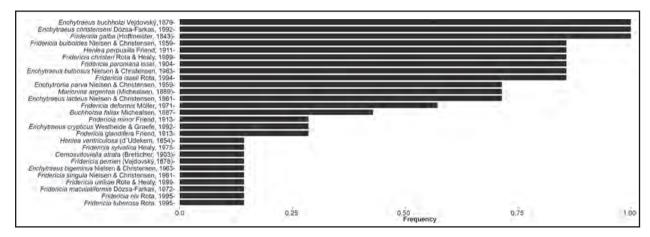
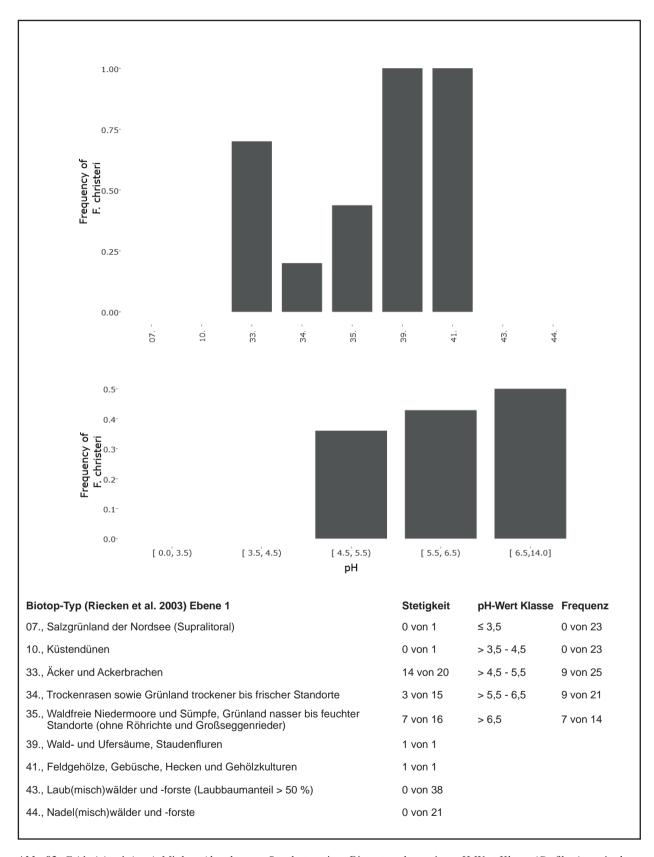


Abb. 92: Stetigkeiten der Enchytraeiden-Arten des Biotoptyps 33.04 bei einem pH-Wert > 6,5, ermittelt mit dem Edaphobase-Werkzeug Edaphoclass unter Ausschluss der in dieser Studie erhobenen Daten (Abfrage vom 25.06.2018). Enchytraeidenarten (von oben nach unten): E. buchholzi, E. christenseni, F. galba, F. bulboides, H. perpusilla, F. christeri, F. paroniana, E. bulbosus, F. isseli, E. parva, M. argentea, E. lacteus, F. deformis, B. fallax, F. minor, E. crypticus, F. glandifera, H. ventriculosa, F. sylvatica, C. atrata, F. perrieri, E. bigeminus, F. singula, F. ulrikae, F. maculatiformis, F. nix, F. tuberosa.

7.5 Taxonübergreifende Charakterisierung der Lebensgemeinschaften der einzelnen Biotoptypen


Mit Ausnahme der Chilopoda zeigten die ausgewerteten taxonomischen Gruppen anhand ihres Vorkommens innerhalb dieser Untersuchung ein die Biotoptypen charakterisierendes Muster aus Kennarten für die jeweiligen Offenlandtypen, aus edaphischen Gruppen und aus unterschiedlichen Grundarten (siehe Kap. 7.4). Einige dieser Kennarten-, Grundarten- und edaphischen Gruppen (hier nur Säuregruppen) ließen sich im Auftreten mehrerer Organismengruppen erkennen, wie beispielsweise die Grundartengruppe des Intensivgrünlands, die durch die Collembolen, Oribatiden und Enchytraeiden gebildet wurde oder die Säuregruppen der Löss- und Kalk-Äcker (Collembola, Enchytraeidae und Lumbricidae). Kennarten für die Intensivgrünländer und Kalk-Äcker kamen dagegen nur bei den Enchytraeiden bzw. Diplopoden vor. Eine Zusammenfassung der verschiedenen Artengruppen und Enchytraeiden mit 1.074 (Enchytraeiden: Kalk-Acker)

sowie die zugrundeliegenden taxonomischen Gruppen sind Tab. 97 zu entnehmen.

Bei der Untersuchung der drei Offenlandtypen Intensivgrünland, Löss- und Kalk-Acker wurden insgesamt 26.772 Bodentier-Individuen bestimmt und dabei 172 Arten nachgewiesen (Tab. 98). Individuen- und artenreichster Biotoptyp war dabei das Intensivgrünland mit insgesamt 15.488 Individuen aus 115 Arten.

Die Individuen- und Artenzahlen der verschiedenen Tiergruppen unterschieden sich teilweise deutlich (siehe Tab. 98). Die artenreichsten Tiergruppen der untersuchten Offenlandtypen waren die Oribatiden, Enchytraeiden und Collembolen mit Artenzahlen zwischen 16 (Oribatiden: Kalk-Acker) und 38 (Enchytraeiden: Intensivgrünland). Die Artenzahlen der Myriapoda und Lumbricidae fielen mit Werten zwischen 3 (Chilopoda: Löss-Acker) und 9 (Diplopoda, Lumbricidae: Intensivgrünland) teilweise deutlich geringer aus.

Die höchsten Individuenzahlen erreichten die Collembolen

Abb. 93: *Fridericia christeri*: Mittlere Abundanz an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse (Grafiken) sowie deren Stetigkeiten (Legenden). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 04.07.2018).

Tab. 97: Übersicht über die Tiergruppen, die Kennarten(gruppen), Grundarten(gruppen) sowie verschiedene Säuregruppen für die Biotoptypen Intensivgrünland, Löss- und Kalk-Acker aufwiesen.

	Intensivgrünland	Löss-Acker	Kalk-Acker
Kennarten			
Intensivgrünland	Enchytraeidae		
	Enchytraeus cf. luxuriosus		
	Enchytraeus christenseni		
Löss-Acker		Enchytraeidae	
		Fridericia glandulosa	
		Fridericia sp. (PULR)	
		Fridericia sp. (UNID)	
Äcker		Diplopoda	Diplopoda
		Unciger foetidus	Unciger foetidus
Säuregruppen			
Grünland, basenreich, frisch	Enchytraeidae		
	Henlea ventriculosa		
	Marionina communis		
schwach sauer, Grünland	Enchytraeidae		
	Fridericia bisetosa		
	Fridericia dura		
basenreiche Grünland- und Ackerstandorte		Collembola	Collembola
		Pseudosinella alba	Pseudosinella alba
basenreiche Ackerstandorte		Collembola	Collembola
		Orchesella villosa	Orchesella villosa
Offenland, basenreich	Enchytraeidae	Enchytraeidae	Enchytraeidae
	Fridericia christeri	Fridericia christeri	Fridericia christeri
	Fridericia galba	Fridericia galba	Fridericia galba
schwach saure bis neutrale Standorte	Lumbricidae	Lumbricidae	Lumbricidae
	Aporrectodea caliginosa	Aporrectodea caliginosa	Aporrectodea caliginosa
	Aporrectodea rosea	Aporrectodea rosea	Aporrectodea rosea
	Lumbricus terrestris	Lumbricus terrestris	Lumbricus terrestris
Grundarten			
Grundarten der Grünländer	Collembola		
	Mesaphorura macrochaeta		
	Friesea mirabilis		
Grundarten intensive Nutzung	Oribatida	Oribatida	
	Zygoribatula excavata	Zygoribatula excavata	
Grundarten Offenland	Enchytraeidae	Enchytraeidae	Enchytraeidae
	Enchytraeus bulbosus	Enchytraeus bulbosus	Enchytraeus bulbosus
		Enchytronia sp. (MINO)	Enchytronia sp. (MINO)

bis 5.854 (Enchytraeiden: Intensivgrünland) Tieren, gefolgt von den Lumbriciden und Oribatiden. Insgesamt sind somit die Arten- und Individuenzahlen der Tiergruppen, die aufgrund ihrer Größe der Mesofauna zugerechnet werden (vgl. **Tab. 2**), größer als die der Makrofauna. Hierbei ist jedoch insbesondere beim Vergleich der Individuenzahlen

zu berücksichtigen, dass die Tiere mit unterschiedlichen Methoden nachgewiesen wurden (siehe Kap. 4.4). Es verwundert daher nicht, dass schon aufgrund der geringeren Artenzahlen in einigen Tiergruppen weniger Kennartenoder edaphische Gruppen gebildet werden konnten als in artenreicheren Tiergruppen (vgl. Kap. 7.4).

Tab. 98: Übersicht über die Individuen- und Artenzahlen der untersuchten Tiergruppen, die in den Kiefern- und Laubwäldern sowie den Sandäckern nachgewiesen wurden.

	Intensiv	grünland	Löss-	Acker	Kalk	-Acker	Ges	samt
	Individuen	Artenzahl	Individuen	Artenzahl	Individuen	Artenzahl	Individuen	Artenzahl
Oribatida	833	29	526	19	696	16	2055	43
Collembola	5.839	26	1.907	24	2.880	25	10.626	38
Diplopoda	28	9	67	8	308	9	403	19
Chilopoda	139	4	10	3	12	5	144	8
Lumbricidae	2.795	9	551	7	396	5	3.742	10
Enchytraeidae	5.854	38	2.874	23	1.074	25	9.802	54
gesamt	15.488	115	5.935	84	5.366	85	26.772	172

Fettwiese frischer Standorte (Arrhenatheretalia-Basalgesellgesellschaft)

Biotoptyp: 34.08.01.01 Intensiv genutztes, frisches Dauergrünland der planaren bis submontanen Stufe (Riecken et al. 2003)/ E2.6 Agriculturally-improved, reseeded and heavily fertilized grassland, including sports fields and grass lawns (EUNIS-Klassifikation 2016)

Kurzcharakterisierung: Die auf einer Höhenlage zwischen 421 und 434 m ü. NHN gelegenen Untersuchungsflächen sind durch einen (sehr) schwach sauren pH-Wert (pH = 5,30-6,36) gekennzeichnet. Der Bodentyp ist als Braunerde anzusprechen. Die Bodenart ist, je nach Fläche, mittel schluffiger Sand oder sandiglehmiger Schluff. Mit einer Hangneigung zwischen 0° und 5° weisen die untersuchten Intensivgrünländer wenig Gefälle auf. Die Ellenbergzahlen aus den Vegetationsdaten ergaben basische, frische, helle Standort-bedingungen, einen hohen Stickstoffgehalt sowie mäßig warme Temperaturen.

Charakteristische Pflanzenarten Bodenvegetation/charakteristische Artengruppen

• Ordnungs- und Klassenkennarten der Molinio-Arrhenatheretalia wie z. B. Achillea millefolium, Dactylis glomerata, Bellis perennis, Alopecurus pratensis etc.

Charakteristische Bodentierarten

Kennzeichnende Artengruppen

Kennarten		
Intensivgrünland		
Enchtraeidae		
Enchytraeus cf. luxuriosus		
Enchytraeus christensi		

Säuregruppen		
Grünland, basenreich, frisch schwach sauer, Grünland		
Enchytraeidae	Enchytraeidae	
Henlea ventriculosa	Fridericia bisetosa	
Marionina communis	Fridericia dura	
Offenland	schwach saure bis neutrale Standorte	
Enchytraeidae	Lumbricidae	
Fridericia christeri Fridericia galba	Aporrectodea caliginosa Aporrectodea rosea Lumbricus terrestris	

Grundarten		
Grünländer	intensive Nutzung	
Collembola	Oribatida	
Mesaphorura macrochaeta Friesea mirabilis	Zygoribatula excavata	
Offenland		
Enchytraeidae		
Enchytraeus bulbosus		

Ackerwildkrautflur auf Löss (Stellarietea mediae-Basalgesellschaft)

Biotoptyp: 33.04.03 Intensiv bewirtschafteter Acker auf Löss-, Lehm- oder Tonboden mit stark verarmter oder fehlender Segetalvegetation (Riecken et al. 2003) / I1.1 Intensive unmixed crops (EUNIS-Klassifikation 2016) **Kurzcharakterisierung**: Die auf einer Höhenlage zwischen 230 und 462 m ü. NHN gelegenen Untersuchungsflächen sind durch einen sehr schwach sauren bis neutralen pH-Wert (pH = 6,01-6,68) gekennzeichnet. Der Bodentyp ist als (Para)Braunerde anzusprechen. Die Bodenart ist sandiger Schluff. Mit einer Hangneigung

Äcker wenig Gefälle auf. Die Ellenbergzahlen aus den Vegetationsdaten ergaben (wo feststellbar) basische. frische, helle Standortbedingungen, einen hohen Stickstoffgehalt sowie warme Temperaturen.

Charakteristische Pflanzenarten

Bodenvegetation/charakteristische Artengruppen

- Kulturpflanze: Triticum aestivum
- vereinzelte Begleitarten der Segetalflora wie z. B. Veronica hederifolia, Poa annua etc.

Charakteristische Bodentierarten

Kennzeichnende Artengruppen

Kennarten		
Löss-Acker	Äcker	
Enchtraeidae	Diplopoda	
Fridericia glandulosa	Unciger foetidus	
Fridericia sp. (PULR)		
Fridericia sp. (UNID)		

Säuregruppen		
basenreiche Grünland- und Ackerstandorte	basenreiche Ackerstandorte	
Collembola	Collembola	
Pseudosinella alba	Orchesella villosa	
Offenland, basenreich	schwach saure bis neutrale Standorte	
Enchytraeidae	Lumbricidae	
Fridericia christeri Fridericia galba	Aporrectodea caliginosa Aporrectodea rosea Lumbricus terrestris	

Grundarten		
Offenland	intensive Nutzung	
Enchytraeidae	Oribatida	
Enchytraeus bulbosus Enchytronia sp. (MINO)	Zygoribatula excavata	

Klatschmohn-Gesellschaft (Papaveretalia-Basalgesellschaft)

Biotoptyp: 33.01.01 Extensiv bewirtschafteter flachgründiger und skelettreicher Kalk-Acker mit vollständi-ger Segetalvegetation (Riecken et al. 2003) / I1.2 Arable land with unmixed crops grown by low-intensity agricultural methods (EUNIS-Klassifikation 2016)

Kurzcharakterisierung: Die auf einer Höhenlage zwischen 344 und 512 m ü. NHN gelegenen Untersuchungsflächen sind durch einen sehr schwach sauren bis neutralen pH-Wert (pH = 5,75-7,29) gekennzeichnet. Der Bodentyp ist als Rendzina anzusprechen. Die Bodenart

zwischen 0° und 2° weisen die untersuchten Löss- ist schwach toniger Schluff. Mit einer Hangneigung von 0° bzw. einer Kuppenlage weisen die untersuchten Kalk-Äcker wenig Gefälle auf. Die Ellenbergzahlen aus den Vegetationsdaten ergaben basische, frische, helle Standortbedingungen, einen hohen Stickstoffgehalt sowie (mäßig) warme Temperaturen.

Charakteristische Pflanzenarten

Bodenvegetation/charakteristische Artengruppen

- Kulturpflanzen: Avena sativa, Hordeum vulgare, Triticum aestivum x Secale cereale
- Ordnungskennarten des Paperveretalia rhoeadis wie z. B. Papaver rhoeas, Thlaspi arvensis etc.

Charakteristische Bodentierarten

Kennzeichnende Artengruppen

	Kennarten	
Kalk-Acker		
Diplopoda		
Unciger foetidus		

Säuregruppen		
basenreiche Grünland- und Ackerstandorte	basenreiche Ackerstandorte	
Collembola	Collembola	
Pseudosinella alba	Orchesella villosa	
Offenland, basenreich	schwach saure bis neutrale Standorte	
Enchytraeidae	Lumbricidae	
Fridericia christeri Fridericia galba	Aporrectodea caliginosa Aporrectodea rosea Lumbricus terrestris	

Grundarten	
Offenland	
Enchytraeidae	
Enchytraeus bulbosus	
Enchytronia sp. (MINO)	

7.6 Auswertung der Fragestellungen und Empfehlungen für den Freistaat Bayern

Das übergeordnete Ziel der vorliegenden Länderstudie war die Beurteilung der biologischen Bodenqualität von Acker- und Grünlandstandorten als Teil eines umfassenden agrarökologischen Monitorings. Folgenden werden die dahinterstehenden konkreten Fragestellungen anhand der im Rahmen der Länderstudie an den neun Standorten im Freistaat Bayern erhobenen Daten unter Hinzunahme zusätzlicher in Edaphobase enthaltener Informationen beantwortet.

7.6.1 Wie beeinflussen Bodeneigenschaften die Bodenbiodiversität?

Bodeneigenschaften beeinflussen maßgeblich die Siedlungsdichte und Artenzusammensetzung von Bodenorganismengemeinschaften. Hierzu finden sich zahlreiche Beispiele in der Literatur (Edwards & Bohlen 1996, Mulder et al. 2004, Beck et al. 2005, Toschki 2008, Römbke et al. 2012, Jänsch et al. 2013).

Auch aus den vorliegenden Untersuchungen lassen sich einige Beispiele benennen, die diese Tatsache belegen. So ließ sich ein, wenn auch schwacher, Einfluss der Bodenart auf die Oribatiden-Zönose feststellen (Kap. 7.4.1). Dies galt auch für die Collembolen, bei denen zusätzlich der pH-Wert eine ausschlaggebende Rolle spielte (Kap. 7.4.2). Letzterer nimmt unter den Bodeneigenschaften eine herausragende Stellung ein: Für alle Biotoptypen konnten für mehrere Organismengruppen unterschiedliche Säuregruppen, nicht jedoch weitere edaphische Gruppen, identifiziert werden. Dies galt neben den Collembolen insbesondere für die Oligochaeten (Lumbriciden und Enchytraeiden), die als weichhäutige Organismen besonders stark der Bodenreaktion ausgesetzt sind (Kap. 7.4.5). Zusätzlich spielen weitere kurzfristig und lokal (z. B. durch das Wetter) wirkende Faktoren, insbesondere die Bodenfeuchte, eine große Rolle (Kap. 7.4.5).

Die Analyse-Tools des Bodeninformationssystem Edaphobase (Edaphostat, Edaphoclass) sind geeignet, die vorhandenen Muster und Zusammenhänge sichtbar zu machen (Kap. 4.5). Beispiele hierfür finden sich u. a. für die Regenwürmer und Enchytraeiden, für die mittels Edaphostat für einzelne Arten und Standortfaktoren (hier: Biotoptyp und pH-Wert) Artprofile erstellt wurden (Kap. 7.4.5, 7.4.6). Je nach Standort und Fragestellung können auf diese Weise gezielt Informationen aus Edaphobase zusammengestellt werden, um beispielsweise anthropogene Einflussfaktoren gegen die natürlich vorhandenen Bodeneigenschaften abwägen und die standortspezifische Artenzusammensetzung besser interpretieren zu können.

7.6.2 Wie beeinflussen Bewirtschaftungsmaßnahmen die Bodenbiodiversität?

Bewirtschaftungsmaßnahmen wie der Einsatz von Pflanzenschutz- und Düngemitteln oder die Bodenbearbeitung haben einen tiefgreifenden Einfluss auf die Zusammensetzung und Individuenzahlen der

Bodenbiozönose (Clapperton 1999, Römbke & Breure 2005b, Rutgers et al. 2008, 2009, Jänsch et al. 2013). Auch in den vorliegenden Untersuchungen bestätigt sich die Beobachtung, dass es sich bei Artengemeinschaften von Ackerstandorten meist um eine verarmte Grünlandzönose handelt. Mit Ausnahme der Diplopoden wurden bei allen Organismengruppen im Intensivgrünland die meisten Individuen gefangen. Bei den Oribatiden, Lumbriciden und Enchytraeiden wurde hier außerdem die höchste Artenvielfalt festgestellt, während sich diese bei den Collembolen, Chilopoden und Diplopoden zwischen den drei Biotoptypen nicht wesentlich unterschied. Generell wurden jedoch die meisten im Acker vorhandenen Arten häufig auch im Grünland nachgewiesen, zu denen sich dort weitere Arten gesellten, die wegen ihrer Empfindlichkeit gegenüber ackerbaulichen Maßnahmen im Acker fehlten. Insofern kann davon ausgegangen werden, dass die Bodenbiozönose an Grünlandstandorten, die mit Ausnahme der Bewirtschaftung in ihren Standort- und Bodeneigenschaften Ackerstandorten ähneln, das ökologische Potenzial dieser Ackerstandorte widerspiegeln. Je geringer die Störung durch unterschiedliche Bewirtschaftungsmaßnahmen ausfällt, desto größer ist die Chance, dass sich die Ackerlebensgemeinschaft diesem ökologisch erstrebenswerten Potential annähert. So können gezielt Maßnahmen ergriffen werden (z.B. Verringerung der Bodenbearbeitung, Förderung der Segetalflora), um die Biodiversität im Boden zu erhöhen. Es kann also tendenziell davon ausgegangen werden, dass bei einem geringeren Intensivierungsgrad der Bewirtschaftung die Bodenbesiedlung höher ausfällt. Dies gilt jedoch nicht grundsätzlich bzw. nicht für alle Organismengruppen gleichermaßen. So ergab sich hinsichtlich der beiden Acker-Biotoptypen kein einheitliches Bild. Während die Oribatiden, Collembolen und Diplopoden in den extensiv bewirtschafteten Kalk-Äckern im Mittel eine höhere Individuenzahl aufwiesen als in den intensiv bewirtschafteten Löss-Äckern, war es bei den Oligochaeten umgekehrt. Hier mögen weitere Faktoren wie regionale Bodenfeuchte, Tiefgründigkeit oder auch Bodenverdichtung eine Rolle gespielt haben.

7.6.3 Gibt es eine bodenbiologische Beurteilungsgrundlage für landwirtschaftliche Böden?

Im Freistaat Bayern wurde der Status der Bodenvon Biodiversität bislang primär anhand der Artenzahl den und Abundanz der Regenwürmer beurteilt. Demnach auf ist eine Regenwurmdichte von mehr als 60 Ind./ der m² bzw. das Auftreten von mehr als 4 Arten in

landwirtschaftlich genutzten Böden als Hinweis auf einen gesunden, biologisch aktiven und fruchtbaren Bodenzustand zu verstehen (Walter & Burmeister 2017). Diese Einschätzung lässt sich aus dem in Edaphobase enthaltenen Datenbestand bestätigen. So beträgt die mittlere Abundanz an 107 Ackerstandorten (Biotoptyp 33. nach Riecken et al. 2003) deutschlandweit 67,9 Ind./ m² aus 4.0 Arten sowie an 101 Grünlandstandorten (Biotoptyp 34.) 97,2 Ind./m² aus 5,3 Arten (**Tab. 99**). Die Abundanz kann hierbei jedoch auf einen einzelnen Standort bezogen stark schwanken, was in einer sehr hohen Standardabweichung zum Ausdruck kommt. Daher ist generell zu empfehlen, für die Beurteilung eines Standorts primär qualitative Diversitätsparameter zu verwenden, d. h. sowohl die Artenzusammensetzung als auch die Art der Abdeckung der drei ökologischen Gruppen zu berücksichtigen. Die Fokussierung auf die Regenwürmer bei dieser Art der Beurteilung ist allerdings ein relativ grober Ansatz, da nur eine Bodentiergruppe (d. h. die Regenwürmer) betrachtet wird, während andere wichtige Organismengruppen, wie z. B. die Mesofauna (d. h. Collembolen, Milben und Enchytraeiden) oder die Arthropoden-Makrofauna (z. B. Diplopoden und Chilopoden), nicht einbezogen werden. Zudem wird bei dieser Art der Beurteilung der Boden-Biodiversität nicht berücksichtigt, dass sich aufgrund natürlicher Standortfaktoren wie z. B. der Bodenart oder dem pH-Wert des Bodens die jeweilige Organismendichte bzw. Artenzahl deutlich unterscheiden können. Für die Regenwürmer ist es möglich, die mittlere Abundanz und Artenzahl für einige Biotoptypen (Anzahl Standorte > 10) der zweiten Ebene zu berechnen (Tab. 100). Die Anzahl verfügbarer Standorte pro Biotoptyp wird hierbei naturgemäß geringer. Dennoch lassen sich deutliche Unterschiede in Abundanz und Artenzahl erkennen. So sind beispielsweise sowohl Abundanz als auch Artenzahl auf Sand-Äckern niedriger als in solchen auf Löss-, Lehm- oder Tonboden. Ähnliches gilt im Vergleich von artenarmen und artenreichen Grünländern.

Zur Verfeinerung der Beurteilung der Boden-Biodiversität kann das, in diesem Bericht beschriebene Verfahren, konkret die Verwendung des Auswertetools Edaphoclass der Datenbank Edaphobase weiterhelfen. Mittels der in der Datenbank vorliegenden Informationen zum Vorkommen der untersuchten Organismengruppen in spezifischen Biotoptypen ist es möglich, gezielt Vorgaben zu der jeweils zu erwartenden Artenzusammensetzung unter Angabe der Stetigkeit als Maß für die Wahrscheinlichkeit des Vorkommens einer Art an einem spezifischen zu beurteilenden Standort zu erhalten. Durch einen Vergleich zwischen den zu erwartenden und den real am jeweiligen Standort gefundenen Tieren ist so eine gezielte Beurteilung des biologischen Bodenzustands an diesem Standort möglich. Dies wurde in der vorliegenden Untersuchung beispielsweise für die Oribatiden (Kap. 7.4.1), Myriapoden (Kap. 7.4.3, 7.4.4) und Oligochaeten (Kap. 7.4.5, 7.4.6) durchgeführt. Hierbei erwies sich jedoch die Datenlage noch als limitierender Faktor. So war eine Ableitung der Erwartungswerte maximal bis zur zweiten Ebene der Biotoptypenklassifizierung möglich. Die abgeleiteten Erwartungswerte basierten dann noch häufig auf einer niedrigen Standortzahl (< 10), sodass die Beurteilung mit entsprechenden Unsicherheiten behaftet ist. Teilweise musste auf die erste Biotoptypenebene ausgewichen werden, wodurch die Erwartungswerte jedoch an Relevanz für den jeweiligen Standort verlieren. Da sich die bayerischen Acker- und Wiesenstandorte in eine begrenzte Zahl von Biotoptypen einteilen lassen, ist in naher Zukunft mit einer breiteren Abdeckung landwirtschaftlicher Böden mit Bodentier-Daten zu rechnen. Durch eine qualitative Beurteilung, z. B. aufgrund der Kenntnis zum Gefährdungsgrad der einzelnen Gruppe oder dem Auftreten von Arten der "Roten Liste" (bei Bodenorganismen bisher noch am Anfang stehend), kann diese Beurteilung dann verfeinert werden. Da die verschiedenen taxonomischen Gruppen unterschiedliche Anforderungen an ihre jeweiligen Umweltbedingungen haben und durch die gleichzeitige Untersuchung mehrerer dieser Gruppen eine breite Palette von Standorttypen abgedeckt werden kann, ist die entsprechende Beurteilung robust. Allerdings muss einschränkend gesagt werden,

Tab. 99: Mittlere Abundanz und Artenzahl der Lumbriciden in Offenland-Biotoptypen (1. Ordnung). Werte ermittelt aus in Edaphobase enthaltenen Standortdaten (Anzahl Standorte ≥ 10; Abfrage vom 18.06.2018; 33.: Äcker und Ackerbrachen; 34.: Trockenrasen sowie Grünland trockener bis frischer Standorte).

	33. (n = 107)	34. (n = 101)
Abundanz ± SD [Ind./m ²]	$67,9 \pm 83,5$	$97,2 \pm 108,1$
Artenzahl \pm SD	$4,0\pm1,9$	$5,3\pm2,0$

Tab. 100: Mittlere Abundanz und Artenzahl der Lumbriciden in Offenland-Biotoptypen (2. Ordnung). Werte ermittelt aus in Edaphobase enthaltenen Standortdaten (Anzahl Standorte ≥ 10; Abfrage vom 18.06.2018; 33.03: Äcker und Ackerbrache auf Sandboden; 33.04: Äcker und Ackerbrache auf Löss-, Lehm- oder Tonboden; 34.07: artenreiches Grünland frischer Standorte; 34.08: artenarmes Intensivgrünland frischer Standorte).

	33.03 (n = 12)	33.04 (n = 48)	34.07 (n = 11)	334.08 (n = 20)
Abundanz \pm SD [Ind./m ²]	$37,0 \pm 34,3$	$80,2 \pm 104$	$90,6 \pm 46,8$	$72,1 \pm 81,8$
Artenzahl ± SD	$2,1 \pm 1,8$	4.9 ± 1.8	$7,4 \pm 1,6$	$5,2 \pm 1,8$

dass eine Beurteilung anhand des Schutzstatus einzelner Arten der Bodenorganismengemeinschaft noch nicht praktikabel ist, da dafür, abgesehen von den großkörperigen Regenwürmern, noch unzureichende Kenntnisse vorliegen.

7.6.4 Können Bodentiere als Indikatoren für agrarökologische Fragestellungen identifiziert werden?

Eine besondere Herausforderung stellen in diesem Zusammenhang die verschiedenen Arten der Bodenbearbeitung dar, wobei hierunter nicht nur mechanische Maßnahmen (z. B. Pflügen), sondern auch der Einsatz chemischer Pflanzenschutzmittel sowie die Verwendung von Düngern zu verstehen sind. Generell unterscheidet sich das Vorgehen nicht von dem im vorigen Kapitel beschriebenen Vorgehen zur Beurteilung der biologisch/ ökologischen Bodenqualität, doch sind jetzt sowohl die schon bekannten "natürlichen" als auch die anthropogenen landwirtschaftlichen Faktoren gemeinsam zu berücksichtigen, wenn die biologische Qualität des Bodens in toto beurteilt werden soll. Dabei sind sowohl jeder Faktor einzeln als auch deren Interaktionen in die Beurteilung einzubeziehen - einschließlich ihrer sich im Zeitverlauf häufig verändernden Qualität und Quantität. Eine solche Komplexität dürfte zwar - entsprechende Forschungsaktivitäten vorausgesetzt – grundsätzlich handhabbar werden, doch ist eher zu empfehlen, die reale Situation an einem Standort in eine limitierte Anzahl von "Szenarien" (z. B. eine Kombination von Bodenart, Bearbeitungsintensität usw.) aufzuteilen und für diese dann jeweils einen Mindeststandard für die erwartete Bodenbiodiversität zu definieren, bei gleichzeitigem Verzicht auf ein kausales Verständnis der einzelnen Faktoren bzw. deren Interaktionen. Das Ziel sollte es sein, die nach den jeweiligen Standortbedingungen bestmögliche Diversität an Bodenorganismen zu erhalten oder deren Erholung zu fördern. Die Entscheidung, wann bzw. wie ein solcher Standard erfüllt ist, hängt nicht zuletzt von den jeweils betrachteten Organismen ab. Aufgrund unserer Ergebnisse ist eine Kombination von Diversität (= Artenzahl und -zusammensetzung, evtl. auch das Verhältnis der ökologischen Gruppen) und Abundanz (Individuen/Quadratmeter) zu empfehlen. Dabei wird davon ausgegangen, dass auf diese Weise auch die Funktion(en) der jeweiligen Organismengruppe im Boden abgedeckt wird.

Langfristig sind somit konkrete Angaben zur Biodiversität, Artenzusammensetzung und Siedlungsdichte von Bodentieren sowie deren jeweilige funktionale Bedeutung als Teil eines biologisch aktiven Bodens im Rahmen einer

nachhaltigen Landwirtschaft an konkreten Standorten aufzuzeigen. Ein erster Schritt in diese Richtung sind die von der LfL Bavern empfohlenen Werte zur Regenwurmbesiedlung (Abundanz und Diversität), die als Teil einer bodenbiologischen Einschätzung konkreter Standorte herangezogen werden (Walter & Burmeister 2017). Weitergehende Schritte bestehen vor allem aus einer Differenzierung dieser Werte in Abhängigkeit nicht nur von den natürlichen Bodeneigenschaften, sondern auch von den agrarischen Einflussfaktoren, wie z. B. der Bodenbearbeitung, dem (chemischen und/oder biologischen) Pflanzenschutz aber auch der Fruchtfolge. Entscheidend ist dabei, einen effizienten Mittelweg zwischen dem Aufwand dieses Ansatzes (z. B. für die biologische Definition der schon genannten Szenarien) und dem Ergebnis einer solchen biologischen Beurteilung herzustellen. Hilfreich könnten im Rahmen biologischen Bodenqualitätsbeurteilung direkte Vergleiche von ökologisch bzw. konventionell bewirtschafteten Standorten bzw. Betrieben sein. Die Charakterisierung und Beprobung solcher Standortpaare würde nicht nur die Auswertung der dabei erhobenen Daten erleichtern, sondern zugleich würde durch die Einspeisung dieser Daten in Edaphobase der jeweilige Vergleichsmaßstab erheblich verbessert. Außerdem könnten auf diese Weise auch die Auswirkungen verschiedener Bewirtschaftungsmaßnahmen auf Bodenbiodiversität und deren Funktionen beurteilt werden.

Dieser Bericht ist als ein Beitrag zur Weiterentwicklung der bodenbiologischen Beurteilung landwirtschaftlich genutzter Flächen zu verstehen. Die hier vorgestellten Ergebnisse bestätigen die Nutzbarkeit der Regenwürmer für diesen Zweck und stellen zugleich die Grundlage für eine verfeinerte Auswertung der biologischen Bodenqualität mittels weiterer Organismengruppen dar. Durch Ableitung der entsprechenden qualitativen und quantitativen Angaben zu deren Diversität und Abundanz ist eine standortbezogene Beurteilung möglich, vorausgesetzt, es liegen genug qualitativ hochwertige Daten für den jeweiligen Standorttyp vor. Empfehlungen für das weitere Vorgehen, insbesondere die Implementierung der hier gemachten Vorschläge in die landwirtschaftliche Praxis, liegen vor.

7.6.5 Empfehlungen zum weiteren Vorgehen

Für die Nutzung von Bodenorganismen bei der Beurteilung der biologischen Qualität von Böden ist die schlechte Datenlage zur Bodenbiodiversität in Deutschland das Hauptproblem. Insbesondere fehlen Daten (d. h. es besteht Forschungsbedarf):

- ▶ zur Diversität und zum Vorkommen von mehreren Organismengruppen (speziell Invertebraten) an ähnlichen gut charakterisierten Intensivgrünlandund Ackerstandorten (d. h. zum gleichen Biotoptyp gehörenden) in Bayern;
- ▶ zur Diversität der Organismengruppen in weiteren repräsentativenGrünlandtypen,beginnendbeinaturnahen Grünland-Standorten (z. B. Kalkhalbtrockenrasen, Borstgrasrasen), aber auch in landwirtschaftlich extensiv genutzten naturschutzrelevanten Ackerflächen;
- ▶ aus bisher naturräumlich unterrepräsentierten Regionen Bayerns bzw. Deutschlands;
- ▶ von belasteten Standorten: Zur Beurteilung des Einflusses von stofflichen und nicht-stofflichen Belastungen auf Bodenorganismen sowie zur Festlegung von Schwellenwerten für die Beurteilung solcher Zustände;
- ▶ von bisher nicht oder unzureichend untersuchten Tiergruppen (z.B. Nematoden bzw. Raubmilben), um zu überprüfen, ob diese unter bestimmten Umständen eine sinnvolle Ergänzung zu den bisher beprobten Organismengruppen darstellen können;
- ▶ zur Vertiefung des Verständnisses der Zusammenhänge zwischen Landnutzung und der Struktur und Funktion von Bodenorganismengemeinschaften sowie deren ökosystemaren Funktionen bzw. Leistungen. Parallel zu diesen Aktivitäten ist die langfristige Sicherung bzw. der weitere Ausbau der organisatorischtechnischen Grundlagen notwendig, wobei neben der oben schon aufgeführten Ausweitung der Beprobungsaktivitäten vor allem drei Bereiche besonders hervorzuheben sind:
 - Ausbau und in Hinsicht auf eine Routineanwendung verfeinerte Standard-Methodik der genetischen Charakterisierung von Arten Artengemeinschaften (Barcoding Metabarcoding; langfristig auch die Erfassung und Auswertung von e-DNA) (z. B. Straube et al. 2013, ISO 2017). Auf diesem Gebiet gibt es in Deutschland und der Europäischen Union erhebliche Forschungsaktivitäten für sehr verschiedene Tiergruppen (z. B. Regenwürmer; u. a. Perez-Losada et al. 2012, Decaens et al. 2013). In dieser Hinsicht ist sicherzustellen, dass bei diesen Arbeiten die bislang relativ wenig erforschten Gruppen der Bodenorganismen ausreichend berücksichtigt werden;
 - Langfristige Sicherung bei gleichzeitiger guter Zugänglichkeit der anfallenden Datenmengen, d. h. der Erhalt und die internationale Verknüpfung entsprechender Datenbanken, wobei der deutsche Beitrag die Datenbank Edaphobase ist;

- 3. Erhalt und erhöhte Wertigkeit der Datenqualität, insbesondere hinsichtlich der Verknüpfung "traditioneller" Taxonomie und genetischer Informationen, denn nur auf diese Weise kann dieses Wissen sinnvoll mit ökologischen Daten verknüpft werden.
- 8 Die Länderstudie in SachsenAnhalt: "Bodenökologische
 Untersuchung verschiedener
 extensiver FFH-Grünlandtypen
 (Borstgrasrasen, Goldhaferwiesen, basenreiche Habtodenrasen)"
- 8.1 Problemstellung und Zielsetzung der Fallstudie in ausgewählten FFH-Lebensraumtypen in Sachsen-Anhalt

Die bodenökologischen Untersuchungen der vorliegenden Studie zielen in erster Linie auf eine bodenbiologische Charakterisierung gefährdeter Biotoptypen bzw. FFH-Lebensraumtypen in Sachsen-Anhalt (Harz) ab, die auf einigen hier vorkommenden Bodentiergemeinschaften basieren (Enchytraeidae, Lumbricidae, Myriapoda, Oribatida, Collembola). Die in dieser Studie ausgewählten FFH-Lebensraumtypen Borstgrasrasen. Goldhaferwiesen waren Halbtrockenrasen, die charakteristisch für das Landschaftsschutzgebiet "Harz und nördliches Harzvorland" sind.

Weiterhin sollen Charakter-/Kennarten innerhalb der Bodentiergemeinschaften der drei genannten FFH-Lebensraumtypen identifiziert werden. Ein Fokus liegt dabei darauf, entsprechende Artenlisten der einzelnen FFH-Lebensraumtypen weiterzuentwickeln und zu präzisieren. In diesem Zusammenhang sind auch potentielle Unterschiede zwischen den untersuchten Bodentiergruppen (s. o.) bezüglich ihrer Eignung als Indikatoren für bestimmte Biotoptypen zu berücksichtigen und ggf. zu diskutieren. Parallel zu den Charakter- und Kennarten werden auch die Verteilungsmuster spezifischer "ökologischer Gruppen" (z. B. Säurezeiger) innerhalb der untersuchten Taxa (Enchytraeidae, Lumbricidae, Myriapoda, Oribatida, Collembola) analysiert, deren Anteile zwischen den verschiedenen Lebensraumtypen variieren und somit diese Lebensraumtypen charakterisieren könnten. Innerhalb der Collembolen könnten diese "ökologischen Gruppen" z. B. säuretolerante Artenkomplexe sein.

Zusätzlich werden biotische und abiotische Habitatfaktoren, die als Steuergrößen für die Biodiversität der Bodentiergemeinschaften anzusehen sind, definiert sowie, wenn möglich, bodenbiologische Referenzwerte formuliert.

Das naturschutzfachliche Ziel ist es, über Kenn- und Charakterarten (alternativ dazu: ökologische Gruppen) die Qualität der Biotope einzuschätzen bzw. zu bewerten, wodurch eventuell erforderliche Managementmaßnahmen abgeleitet werden können.

Zusätzlich zu der Bearbeitung der naturschutzfachlichen Fragestellung soll die Nutzung der in dieser Studie erhobenen Tier- und Umweltdaten die Praktikabilität von Edaphobase (Definition) unter Routinebedingungen belegen und verbessern, d. h. helfen, die Fragen zu beantworten, welche Daten wie erfasst, gespeichert und in welcher Form nutzergerecht extrahiert werden sollen und welche zusammenfassenden Auswertungstools zur Verfügung gestellt werden müssen.

Weiterhin bilden die erhobenen Tier- und Umweltdaten innerhalb von Edaphobase umfangreiche "Vergleichsdatensätze" für weitere Analysen der hier untersuchten drei Habitattypen (Borstgrasrasen, Goldhaferwiesen, Halbtrockenrasen).

8.2 Untersuchungsgebiet8.2.1 Geografische Lage

Die deskriptiven Untersuchungen im Rahmen der Länderstudie Sachsen-Anhalt fanden im Harz statt. Der Harz ist neben dem Weserbergland das nördlichste Mittelgebirge Deutschlands. Er hebt sich als markanter, oval geformter Block von ca. 90 km Länge in NW-SE-Richtung und bis ca. 30 km Breite in NE-SW-Richtung aus seinem Umland heraus und bedeckt eine Fläche von 2.226 km² (Müller & Franzke 2014). Der größte Anteil des Harzes liegt in Sachsen-Anhalt mit den Landkreisen Mansfeld-Südharz und Harz – hier sind die 9 Untersuchungsflächen lokalisiert. Eine detaillierte Beschreibung der einzelnen Untersuchungsflächen erfolgt in Kapitel 8.2.3.

8.2.2 Klima

Der Harz als Mittelgebirge unterscheidet sich in vielen Aspekten von seinem Umland, was sich vor allem auf geologische Ursachen zurückführen lässt. Die höhere Lage des Harzes bewirkt deutliche Temperaturunterschiede zu seinen Vorländern und deutlich größere Niederschlagsmengen. Der Harz liegt im Übergangsbereich von ozeanisch-atlantischem zu

kontinentalem Klima (Müller & Franzke 2014). Feuchte Luft von der nahe gelegenen Nordsee kann nahezu ungehindert bis zum Harz vordringen, wird über der Clausthaler Hochfläche gestaut und am Brocken zum Aufsteigen gezwungen. Häufige Bewölkung und hohe Niederschlagsmengen sind die Folge. Die meisten Niederschläge im Harz verzeichnet man auf der Clausthaler Hochfläche und am Westhang des Acker-Bruchberg-Brocken-Gebiets mit bis über 1600 mm im Jahr (im Vergleich Göttinger Wald: 628 mm im Jahr). In den Leegebieten sinkt die Luft ab und erwärmt sich, wobei nur 600 mm Niederschlag im Jahr fallen (z. B. in der Region Unterharz, siehe die drei untersuchten Halbtrockenrasenflächen östlich von Elbingerode). Die Jahresdurchschnittstemperatur beträgt im Oberharz, zu dem die sechs Untersuchungsflächen in der Nähe von Benneckenstein gehören, 6,1 °C, und liegt damit deutlich niedriger als z. B. im nördlichen Harzvorland (8,7 °C) (Müller & Franzke 2014).

Die den Untersuchungsflächen (Halbtrockenrasen) bei Elbingerode nächstgelegene Niederschlagsstation ist "Oberharz am Brocken Rübeland", während für die Untersuchungsflächen bei Benneckenstein die Daten der benachbarten Niederschlagsstation "Oberharz am Brocken Sorge" relevant sind. Um die Temperatur (monatlicher Durchschnitt) und die monatlichen Sonnenstunden als Klimaparameter mit einzubeziehen, wurden diese Daten von der Klimastation "Wernigerode" bezogen. Alle Klimadaten (Untersuchungsjahr 2015, langjährige Mittel für den Zeitraum 2001 bis 2010) wurden aus dem regionalen Klimainformationssystem "ReKIS" heruntergeladen (https://www.umwelt.sachsen. de/umwelt/ klima/26700.htm), das vom Land Sachsen-Anhalt zusammen mit den Ländern Sachsen und Thüringen betrieben wird.

In den beiden Niederschlagsstationen (Oberharz am Brocken Rübeland/Oberharz am Brocken Sorge) fehlen für das Jahr 2015 einige Messungen der monatlichen Niederschlagssummen, so dass hier auch keine jährlichen Niederschlagssummen berechnet werden konnten. Auffällig ist, dass die monatlichen Niederschlagssummen in Oberharz am Brocken Sorge von März bis April und von August bis Dezember 2015 deutlich höher lagen als im langjährigen Mittel (2001-2010), was auch die Bodentiergemeinschaften der benachbarten Goldhaferwiesen und Borstgrasrasen bei Benneckenstein beeinflusst haben könnte (Probenahmetermine: Mai und Oktober 2015).

Bei der Entwicklung der Temperaturen im Verlauf des Jahres 2015 (siehe Klimastation Wernigerode) ist auffällig, dass in den Wintermonaten (Januar, Februar, Dezember) die Temperaturen deutlich über denen des langjährigen Mittels (2001-2010) lagen, während sich dieses Muster

im Frühjahr/Frühsommer (April bis Juni) umkehrte (niedrigere Temperaturen im Untersuchungsjahr 2015 im Vergleich zum langjährigen Mittel) (**Tab. 101**).

8.2.3 Untersuchungsflächen

Alle Untersuchungsflächen liegen "Harz Landschaftsschutzgebiet und nördliches Harzvorland" (Abb. 94). Die sechs Untersuchungsflächen in der Nähe von Benneckenstein (drei Borstgrasrasen, drei Goldhaferwiesen) befinden sich im FFH-Gebiet 0089 "Harzer Bachtäler". Die drei Untersuchungsflächen in der Nähe von Elbingerode (jeweils Halbtrockenrasen) liegen im FFH-Gebiet 0082 "Devonkalkgebiet bei Elbingerode und Rübeland". Die Auswahl aller Untersuchungsflächen erfolgte in enger Kooperation mit dem Landesamt für Umweltschutz Sachsen-Anhalt (Dr. Peer Schnitter) sowie dem Umweltamt des Landkreises Harz (Sylvia Lehnert).

Bei den Ausgangsgesteinen der Untersuchungsflächen im FFH-Gebiet "Harzer Bachtäler" handelt es sich überwiegend um durch submarine Rutschungen verfrachtete Sedimente, die mehrere hundert Meter mächtige Decken bilden (Schriel 1928). Sehr verbreitet sind Tonschieferabfolgen, welche teilweise Vulkanite (z. B. Diabas) enthalten. Daneben kommen Quarzite und Kieselschiefer vor. Auf Plateauflächen kam es zur Ausbildung von periglazialen Gesteinsschuttanreicherungen (Fließerden). Auch ein großer Teil der hier untersuchten Borstgrasrasen und Goldhaferwiesen wird von Tonschiefersubstraten eingenommen, wobei die Bodentypen stark variieren (z. B. Braunerden und Humusgleye). Die Untersuchungsflächen im FFH-Gebiet "Devonkalkgebiet bei Elbingerode und Rübeland (0082)" werden geologisch dem Elbingeröder Komplex (kurz EK) zugeordnet, womit die erdgeschichtliche Sonderentwicklung gegenüber den umliegenden Gebieten zum Ausdruck gebracht wird (Wagenbreth &

Tab. 101: Wetterdaten des Untersuchungsjahres 2015, aufgenommen von den Niederschlagsstationen "Oberharz am Brocken Rübeland" und "Oberharz am Brocken Sorge", sowie der Klimastation "Wernigerode" mit Abweichungen zum langjährigen Mittel der Jahre 2001-2010. (Angaben in mm [Niederschlag], °C [Temperatur] und h [Sonnenstunden]; 2015 wärmer/niederschlagsreicher [↑], 2015 kühler/trockener [↓] als das langjährige Mittel; Quelle: Klimainformationssystem "ReKIS".

Nieder	Niederschlagsstation Oberharz am Brocken-Ruebeland											
Jan	Feb	März	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	2015
	Niederschlag (mm) + Abweichung vom langjährigen Mittel								Summe			
kein	kein	82,9	37	kein	47	95	85	45	46	kein	kein	kein Wert
Wert	Wert	↑18 %	↓21 %	Wert	↓10 %	↑10 %	↑17 %	↓43 %	↓5 %	Wert	Wert	Kelli Welt
Höhe ü	i. NN:	443 m										

Niederschlagsstation Oberharz am Brocken-Sorge												
Jan	Feb	März	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	2015
					Niederscl	nlag (mm)						Summe
177	21	131,8	56	42,5	50	kein	77	79	47	232	58	
↑202 %	↓50 %	↑166 %	↑64 %	↓35 %	↓1 %	Wert	↑27 %	↑14 %	↑47 %	↑283 %	↑ 1 7 %	kein Wert
Höhe ü. 1	NN:	530 m						'	'			

Klimas	tation Wer	nigerode										
Jan	Feb	März	Apr	Mai	Jun	Jul	Aug	Sep	Okt	Nov	Dez	2015
			Niederscl	hlag (mm)	+ Abweic	hung vom	langjährig	gen Mittel				Summe
53,9	8,5	56,5	33,1	15,3	27,9	78,8	79,1	34,6	48,0	55,9	12,7	504
↓8 %	↓80 %	↑14 %	↓2 %	↓76 %	↓45 %	↑36 %	↑31 %	↓50 %	↑50 %	↓8 %	↓75 %	504
	Sonnenstunden (h) + Abweichung vom langjährigen Mittel								Summe			
53	111	137	211	200	181	252	251	138	110	95	53	1701.2
↓13	↑29	↓8	↑ 28	↑2	↓44	↑ 21	↑52	↓14	↓ 17	† 40	↓2	1791,2
		Temperati	ur (monat	licher Dur	chschnitt)	+ Abweic	hung vom	langjähri	gen Mittel			Mittelwert
2,7	1,3	5,3	8,6	12,5	15,5	19,2	20,2	12,8	8,1	8,6	8,3	10.2
↑ 1,1	↑ 0,5	↑ 0,6	↓0,6	↓ 0,8	↓ 0,9	± 0,0	↑ 1,8	↓ 1,5	↓ 1,5	↑2,5	↑ 7,3	10,3
Höhe ü.	.NN:	240 m										

Steiner 1990, Rost 1996). Der geologische Aufbau des steinen des Mittel-und Oberdevon sowie randlich Ton-EK zeichnet sich durch einen Wechsel von Gesteinen schiefer und Grauwacken des Unterkarbons (Kulm) vulkanischen Ursprungs aus dem Mitteldevon, Kalk- aus. Die bis zu 600 m mächtigen Kalke lagerten sich

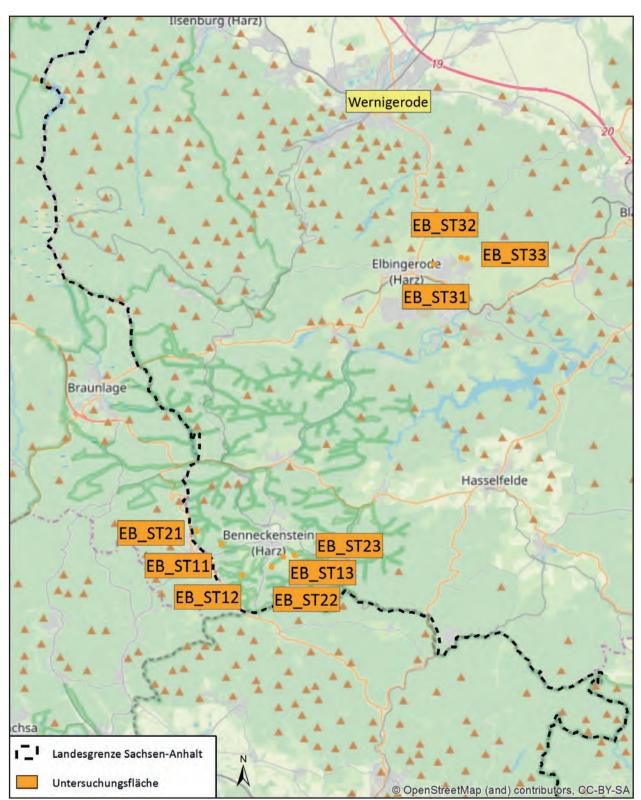


Abb. 94: Lage der Untersuchungsflächen im Landschaftsschutzgebiet "Harz und nördliches Harzvorland".

(1): Standortname: Rhumwiese Replikat: Borstgrasrasen 1

Standortkennung: EB ST11

Koord. (WGS 84): 51.66647/10.68722

Standortbeschreibung: Beweideter Borstgrasrasen Vegetationseinheit:

Polygalo vulgaris-Nardetum Oberdorfer 1957 (Kreuzblumen

Borstgrasrasen)

Biotoptyp BTL D: 34.06.01.02.02 - Beweideter

Borstgrasrasen trockener bis frischer Standorte der montanen bis hochmontanen

Stufe (inkl. Mähweide)

EUNIS: E1.712 Sub-Atlantic Nardus-

Galium grasslands

Potentielle Natürliche Vegetation (PNV):

Hainsimsen-Rotbuchenwald montaner Ausprägung

Hangneigung: -**Höhe ü. NHN**: 546 m

Bodentyp: Gley-Pseudogley

pH-Wert: 4,16 Humusform: Mull

Geologie: Mischformation der Stieger Schichten (Tonschiefer,

Sandsteine, Quarzite, Kieselschiefer, Diabas

Weitergehende Maßnahmen: Extensive Beweidung mit Rindern bei optimaler Weideführung, Auskoppeln der Sümpfe im Südteil Sonstige Flächeninformationen: FFH-Gebiet Harzer Bachtäler (0089). Das Ziel der Maßnahmen (s. o.) ist der Erhalt der Bergwiesen der Rhumwiese. (Informationen: Sylvia Lehnert, Untere Naturschutzbehörde Landkreis Harz) (2): Standortname: Großer Rappenberg

Replikat: Borstgrasrasen 2

Standortkennung: EB_ST12

Koord. (**WGS 84**): 51.65496°N/10.69970°E

Standortbeschreibung: Beweideter Borstgrasrasen Vegetationseinheit:

Polygalo vulgaris-Nardetum Oberdorfer 1957 (Kreuzblumen

Borstgrasrasen)

Biotoptyp BTL D: 34.06.01.02.02 Beweideter

Borstgrasrasen trockener bis frischer Standorte der montanen bis hochmontanen

Stufe (inkl. Mähweide)

EUNIS: E1.712 Sub-Atlantic Nardus-

Galium grasslands

Potentielle Natürliche Vegetation (PNV):

Hainmieren-Erlenwälder

Hangneigung: 3°/Süd-West
Höhe ü. NHN: 564 m
Bodentyp: Humusgleye
pH-Wert: 3,84
Humusform: Mull

Geologie: Wüstebachschiefer (Unterdevon, Siegen); Tonstein, stark geschiefert, vereinzelt Bänke von quarzitischem Sandstein

(Geologisches Landesamt NRW 1980)

Weitergehende Maßnahmen: Fortsetzung der Pflege durch Handmahd in mehrjährigem Abstand. Optimal: Mahd alle 2 bis 3 Jahre. Suboptimal: Mahd alle 3 bis 5 Jahre. Mähgutabtransport. Sonstige Flächeninformationen: FFH-Gebiet Harzer Bachtäler (0089). Waldrandlage, daher denkbare "Einstrahlung" von Bodentiergemeinschaften aus Waldökosystemen. Prüfung einer zeitigen Mähnutzung zur Zurückdrängung des Pfeifengrases. Ziel der Maßnahmen (s. o.) ist der Erhalt der Borstgrasrasen am Steilhang des Großen Rappenberges. (Informationen: Sylvia Lehnert, Untere Naturschutzbehörde Landkreis Harz)

(3): Standortname: Pfeifferberg Replikat: Borstgrasrasen 3

Standortkennung: EB ST13

Koord. (WGS 84): 51.66169°N/10.72496°E

Standortbeschreibung: Beweideter Borstgrasrasen Vegetationseinheit:

Polygalo vulgaris-Nardetum Oberdorfer 1957 (Kreuzblumen

Borstgrasrasen)

Biotoptyp BTL D: 34.06.01.02.02 Beweideter

Borstgrasrasen trockener bis frischer

Standorte der montanen bis hochmontanen

Stufe (inkl. Mähweide)

EUNIS: E1.712 Sub-Atlantic Nardus-

Galium grasslands

Potentielle Natürliche Vegetation (PNV):

Hainsimsen-Rotbuchenwald montaner Ausprägung

Hangneigung:

Höhe ü. NHN: 584 m

Bodentyp: Braunerden bis Parabraunerde-Braunerden

pH-Wert: 3,61 Humusform: Mull

Geologie: Mischformation der Harzgeröder Zone (Tonschiefer,

Sandsteine, Quarzite, Kalksteine)

Weitergehende Maßnahmen: Fortführung der extensiven Beweidung mit Schafen bei optimaler Weideführung Sonstige Flächeninformationen: FFH-Gebiet Harzer

Bachtäler (0089). Ziel der Maßnahmen (s. o.) ist der Erhalt der Borstgrasrasen am westlichen Pfeifferberg. Eine Zufütterung der Schafe auf der Weidefläche erfolgt nicht. (Informationen: Sylvia Lehnert, Untere Naturschutzbehörde Landkreis Harz)

(4): Standortname: Kümmelwiese

Replikat: Storchenschnabel-Goldhaferwiese 1

Standortkennung: EB_ST21

Koord. (**WGS 84**): 51.67149°N/10.67146°E

Standortbeschreibung:

 $Geranio\text{-}Trisetetum, Centaurea\ pseudophrygia\text{-}Rasse, Harz$

Ausbildung mit Cardaminopsis halleri

Vegetationseinheit:

Geranio-sylvatici-Trisetetum Knapp ex Oberd. 1957

Biotoptyp BTL D: 34.07.02.02 Artenreiche frische

(Mäh-) Weide der montanen bis

hochmontanen Stufe

EUNIS: E2.231 Western Hercynian

submontane hay meadows

Potentielle Natürliche Vegetation (PNV):

Hainsimsen-Rotbuchenwald montaner Ausbildung

Hangneigung: -

Höhe ü. NHN: 591 m Bodentyp: Braunerden

pH-Wert: 4,73 Humusform: Mull

Geologie: Mischformation der Stieger Schichten (Tonschiefer,

Sandsteine, Quarzite, Kieselschiefer, Diabas)

Weitergehende Maßnahmen: Jährliche einschürige

Wiesennutzung.

Sonstige Flächeninformationen: FFH-Gebiet Harzer Bachtäler (0089). Ziel der Maßnahmen (s. o.) ist der Erhalt der Bergwiesen der Kümmelwiese. (Informationen: Sylvia Lehnert, Untere

Naturschutzbehörde Landkreis Harz)

(5): Standortname: Ziegenkopf

Replikat: Storchenschnabel-Goldhaferwiese 2

Standortkennung: EB_ST22

Koord. (WGS 84): 51.65788°N/10.71823°E

Standortbeschreibung:

Geranio-Trisetetum, Centaurea pseudophrygia-Rasse

Vegetationseinheit:

Geranio-sylvatici-Trisetetum Knapp ex Oberd. 1957

Biotoptyp BTL D: 34.07.02.02 Artenreiche frische

(Mäh-) Weide der montanen bis

hochmontanen Stufe

EUNIS: E2.231 Western Hercynian

submontane hay meadows

 $Potentielle\ Nat\"{u}rliche\ Vegetation\ (PNV):$

Hainsimsen-Rotbuchenwald montaner Ausbildung

Hangneigung: Höhe ü. NHN: 5\$6 m
Bodentyp: Braunerden
pH-Wert: 4,85
Humusform: Mull

Geologie: Mischformation der Stieger Schichten (Tonschiefer,

Sandsteine, Quarzite, Kieselschiefer, Diabas)

Weitergehende Maßnahmen: Fortführung der extensiven Beweidung mit Schafen bei optimaler Weideführung. Auskoppeln von Bächen und Nassstellen.

Sonstige Flächeninformationen: FFH-Gebiet Harzer Bachtäler (0089). Das Ziel der Maßnahmen (s. o.) ist der Erhalt von Bergwiesen um den Ziegenkopf. Bei zu großem Weiderest erfolgt eine Nachmahd. (Informationen: Sylvia Lehnert, Untere Naturschutzbehörde Landkreis Harz)

(6): Standortname: Eckardsborn

Replikat: Storchenschnabel-Goldhaferwiese 3

Standortkennung: EB ST23

Koord. (**WGS 84**): 51.66294°N/10.73106°E

Standortbeschreibung:

Geranio-Trisetetum, Centaurea pseudophrygia-Rasse

Vegetationseinheit:

Geranio-sylvatici-Trisetetum Knapp ex Oberd. 1957

Biotoptyp BTL D: 34.07.02.02 Artenreiche frische

(Mäh-) Weide der montanen bis

hochmontanen Stufe

EUNIS: E2.231 Western Hercynian

submontane hay meadows

 $Potentielle\ Nat\"{u}rliche\ Vegetation\ (PNV):$

Hainmieren-Erlenwälder

Hangneigung: 3°/Nord-Ost **Höhe ü. NHN**: 510 m

Bodentyp: Gley-Pseudogley

pH-Wert: 4,33 **Humusform**: Mull

Geologie: Mischformation der Harzgeröder Zone (Tonschiefer, Sandsteine, Quarzite, Kalksteine) /fluviale Ablagerungen (Lehm, Sand, Kies, Schotter)

Weitergehende Maßnahmen: Fortführung der Mähweide-Wechselnutzung. Extensive Schafbeweidung bei optimaler Weideführung und Wiesennutzung.

Sonstige Flächeninformationen: FFH-Gebiet Harzer Bachtäler (0089). Ziel der Maßnahmen (s. o.) ist die Entwicklung von Bergwiesen am Standort Eckardsborn. (Informationen: Sylvia Lehnert, Untere Naturschutzbehörde

Landkreis Harz)

(7): Standortname: Galgenberg Replikat: Halbtrockenrasen 1

Standortkennung: EB ST31

Koord. (**WGS 84**): 51.77334°N/10.81815°E

Standortbeschreibung:

Halbtrockenrasen (Mesobromium) des Devonkalkgebiets um

Elbingerode

Vegetationseinheit:

Gentiano-Koelerietum pyramidatae Knapp ex Bornkamm 1960 (Enzian-Schillergras-Rasen)

Biotoptyp BTL D: 34.02.01.02.02 Subkontinentaler

Halbtrockenrasen auf karbonatischem oder sonstigem basenreichen Boden, beweidet

(inkl. Mähweide)

EUNIS: E1.2623 Harz Mesobromion

Potentielle Natürliche Vegetation (PNV):

Zahnwurz-Buchenwald

Hangneigung: -

Höhe ü. NHN: 489 m

Bodentyp: Braunerde-Fahlerden und Fahlerden

pH-Wert: 6,05 Humusform: Mull

Geologie: heller massiger Kalkstein (Oberes Mitteldevon)

(Geologische Karte von Sachsen-Anhalt 1:25000)

Weitergehende Maßnahmen: jährliche extensive Schafhutung, 1 bis 2 Weidegänge jährlich, kein Pferch, optimale Weideführung. Erhalt der Einzelgehölze in den Magerrasen. Beweidung ab Mitte Juni nach der Blüte der Orchideen.

Sonstige Flächeninformationen: FFH-Gebiet: Devonkalkgebiet bei Elbingerode und Rübeland (82). FFH-Lebensraumtyp: Naturnahe Kalk-Trockenrasen und deren Verbuschungsstadien (6210) (RHT). Teilweise stärker exponierter Hang, Gehölze, stellenweise sehr flachgründig, Steine und Felsen. Entbuschung in den Wintermonaten. (Informationen: Sylvia Lehnert, Untere Naturschutzbehörde Landkreis Harz)

(8): Standortname: Bollenkopf Replikat: Halbtrockenrasen 2

Standortkennung: EB ST32

Koord. (WGS 84): 51.77622°N/10.83465°E

Standortbeschreibung:

Halbtrockenrasen (Mesobromium) des Devonkalkgebiets um Elbingerode

Vegetationseinheit:

Gentiano-Koelerietum pyramidatae Knapp ex Bornkamm 1960

(Enzian-Schillergras-Rasen)

Biotoptyp BTL D: 34.02.01.02.02 Subkontinentaler

Halbtrockenrasen auf karbonatischem oder sonstigem basenreichen Boden, beweidet

(inkl. Mähweide)

EUNIS: E1.2623 Harz Mesobromion

Potentielle Natürliche Vegetation (PNV):

Zahnwurz-Buchenwald

Hangneigung: 20°/West **Höhe ü. NHN**: 462 m

Bodentyp: Braunerde-Fahlerden und Fahlerden

pH-Wert: 6,75 **Humusform**: Mull

Geologie: heller massiger Kalkstein (Oberes Mitteldevon)

(Geologische Karte von Sachsen-Anhalt 1:25000)

Weitergehende Maßnahmen: jährliche extensive Schafhutung, 1 bis 2 Weidegänge jährlich, kein Pferch, optimale Weideführung. Erhalt der Einzelgehölze in den Magerrasen. Beweidung ab Mitte Juni nach der Blüte der Orchideen.

Sonstige Flächeninformationen: FFH-Gebiet: Devonkalkgebiet bei Elbingerode und Rübeland (82). FFH-Lebensraumtyp: Naturnahe Kalk-Trockenrasen und deren Verbuschungsstadien (6210) (RHT). Teilweise stärker exponierter Hang, Gehölze, stellenweise sehr flachgründig, Steine und Felsen. Entbuschung in den Wintermonaten. (Informationen: Sylvia Lehnert, Untere Naturschutzbehörde Landkreis Harz)

(9): Standortname: Schwefeltal Replikat: Halbtrockenrasen 3

Standortkennung: EB_SN33

Koord. (WGS 84): 51.77552°N/10.83838°E

Standortbeschreibung:

Halbtrockenrasen (Mesobromium) des Devonkalkgebiets um Elbingerode

Vegetationseinheit:

Gentiano-Koelerietum pyramidatae Knapp ex Bornkamm 1960 (Enzian-Schillergras-Rasen)

vorwiegend als Riffkalke an submarinen, vulkanischen Schwellen ab. Sie sind chemisch sehr einheitlich und hochrein ausgebildet (durchschnittlich 98% CaCO₃, was eine besonders gute Löslichkeit bedingt (Altermann & Rabitzsch 1976). Die in dieser Studie untersuchten Halbtrockenrasen befinden sich auf Kalk, bei dem Bodentyp handelt es sich durchgehend um Braunerde-Fahlerden und Fahlerden (Dr. Klaus-Jürgen Hartmann, Landesamt für Geologie und Bergwesen, Dezernat 21: Fachinformationssysteme & Archive, Halle (Saale), persönliche Korrespondenz vom 09.05.2016).

8.3 Ergebnisse zur Standortcharakterisierung

8.3.1 Bodenkundliche Angaben

Die gemessenen Habitatparameter-Werte wurden in **Tab. 102** (Teil I) und **Tab. 103** (Teil II) zusammengefasst. Die Messung der aktuellen Bodenfeuchte ergab, dass der Boden der drei Untersuchungsflächen des Biotoptyps "Halbtrockenrasen" (EB_ST31 bis EB_ST33) zum Zeitpunkt der beiden Mikroarthropoden-

Biotoptyp: BTL D: 34.02.01.02.02 Subkontinentaler

Halbtrockenrasen auf karbonatischem oder sonstigem basenreichen Boden, beweidet

(inkl. Mähweide)

EUNIS: E1.2623 Harz Mesobromion

Potentielle Natürliche Vegetation (PNV):

Zahnwurz-Buchenwald

 Hangneigung:
 20°/Süd-West

 Höhe ü. NHN:
 474 m

 pH-Wert:
 6,82

Boden: Braunerde-Fahlerden und Fahlerden

Humusform: Mull

Geologie: heller massiger Kalkstein (Oberes Mitteldevon)

(Geologische Karte von Sachsen-Anhalt 1:25000)

Weitergehende Maßnahmen: jährliche extensive Schafhutung, 1 bis 2 Weidegänge jährlich, kein Pferch, optimale Weideführung. Beweidung ab Mitte Juni.

Sonstige Flächeninformationen: FFH-Gebiet: Devonkalkgebiet bei Elbingerode und Rübeland (82). FFHLebensraumtyp: Naturnahe Kalk-Trockenrasen und deren Verbuschungsstadien (6210). Zum Teil mit stärker

exponierten Hangbereichen, stellenweise sehr flachgründig, Steine und Felsen. (Informationen: Sylvia Lehnert, Untere Naturschutzbehörde Landkreis Harz)

Probenahmetermine deutlich trockener war als der der beiden anderen Biotoptypen (siehe **Tab. 102**). Die Messung der aktuellen Bodenfeuchte ist lediglich als Momentaufnahme zu bewerten. Ein Vergleich mit den Feuchtezahlen (siehe **Tab. 104**, Ergebnisse der Ellenbergzahlen) zeigt jedoch, dass auch die Pflanzen der Halbtrockenrasen trockenere Standortbedingungen anzeigen als die Pflanzen der beiden anderen Biotoptypen (mit Ausnahme von EB ST11).

Der mittlere Boden-pH-Wert war auf den basenreichen Halbtrockenrasenflächen deutlich höher (6,54) als auf den Borstgrasrasen- (3,87) und Goldhaferwiesenflächen (4,64) – die beiden letztgenannten Biotoptypen konnten daher als saure Standorte eingestuft werden, während der Boden-pH-Wert auf den Halbtrockenrasenflächen im neutralen Bereich lag (Gisi 1990).

Die Mittelwerte des Gesamt-Kohlenstoffs (Cgesamt) stiegen in folgender Reihe: Goldhaferwiesen (9,63 g/kg) < Halbtrockenrasen (10,59 g/kg) < Borstgrasrasen (12,52 g/kg) an. Auch die Mittelwerte des Gesamt-Stickstoffs waren auf den Borstgrasrasenflächen am höchsten (0,94 g/kg) – die Mittelwerte der Goldhaferwiesen- (0,81g/kg) und Halbtrockenrasenflächen (0,79 g/kg) lagen etwa auf einem Niveau.

Die C/N-Verhältnisse der Borstgras- und Halbtrockenrasenflächen lagen im Mittel etwa auf einem Niveau (13,34 bzw. 13,57), während das C/N-Verhältnis der Goldhaferwiesen deutlich niedriger (11,84) war, was darauf hindeutet, dass die Qualität der Nahrungsressourcen (z. B. Streu, Feinwurzeln) in den Goldhaferwiesen für saprophage Tiergruppen wie Collembolen und Regenwürmer potentiell günstiger war als in den beiden anderen Biotoptypen (vgl. Taylor et al. 1989, Salamon 2001).

Mit Ausnahme der Halbtrockenrasenflächen war der Karbonat-Anteil am Gesamtkohlenstoffgehalt mit Werten von unter 1 g/kg auf den Untersuchungsflächen gering (Arbeitsgruppe Boden 1996).

Die Halbtrockenrasenflächen EB_ST32 und EB_ST33 wiesen einen Karbonat-Anteil am Gesamtkohlenstoff

von 43,19 bzw. 57,14 g/kg auf. Der Karbonat-Anteil am Gesamtkohlenstoff der Fläche EB_ST31 lag dagegen deutlich niedriger (6,93 g/kg).

Die Messungen der Korngrößenverteilungen ergaben, dass der Anteil des Schluffes (mit Ausnahme von EB_ST32) auf den Untersuchungsflächen mit Werten zwischen 50,40 % (EB_ST33) und 69,00 % (EB_ST22) am größten war. Die Bodenart dieser Untersuchungsflächen war somit als Schluff mit unterschiedlichen Ton-, Lehm- und Sandanteilen zu bezeichnen. Die Untersuchungsfläche EB_ST32 hatte dagegen als Bodenart mittel-schluffigen Sand (vgl. **Tab. 103** und Arbeitsgruppe Boden 1996).

Die Ellenbergzahlen der nachgewiesenen Pflanzenarten wurden in Tabelle 104 zusammengefasst. Entsprechend der gemessenen pH-Werte liegen die Ellenbergzahlen der Borstgrasrasen- und Goldhaferwiesenflächen

Tab. 102: Ergebnisse der bodenkundlichen Messungen Teil I.

Untersuchungs-	Bodenfeuchte	pH-Wert	C/N-	Cgesamt	Ngesamt	Carbonat
fläche	/% [Masse]	pii-weit	Verhältnis	/% [Masse]	/% [Masse]	/g/kg
EB_ST11	43,2	4,16	13,19	10,44	0,79	0,41
EB_ST12	40,4	3,84	13,14	13,00	0,99	0,46
EB_ST13	43,0	3,61	13,70	14,17	1,03	0,32
Mittelwert	42,2	3,87	13,34	12,54	0,94	0,40
EB_ST21	38,1	4,73	11,70	9,10	0,78	0,41
EB_ST22	50,6	4,85	11,94	10,81	0,89	0,40
EB_ST23	35,8	4,33	11,89	8,99	0,75	0,39
Mittelwert	41,5	4,64	11,84	9,63	0,81	0,40
EB_ST31	29,7	6,05	12,26	10,09	0,83	6,93
EB_ST32	24,0	6,75	13,25	9,98	0,76	43,19
EB_ST33	25,0	6,82	15,21	11,69	0,77	57,14
Mittelwert	26,2	6,54	13,57	10,59	0,79	35,75

Tab. 103: Ergebnisse der bodenkundlichen Messungen Teil II, Korngrößenverteilung (in Masse-%) und Bodenart. T: Ton; U: Schluff; S: Sand; Uls: sandig-lehmiger Schluff; Us: sandiger Schluff; Ut2: schwach toniger Schluff; Su3: mittel schluffiger Sand (Arbeitsgruppe Boden 1996).

Untersuchungs-		Korngrößenverteilung		Bodenart
fläche	Ton /%	Schluff /%	Sand /%	
EB_ST11	8,9	68,5	22,5	Ut2
EB_ST12	11,6	63,1	25,3	Uls
EB_ST13	10,8	61,8	27,4	Uls
EB_ST21	9,7	66,4	23,9	Ut2
EB_ST22	11,4	69,0	19,7	Ut2
EB_ST23	11,9	68,4	20,9	Ut2
EB_ST31	6,9	67,3	25,8	Us
EB_ST32	1,9	38,5	59,6	Su3
EB_ST33	2,6	50,4	47,0	Us

Tab. 104: Mediane der Ellenbergzahlen für die Bodenreaktion, den Stickstoffgehalt sowie die Feuchte-, Licht- und Temperaturbedingungen auf den Untersuchungsflächen im NP Eifel.

		Reaktion	Stickstoffzahl	Feuchtzahl	Licht	Temperatur
	EB_ST11	3,0	3,0	4,0	7,0	5,0
Borstgrasrasen	EB_ST12	3,0	2,0	5,0	7,0	5,0
	EB_ST13	3,0	2,0	5,0	7,0	5,0
	EB_ST21	6,0	4,5	5,0	7,0	5,0
Goldhaferwiese	EB_ST22	5,0	4,0	6,0	7,0	5,0
	EB_ST23	4,5	4,0	5,5	7,0	5,0
	EB_ST31	7,0	3,0	4,0	7,0	6,0
Halbtrocken- rasen	EB_ST32	8,0	3,0	3,0	7,0	6,0
	EB_ST33	7,0	3,0	4,0	7,0	6,0

Reaktion Stickstoffzahl		Feuchtezahl Lichtzahl		Temperatur					
sauer	0-4,0	mager	0-4,0	trocken	0-4,0	schattig	0-4,0	kühl	0-4,0
neutral	4,1-5,5	mäßig	4,1-5,5	frisch	4,1-5,5	halblicht	4,1-5,5	mäßig warm	4,1-5,5
basisch	5,6-10	eutroph	5,6-10	feucht	5,6-10	volllicht	5,6-10	warm	5,6-10

mit Ausnahme von EB ST21 (basisch) im sauren Biotoptyp Bereich, während die Ellenbergzahlen der Halbtrockenrasenflächen im basischen Bereich liegen. Die Stickstoffzahlen entsprechen mit Ausnahme von EB (mäßige Standortbedingungen) durchgehend Standortbedingungen. mageren Die Feuchtezahl weist auf frische (EB ST22) bis trockene (alle Halbtrockenrasenflächen sowie EB ST11) Habitate hin. Weiterhin zeigen die Ellenbergzahlen wie erwartet für alle Biotoptypen Volllicht-Verhältnisse an. Die Ellenbergzahlen der Halbtrockenrasenflächen liegen im warmen Temperaturbereich, die Ellenbergzahlen der Borstgrasrasen- und Goldhaferwiesenflächen dagegen im mäßig warmen Temperaturbereich.

Vegetationskundliche Aufnahme 8.3.2 (Forschungsinstitut gaiac)

Polygalo vulgaris-Nardetum 8.3.2.1 **Oberdorfer 1957**

Formation: IX. Zwergstrauch-Gesellschaften und

Borstgrasrasen

Calluno-Ulicetea Br.-Bl. et Tx. ex Klasse:

Westhoff et al. 1946

Nardetalia Oberd. ex Preising 1949, **Ordnung:**

Borstgrasrasen

Verband: Violion caninae Schwickerath 1944,

> planar-montane Borstgrasrasen Polygalo vulgaris-Nardetum

Oberdorfer 1957, Kreuzblumen

Assoziation:

Borstgrasrasen

BTL D: 34.06.01.02.02 beweideter

Borstgrasrasen trockener bis frischer

Standorte der montanen bis

hochmontanen Stufe **EUNIS:**

E1.712 Sub-Atlantic [Nardus]-[Galium] grasslands

Borstgrasrasen (Nardetalia) sind extensiv beweidete oder gemähte Grünlandgesellschaften, die als primäre Ersatzgesellschaft der ursprünglichen Waldgesellschaft zu verstehen sind. Durch das Borstgras, Nardus stricta, dominierte Pflanzenbestände sind in ganz Europa (z. B. Island, Skandinavien, Spanien Griechenland) verbreitet (Peppler 1992). In Deutschland sind sie vor allem auf silikatischen Gesteinen der Mittelgebirge und Nordalpen sowie in wenigen Bereichen des norddeutschen Tieflands verbreitet. In Deutschland werden zwei Verbände, das Nardion (subalpin-alpin) und das Violion (planarmontan) unterschieden. Aufgrund der flächendeckenden der Landwirtschaft, Intensivierung insbesondere durch Düngung und Entwässerung sowie durch Nutzungsaufgabe und Wiederaufforstung, kam es in der Vergangenheit zu großen Flächenverlusten der heute unter Naturschutz stehenden Flächen (Peppler-Lisbach & Petersen 2001).

Die Untersuchungsflächen EB ST11, EB ST12 und EB ST13 (Tab. 105) sind aufgrund der Vegetation und montanen Lage systematisch der Zentralassoziation des Violion, dem sogenannten Polygalo-Nardetum, Grundartenzusammensetzung zuzuordnen. Ihre entspricht weitgehend der des Unterverbands

Tab. 105: *Polygalo vulgaris-Nardetum* Oberdorfer 1957 (Kreuzblumen-Borstgrasrasen); *Polygalo-Nardetum typicum*, trennartenlose Form, Vikariante von *Galium saxatile* (EB_ST13: Floristisch verarmte Form).

	Standort	EB_ST11	EB_ST12	EB_ST13
	Artenzahl	36	39	18
Vikariante von Galium s	axatile			
	Galium saxatile L.	+	1	1
	Meum athamanticum Jacq.	3	2	
	Lathyrus linifolius (Reichard) Bässler	1	+	
V-UV Violion -Violenion				
	Polygala vulgaris subsp. vulgaris L.	+	+	
	Viola canina L.	+	+	
	Veronica officinalis L.		1	
	Achillea millefolium L.	+	+	
	Hieracium pilosella L.	1		
	Plantago lanceolata L.	+		
	Leucanthemum vulgare agg.	+		
	Knautia arvensis (L.) Coult.	+	+	
	Thymus pulegioides subsp. pulegioides L.	1		
	Trifolium pratense L.	+		
	Festuca guestfalica Boenn. ex Rchb.	2	3	3
	Danthonia decumbens (L.) DC.	_	1	1
O Nardetalia	()			
	Nardus stricta L.	+	1	2
	Arnica montana L.	+	+	1
	Luzula campestris (L.) DC.	1	1	1
	Carex pilulifera L.	+	+	+
	Carex pallescens L.		+	
K Calluno-Ulicetea				
	Calluna vulgaris (L.) Hull		+	
	Deschampsia flexuosa (L.) Trin.	1	+	2
	Vaccinium vitis-idaea L.	+		
Begleitarten				
	Solidago virgaurea L.		+	1
	Succisa pratensis Moench		1	+
	Alchemilla monticola Opiz	+		
	Anemone nemorosa L.		1	
	Betonica officinalis L.		1	
	Betula pendula Roth		+	
	Campanula rotundifolia agg.	+		
	Cirsium palustre (L.) Scop.	+		
	Galium boreale L.		1	
	Genista pilosa L.		+	
	Helianthemum nummularium (L.) Mill.		+	
	Hieracium lachenalii C. C. Gmel.	+		
	Hieracium umbellatum L.	+		
	Holcus lanatus L.		•	+
	ALOVONO VOLVONO DI	<u> </u>	•	

Tab. 105 (Fortsetzung).

Standort	EB_ST11	EB_ST12	EB_ST13
Artenzahl	36	39	18
Hypochaeris maculata L.		+	
Leontodon hispidus L.	+		
Lilium martagon L.		+	
Melampyrum pratense L.		+	
Rhinanthus minor L.	1		
Rubus spec.		+	
Sorbus aucuparia L.		+	
Veronica arvensis L.	+		

Violenion. Die Gesellschaft ist geographisch weit Assoziation: verbreitet und variiert somit sehr stark bezüglich ihrer Artenzusammensetzung. Demzufolge wird eine Vielzahl von Untereinheiten hinsichtlich geographischer Lage, Höhe, Nutzung etc. ausgewiesen. Die Borstgrasrasen der Flächen EB ST11 und EB ST12 sind der Galium saxatile-Vikariante zuzuordnen. Hier handelt es sich um ozeanisch beeinflusste, basenarme Bestände, die auf EUNIS: den Flächen durch die Trennarten Meum athamanticum, Lathyrus linifolius und Galium saxatile angezeigt werden. Die Fläche EB ST13 ist floristisch verarmter, was durch die geringe Artenzahl (18) sowie das Fehlen vieler Kennarten des Verbands und Unterverbands, wie beispielsweise Polygala vulgaris, Viola canina und Achillea millefolium, angezeigt wird. Auch fehlen hier, bis auf Galium saxatile selbst, die Kennarten dieser Vikariante. Eine eindeutige Zuordnung dieser Aufnahme ist somit nicht möglich. Die Fläche wird aufgrund der räumlichen Nähe als verarmtes Polygalo-Nardetum der Galium saxatile-Vikariante eingestuft (Tab. 105).

8.3.2.2 *Geranio sylvatici-Trisetetum* Knapp ex Oberd. 1957

Ordnung:

Formation: VII. Tritt- und Flutrasen,
Rasengesellschaften des
Wirtschaftsgrünlands, Graudünen,
Halbtrockenrasen und Magerrasen,
Hochgebirgsrasen
Klasse: Molinio-Arrhenatheretea Tx. 1937

Gesellschaften des Wirtschaftsgrünlands

Arrhenatheretalia Tx. 1931, Fett-

oder Frischwiesen und -weiden

sowie Vielschur-Rasen

Verband: *Polygono-Trisetion* Br.-Bl. et Tx. ex

Marschall 1947 Berg-Goldhaferwiesen Assoziation:

Geranio sylvatici-Trisetetum R.

Knapp ex Oberd. 1957

Storchschnabel-Goldhaferwiesen

Biotoptyp

BTL D:

34.07.02.02 artenreiche, frische
(Mäh-)Weide der montanen bis
hochmontanen Stufe

EUNIS:

E2.231 Western Hercynian
submontane hay meadows

Der Verband der Berg-Goldhaferwiesen Polygono-Trisetion umfasst die Mähwiesen der Hochlagen und Mittelgebirge. Die Standorte der Höhenlagen sind geprägt durch kürzere Vegetationsperioden, längere Schneebedeckung und höhere Niederschläge. Eine enge Verzahnung und der Übergang zum Arrhenatherion beginnt in Norddeutschland bei > 350-400 m, in Süddeutschland erst bei > 1000 m. Unter diesen Bedingungen nimmt die Konkurrenzkraft des Goldhafers Trisetum flavescens gegenüber dem Glatthafer Arrhenatherum elatius zu, wodurch es zu einer eher Mittelgras dominierten Struktur der Wiesen kommt. Es handelt sich auf den eher basenreicheren Standorten vielerorts um sehr artenreiche Bestände mit auffälligen und dominanten Blühaspekten von Geranium sylvaticum, Meum athamanticum u. a. (Pott 1992, Dierschke 1997).

Die Standorte der Flächen EB_ST21, EB_ST22 und EB_ST23 (**Tab. 106**) gehören dabei der Zentralassoziation, dem *Geranio-Trisetum* an. Die Flächen zeichnen sich durch die Kennarten des Verbands und Unterverbands wie u. a. *Geranium sylvaticum*, *Phyteuma nigrum* und *Bistorta officinalis* aus. Klar definierte Charakterarten, die die Gesellschaft eindeutig kennzeichnen, sind für diese Gesellschaft nicht vorhanden. *Bistorta officinalis*, *Alopecurus pratensis* und *Cirsium palustris* zeigen den sehr frischen Charakter der Hochland-Wiesen an. Innerhalb der Gesellschaft können alle Flächen mit *Meum athamanticum* und *Centaurea pseudophrygia* der *C. pseudophrygia-Rasse* zugeordnet

Tab. 106: Geranio sylvatici-Trisetetum Knapp ex Oberd. 1957 (Storchschnabel- Goldhaferwiese); EB_ST21: Geranio-Trisetetum, Centaurea pseudophrygia-Rasse, Harz-Ausbildung mit Cardaminopsis halleri; EB_ST22, EB_ST23: Geranio-Trisetetum, Centaurea pseudophrygia-Rasse.

	Standort	EB_ST21	EB_ST22	EB_ST23
	Artenzahl	27	38	16
A Geranio-Trisetetum				
	Cardaminopsis halleri (L.) Hayek	+		•
	Centaurea pseudophrygia C. A. Mey.	+	2	•
UV Phyteumo-Trisetenion				
	Meum athamanticum Jacq.	2	1	2
	Alopecurus pratensis L.	3	2	2
	Poa chaixii Vill.	2		2
	Lathyrus linifolius (Reichard) Bässler		+	1
V Polygolo-Trisetion				
	Geranium sylvaticum L.	2	2	1
	Crepis mollis (Jacq.) Asch.		+	
	Bistorta officinalis Delarbre	1	2	2
	Hypericum maculatum Crantz s. 1.	1	+	
	Alchemilla monticola Opiz	+	1	
	Cirsium palustre (L.) Scop.		+	+
	Phyteuma nigrum F. W. Schmidt		+	+
O Arrhenatheretalia				
	Alchemilla vulgaris agg.		+	
	Dactylis glomerata L.	1	1	
	Veronica chamaedrys subsp. chamaedrys L.	+	+	+
	Heracleum sphondylium L.		+	+
	Agrostis capillaris L.	1		
	Vicia sepium L.	+		
	Knautia arvensis (L.) Coult.	+	+	+
	Galium mollugo agg.	1		
	Pimpinella major (L.) Huds.		+	
	Arrhenatherum elatius (L.)	+		
K Molinio-Arrhenatheretea				
	Rumex acetosa L.	+	1	
	Holcus lanatus L.	+	1	+
	Vicia cracca L.		+	
	Lathyrus pratensis L.	+	+	+
	Cardamine pratensis L.		+	
	Deschampsia cespitosa (L.)		+	1
	Helictotrichon pubescens (Huds.) Pilg.		1	
	Filipendula ulmaria (L.) Maxim.	2	2	
	Colchicum autumnale L.	+	1	
	Betonica officinalis L.		+	
	Trollius europaeus L.		+	
	Achillea ptarmica L.		+	

Tab. 107: Gentiano-Koelerietum pyramidatae Knapp ex Bornkamm 1960 (Enzian-Schillergras-Rasen); Gentiano-Koelerietum typicum (Typischer Enzian-Schillergras-Rasen).

	Standort	EB_ST31	EB_ST32	EB_ST33
	Artenzahl	30	43	37
A Gentiano-Koelerietum				
	Cirsium acaule Scop.	+	+	+
	Koeleria pyramidata (Lam.) P. Beauv.	+	2	1
V - O Mesobromion u. Bro	metalia			
	Primula veris L.	1	2	1
	Briza media L.	+	2	1
	Fragaria viridis (Duchesne) Weston	+	+	1
	Carex caryophyllea Latourr.	+	1	1
	Helianthemum nummularium (L.) Mill.	+	1	1
	Trifolium alpestre L.	+	+	1
	Potentilla tabernaemontani Asch.	+	+	+
	Anthyllis vulneraria L. agg.	+	+	
	Bromus erectus Huds.	3	1	
	Sesleria albicans Kit. ex Schult.	1	1	
	Helictotrichon pubescens (Huds.) Pilg.		2	
	Helictotrichon pratense (L.) Besser			2
	Ranunculus bulbosus L.		1	
	Viola hirta L.		+	
K Festuco-Brometea				
	Euphorbia cyparissias L.	1	1	1
	Acinos arvensis (Lam.) Dandy	+	+	+
	Sanguisorba minor Scop.	+	3	1
	Brachypodium pinnatum (L.) P. Beauv.	1		1
	Festuca rupicola Heuff.		1	2
	Trifolium montanum L.		+	1
	Galium verum L.		+	1
	Poa angustifolia L.		1	2
	Polygala comosa Schkuhr		1	+
	Centaurea stoebe L.		+	
	Koeleria macrantha (Ledeb.) Schult.			1
	Festuca guestfalica Boenn. ex Rchb.	3		
	Pimpinella saxifraga L.		+	
	Centaurea scabiosa L.		+	
Begleitarten				
	Linum catharticum L.	+	+	+
	Cerastium arvense L.	+		+
	Arenaria leptoclados (Rchb.) Guss.	+		+
	Dactylis glomerata L.	+	+	
	Knautia arvensis (L.) Coult. s. str.		+	+
	Lotus corniculatus L.		+	+
	Luzula campestris (L.) DC.	+		+
	Plantago lanceolata L.		+	+
	Trifolium dubium Sibth.	+		1
	Trifolium repens L.	+		+
	Erophila verna subsp. verna (L.) DC.			+
	Achillea collina Becker ex Rchb.	•		+
	Achillea millefolium L.	+	•	
	Allium spec.	ı	•	+

Standort	EB_ST31	EB_ST32	EB_ST33
Artenzahl	30	43	37
Betonica officinalis L.	•	+	
Campanula persicifolia L.	•	+	
Cerastium holosteoides Fr.	+		
Galium boreale L.	•	+	
Galium pumilum Murray s. str.		+	
Geranium sylvaticum L.	•	+	
Laserpitium latifolium L.	•	+	
Leontodon hispidus L.	•		+
Leucanthemum vulgare agg.	•	+	
Orchis spec.	•	+	
Phyteuma orbiculare L.	•	+	
Plantago media L.	•		1
Poa trivialis L.	+		
Rhinanthus minor L.	•		2
Secale cereale	•	+	
Silene vulgaris (Moench) Garcke s. l.	+		
Thymus pulegioides L.		+	
Trifolium campestre Schreb.			+
Trifolium medium L.	+		
Veronica chamaedrys L.			+
Vicia cracca L.	+		

werden. Das Vorkommen von Cardaminopsis halleri auf Biotoptyp: Fläche EB ST21 kennzeichnet die dortige Vegetation BTL D: als Harzausbildung mit C. halleri (Dierschke 1997). Die Aufnahme der Fläche EB ST23 zeigt einen für diese Wiesen verarmten Zustand an, wobei im direkten Umfeld dieser Aufnahme ebenso artenreichere Stellen zu finden waren.

8.3.2.3 Gentiano-Koelerietum pyramidatae Knapp ex Bornkamm 1960

Formation: VII. Tritt- und Flutrasen,

Rasengesellschaften des

Wirtschaftsgrünlands, Graudünen, Halbtrockenrasen und Magerrasen,

Hochgebirgsrasen

Klasse: Festuco-Brometea Br.-Bl. et Tx. in

Br.-Bl. 1949

Brometalia erecti W. Koch 1926 **Ordnung:**

Submediterrane Trocken- und

Halbtrockenrasen

Verband: Bromion erecti Koch 1926

(=Mesobromion)

Assoziation: Gentiano-Koelerietum pyramidatae

> Knapp ex Bornkamm 1960 Enzian-Schillergras-Rasen

Trespen-Halbtrockenrasen

34.02.01.02.02

subkontinentaler Halbtrockenrasen auf karbonatischem oder sonstigem basenreichen Boden, beweidet (inkl.

Mähweide)

E1.2623 Harz [Mesobromion] **EUNIS:**

Innerhalb der Ordnung der Trocken- und Halbtrockenrasen werden artenreiche, basiphytische Magerrasen zusammengefasst. Der Verband der Trespen-Halbtrockenrasen besteht aus durch extensive Beweidung oder Mahd entstandenen Grünländern und gilt als primäre Ersatzgesellschaft anspruchsvoller Buchenwaldgesellschaften (Pott 1992). Die Böden sind meist flachgründig (Rendzina) und kalkreich und besitzen einen wasserdurchlässigen Untergrund, der für die Pflanzen einer zumindest zeitweiligen Wasserknappheit führt. Die Vegetationsbestände der Halbtrockenrasen werden erheblich durch die Art der Nutzung bestimmt. Bei fehlender Nutzung kommt es zu einer sukzessiven Verbrachung und Versaumung, d. h. dem zunehmenden Aufkommen von Sträuchern bis hin zur Wiederbewaldung. Halbtrockenrasen kommen in Deutschland hauptsächlich im Süden und Westen auf geeigneten Standorten vor, im Osten werden sie von kontinentalen Steppenrasen abgelöst. Im Harz sind sie durch meist extensive Schafbeweidung auf gerodeten Flächen entstanden (Rost 1996). Aufgrund

des Artenreichtums von Flora und Fauna in diesen Beständen stehen Trocken- sowie Halbtrockenrasen unter Naturschutz. Die Flächen EB ST31, EB ST32 und EB ST33 (Tab. 107) gehören zur Gesellschaft des Gentiano Koelerietum typicum (vgl. auch Rost 1996). Die Gesellschaft wird in den vorliegenden Aufnahmen durch die Kennarten Cirsium acaule und Koeleria pyramidata gekennzeichnet. Für die typische Ausbildung ist ebenso das Vorkommen der Arten der Primula veris-Gruppe kennzeichnend, die die bessere Wasserversorgung anzeigen und damit die südexponierten, trockeneren Ausbildungen Ohne Arten der Primula veris-Gruppe abgrenzen.

8.4 Ergebnisse und Diskussion der einzelnen Bodentiergruppen

8.4.1 **Oribatida**

8.4.1.1 Allgemeine Angaben zu Individuenund Artenzahlen

Auf allen untersuchten Flächen wurden insgesamt 13.576 Individuen aus 103 Arten nachgewiesen (Vgl. Tab. 108). Die entsprechenden Rohdaten sind dem Anhang (Tab. Anhang 50-52) zu entnehmen. Die meisten Individuen entfielen dabei auf die drei Borstgrasrasen-Flächen (insgesamt 5.850 Tiere), die wenigsten auf die Goldhaferwiesen (insgesamt 3.793 Individuen). Allerdings unterschieden sich die Fangzahlen auf den drei Borstgrasrasen deutlich: Auf der Fläche EB ST11 wurden nur 750 Oribatiden erfasst, wohingegen auf den 52). Da die Art innerhalb des gesamten Edaphobase-

anderen beiden Biotoptypen jeweils insgesamt über 2400 Tiere gezählt wurden.

Auch hinsichtlich ihrer Artenzahlen unterschieden sich die drei Borstgrasrasen-Flächen deutlich. Auf der individuenarmen Fläche (EB ST11) wurden nur 25 Arten erfasst, auf der Fläche EB ST12 dagegen 66 Arten gezählt. Die anderen beiden Biotoptypen wiesen mit 33-44 (Goldhaferwiesen) bzw. 32-34 (Halbtrockenrasen) ähnlichere Artenzahlen auf. Die häufigsten beiden Arten der Untersuchung waren Zygoribatula exilis (1.378 Individuen) und Zygoribatula excavata (1.218 Individuen). 18 der insgesamt 103 Arten wurden als Einzelfunde nachgewiesen (siehe **Tab. Anhang 1, 50-52**).

8412 Faunistische Anmerkungen zu ausgewählten Arten

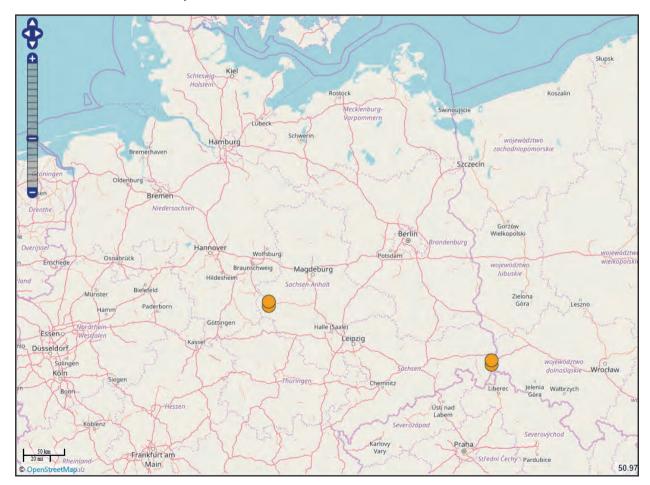
Pilogalumna crassiclava (Berlese, 1914)

Die in Europa verbreitete Art Pilogalumna crassiclava war bislang nach der aktuellen Datenlage in Edaphobase (Abfrage vom 07.03.2018, Burkhardt et al. 2014, Abb. 95) in Deutschland nur aus Sachsen bekannt. Dort wurden in Jauernick-Buschbach, südlich von Görlitz nahe der polnischen Grenze, am 12. und 13.06.1994 insgesamt sieben Individuen gefangen (det. Thomas Schwalbe, Sammlung SMNG). Im Rahmen der Länderstudie konnte die Art in zwei der drei untersuchten Halbtrockenrasen (EB ST31, EB ST33) in größeren Individuenzahlen nachgewiesen werden (Tab. Anhang

Tab. 108: Arten- und Individuenzahlen der Oribatiden.

			Individue	enzahlen		Artenza	hlen	
ST11		Frühjahr	348	750	'	16	25	
	3111	Herbst	402	730		20	23	
Borstgras-	ST12	Frühjahr	1341	2603	5850	59	66	71
rasen	5112	Herbst	1262	2003	3630	39	00	/ 1
	ST13	Frühjahr	781	2497		32	35	
	3113	Herbst	1716	2497		28	33	
	ST21	Frühjahr	625	1514		40	44	
Goldhafer-	5121	Herbst	889			28	77	
Goldhafer-	ST22	Frühjahr	729	1196	3793	40	41	56
Goldhafer- wiese ST	Herbst	457	1160	3173	26	41	30	
	ST23	Frühjahr	st 457 jahr 546	1002		29	33	
	3123	Herbst	547			25	33	
	ST31	Frühjahr	783	1774		31	33	
	3131	Herbst	991	1//4		26	33	
Halbtrocken-	ST32	Frühjahr	412	1161	3933	30	34	50
rasen	3132	Herbst	749	1101	3933	28	34	30
	ST22	Frühjahr	423	998		26	32	
	ST33	Herbst	575	770		26	32	
Sachsen-Anha	alt 2015		Individu	enzahl gesamt	: 13576	Artenza	hl gesamt:	103

Länderstudiendatensatzes (Kap. 5, 6, 7) ausschließlich auf den Halbtrockenrasen nachgewiesen wurde, wurde sie als Kennart dieses Biotoptyps eingestuft (siehe Kap. 8.4.1.3).


8.4.1.3 Beschreibung der ermittelten Artengruppen der drei Grünlandtypen

Das Vorkommen der Oribatiden in den drei Grünlandtypen zeigt ein deutliches Muster verschiedener Artengruppen (Tab. 109). Für jeden der Biotoptypen konnte eine Kennartengruppe identifiziert werden, des Weiteren existieren eine Feuchtegruppe, die frische bis feuchte Standortbedingungen anzeigt, mehrere Grundartengruppen der Grünländer sowie die edaphische Gruppe "Verbuschung/Verbrachung".

Die Kennartengruppen bestehen aus Arten, die innerhalb der vorliegenden Untersuchung ausschließlich in ihrem entsprechenden Biotoptyp nachgewiesen wurden, wie z. B. *Porobelba spinosa* auf den Borstgrasrasen, *Phthiracarus compressus* auf den Goldhaferwiesen und *Rhysotritia ardua* auf den

Halbtrockenrasen (Tab. 109). Es fällt jedoch auf, dass sich die Fläche EB ST11 hinsichtlich ihres Arteninventars anderen beiden Borstgrasrasen-Flächen unterscheidet. Die Kennartengruppe tritt hier nur mit einem Individuum der Art Porobelba spinosa auf (vgl. Tab. Anhang 50), die beiden anderen Vertreter dieser Gruppe fehlen. Die Ellenberg-Feuchtezahlen weisen auf einen geringeren Feuchtegrad der Fläche EB ST11 hin (vgl. Tab. 104, Ellenberg-Zahlen), was wiederum mit dem Auftreten der Feuchtegruppe "frische bis feuchte Standorte" um Scheloribates initialis korreliert. Diese Artengruppe trennt die frisch-feuchteren Borstgrasrasen und Goldhaferwiesen standortökologisch von den Halbtrockenrasen sowie der trockeneren Borstgrasrasen-Fläche. Das weitgehende Fehlen der Kennartengruppe der Borstgrasrasen auf der Fläche EB ST11 könnte daher ebenfalls auf die trockeneren Bedingungen dieser Fläche zurückzuführen sein.

Die drei Grünlandtypen werden durch drei verschiedene Grundartengruppen charakterisiert. Die Artengruppe des sauren, mager bis mesophilen Grünlands um *Galumna obvia* trat nahezu ausschließlich

Abb. 95: Fundorte von *Pilogalumna crassiclava* in Deutschland. (Abfrage der Datenbank Edaphobasevom 07.03.2018, Kartendarstellung: Edaphobase).

Tab. 109: Sortierte Kreuztabelle der Hornmilben (Oribatida); Angaben in Individuen/m².

			: Rhumwi			: Kümmel		lfd. Nr. 7: Galgenberg			
		lfd. Nr. 2: Großer Rappenberg				: Ziegenko	-		Bellenko		
		Borstgrasrasen			lfd. Nr. 6: Eckardsborn Goldhaferwiese			lfd. Nr. 9: Schwefeltal Halbtrockenrasen			
			1.06.01.02.0			34.07.02.0			4.02.01.02		
Fläch lfd. l	nenkürzel Edaphobase	EB_ST11	EB_ST12 2	EB_ST13							
Kennartengrup		1		3	4	5	6	7	8	9	
	pen n nährstoffarme Borst	grasrasen									
	obelba spinosa	16	653	31	1						
	mobates cuspidatus	10	295	964		•	•		•	•	
	iella (O.) splendens	•	404	326		•	•	•	•	•	
	n Goldhaferwiesen	•	101	320].	•	•	•	•	•	
	niracarus compressus				140	187	16	1			
	telozetes paolii	•	•	•	31	653	187		•	•	
	n Halbtrockenrasen	•	•	•	31	033	107].		•	
	sotritia ardua							218	264	264	
•	sorrina araua seremus laciniatus	•	•	•	•	•	•	31	16	124	
		•	•	•	•	•	•	1			
	overtex sculptus	•	•	•			•	47	591	295	
	galumna crassiclava		•					668	•	1539	
Feuchtegrupper	n feuchte Standorte										
			575	93	357	202	202	171			
	eloribates (H.) initialis	•			1			1/1		•	
	atozetes gracilis	•	373	1663	933	342	342	·	•	•	
	etes globulus	•	78	124	78	373	668	·	•	•	
_	galumna nervosa	•	1150	1166	47	109		·	•	•	
-	ynothrus peltifer	•	497		2627	326	357	·	•	•	
	obelbella perforata		31	109	93	62	•	<u>]</u> .			
Grundarten	10 0 1 1										
	sophiles Grünland	1000			I			1			
	umna obvia	1026	1150	762	1057	420	187	·	•	31	
	unthozetes semirufus	575	16	109	1523	3823	668	·	•	•	
	ırus silvestris	31	699	699	16	•	16	<u>]</u> .	•	•	
Ü	esophiles Grünland				1			1			
	iiniella bicarinata	202	1896	979	1228	1041	4196	1306	606	295	
	stadia similis	528	2720	404	2720	2223	2285	1383	31	1104	
	horibates novus		684	187	62	109	93	78	16	78	
	abelba pulverosa	16	544	155	171	47	16	155	•	16	
mageres G					,						
	ptulus phaenotus	93	47	16	-			311	233	1445	
Trick	horibates incisellus		62	140	ļ.			373	155	187	
	arus coracinus	124		637].			93		93	
Verbuschung/Ve				,							
Suct	obelba trigona		124								
Cult	roribula bicultrata		62								
Suct	tobelbella diffissa		62								
Suct	tobelbella duplex		62								
Suct	obelbella falcata		31								
Suct	obelba granulata		16								
Suct	tobelba regia		16								
Suct	tobelbella palustris		16								

	lfd. Nr. 2 lfd. Nr. 3	lfd. Nr. 2: Großer Rappenberg lfd. Nr. 3: Pfeifferberg Borstgrasrasen 4.06.01.02.02			lfd. Nr. 4: Kümmelwiese lfd. Nr. 5: Ziegenkopf lfd. Nr. 6: Eckardsborn Goldhaferwiese 34.07.02.02			lfd. Nr. 7: Galgenberg lfd. Nr. 8: Bollenkopf lfd. Nr. 9: Schwefeltal Halbtrockenrasen 34.02.01.02.02 EB ST31 EB ST32 EB ST33			
Flächenkürzel Edaphobase lfd. Nr.:	1 EB_S111	2 EB_S112	3 EB_S113	4 4	5 EB_S122	6 EB_S123	7 7	8 EB_S132	9 9		
Begleitarten Begleitarten	1		3	+		0	/		<u> </u>		
Begleiter mit hoher Stetigkeit											
Achipteria coleoptrata	2658	3171	93	1958	1181	1818	140	1865	311		
Eupelops occultus	31	109	233	124	420	62	715	1041	1181		
Oppiella (O.) nova	249	3792	808	2160	93	47	1135	839	373		
Scheloribates laevigatus	218	2021	4911	2860	1648	2362	3761	964	187		
Tectocepheus group velatus	3699	420	1881	187	31	202	7538	1974	5486		
Dissorhina ornata	140	3575	109	528	16	16	31	16			
Punctoribates punctum		233	31	78	155	47	4212	5098	699		
Scheloribates latipes	47	1585	1243	342	93	233	544	171			
Steganacarus (A.) striculu	s 16	31		155	482	93	78	187	93		
Suctobelbella sarekensis		901	78	249	218	78	124	124	31		
Artengruppen mit hoher Stetig	gkeit										
Brachychthoniidae	295	311	435	140	171	16	373	109	808		
Oribatida juvenil	544	684	653	886	264	249	264	109	109		
Sonstige Begleiter											
Achipteria nitens	•	16		16	93	451	187	606	187		
Nanhermannia nana	1010	1212	5922	16	995	62	16				
Oppiella (R.) obsoleta	•	78		140	62	31	295	62	16		
Ramusella insculpta		1072	2021	497		591	62	171	31		
Suctobelbella subcornigera		1041	47	218	78	93		187	31		
Microppia minus		2362	5844				808	357	187		
Quadroppia quadricarinata	16	1057		218			47	16			
Ceratozetes mediocris		1477	5860	746	140						
Eniochthonius minutissimus		777		16				1306	124		
Galumna lanceata		109		326		31	16				
Hypochthonius rufulus		435		78	1088				16		
Suctobelbella acutidens	31	404		62			16				
Diapterobates humeralis	16	16		16							
Suctobelbella arcana		140	•	16	•	16		•			
Suctobelbella similis		16	16		31						
Suctobelbella subtrigona		249			16		31				
Xenillus tegeocranus		16	•		•			78	62		
Oribatida spec.	16	62	16	31			16	16	16		

Zusätzlich (zwei Untersuchungsflächen): Banksinoma lanceolata (2:16; 5:622), Berniniella conjuncta (5:16; 9:16), Damaeus riparius (5:31; 6:16), Gustavia microcephala (5:47; 6:109), Oppiella (O.) falcata (1:16; 2:16), Oribatula tibialis (1:16; 2:62), Quadroppia monstruosa (2:16; 8:187), Suctobelbella hamata (2:62, 4:31)

monstruosa (2:16; 8:187), Suctobelbella namata (2:02, 4:51)

Zusätzlich (eine Untersuchungsfläche): Belba compta (4:264), Berniniella exempta (2:31), Berniniella serratirostris (6:1135), Ceratoppia quadridentata (2:93), Chamobates borealis (9:31), Damaeus (A.) onustus (2:16), Damaeus gracilipes (5:16), Hypochthonius luteus (8:47), Liacarus oribatelloides (2:16), Liebstadia pannonica (7:1958), Limnozetes ciliatus (3:31), Nanhermannia dorsalis (9:31), Nothrus anauniensis (8:62), Nothrus borussicus (8:78), Nothrus palustris (4:16), Ophidiotrichus tectus (3:16), Oppiella (O.) acuminata (4:47), Oppiella acuminata/keilbachi (2:451), Oppiella fallax (4:16), Oribatella cf. reticulata (8:31), Oribatella quadricornuta (5:16), Peloribates longipilosus (7:373), Phthiracarus borealis (5:78), Phthiracarus ferrugineus (5:389), Phthiracarus globosus (2:16), Phthiracarus longulus (8:16), Protoribates capucinus (8:218), Quadroppia hammerae (2:16), Rhysotritia duplicata (2:16), Suctobelba altvateri (5:31), Suctobelba atomaria (4:16), Suctobelbella prominens (9:16), Tectocepheus minor (8:202), Zygoribatula excavata (1:16), Zygoribatula exilis (1:16)

in den Borstgrasrasen und den Goldhaferwiesen auf, und trennte diese Flächen standortökologisch von den basischeren Halbtrockenrasen (siehe **Tab. 102**, **104**). Die Grundartengruppe des mageren bis mesophilen Grünlands um *Berniniella bicarinata* kam auf allen drei Grünlandtypen vor. Hinsichtlich des Nähstoffangebots ist jedoch auch innerhalb dieser Untersuchung eine Differenzierung zu erkennen: Die Artengruppe des mageren Grünlands kam nur in den Borstgrasrasen und Halbtrockenrasen, nicht jedoch in den etwas nährstoffreicheren bzw. mesophilen Goldhaferwiesen vor (vgl. **Tab. 104**).

Der Großteil der Kennarten wurde statistisch signifikant als Indikatorarten ermittelt (siehe Tab. 110), wie z. B. Porobelba spinosa für die Borstgrasrasen, Pantelozetes paolii und Phthiracarus compressus für die Goldhaferwiesen und Fosseremus laciniatus und Rhysotritia ardua für die Halbtrockenrasen. Diese Arten verfügen somit in dieser Untersuchung über besonders deutliche Indikatoreigenschaften. Die Arten Chamobates cuspidatus und Oppiella splendens kamen innerhalb der Borstgrasrasen nur auf den Flächen EB ST12 und EB ST13 vor und wurden daher von der ISA nicht als Indikatorarten angezeigt. Da der fehlende Nachweis dieser Tiere auf die unterschiedlichen Feuchtebedingungen der Standorte zurückzuführen sein könnte (s. o.), werden die beiden Arten trotzdem als Kennarten der Borstgrasrasen eingestuft. Um eine genauere standortökologische Einordnung vornehmen zu können, wäre es sinnvoll, weitere Borstgrasrasen verschiedener Feuchtbedingungen zu beproben und hinsichtlich ihrer Oribatidenfauna zu vergleichen.

Einige der mit Hilfe der Indikatorartenanalyse identifizierten Arten wurden in der sortierten Kreuztabelle an anderer Stelle eingeordnet, wie z. B. Minunthozetes Grundart des sauer-mesophilen semirufus. eine Grünlands. Die Unterschiede liegen meist daran, dass bei der Indikatorartenanalyse die Abundanz stärker gewertet wurde als bei der Sortierung der Kreuztabelle, die sich stärker an der Präsenz/Absenz der Tiere orientierte. Zudem flossen in die Sortierung der Kreuztabelle Informationen gemessenen Umweltparametern Ellenbergzahlen, die Daten der gesamten Edaphobase-Länderstudie (vgl. Kap. 5, 6, 7) sowie weitergehende autökologische Kenntnisse zu den Arten ein.

Auch die Korrespondenzanalyse (CA) der Daten zeigt eine deutliche Trennung der Biotoptypen anhand der Artenspektren der Oribatiden (Abb. 96). Die mit der ISA ermittelten Indikatorarten gruppieren sich dabei um die Lage der Standorte und unterstreichen dadurch deren Auftrennung. Die vorausgegangene Kanonische Korrespondenzanalyse (CCA) ergab als statistisch signifikante erklärende Umweltvariable den Sandanteil des Bodens, der in der Abbildung zu nahezu 100% mit der ersten Achse der CA korreliert. Dies ist ein deutlicher Hinweis darauf, dass die Zusammensetzung der Artengemeinschaft der Oribatiden in hohem Maße von der Bodenart abhängt.

Neben den verschiedenen Artengruppen und Indikatorarten, die die drei Grünlandtypen standortökologisch voneinander trennen, wurden viele Arten gefangen, die als Begleiter mit hoher Stetigkeit oder sonstige Begleiter eingestuft wurden (siehe Tabellen 109, 110). Diese Arten traten häufig in

Tab. 110: Oribatiden-Arten der Biotoptypen Borstgrasrasen, Goldhaferwiese und Halbtrockenrasen, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
34.06.01.02.02	Borstgrasrasen			
Porobelba spinosa	1,00	0,05	1,00	1,00
Nothrus silvestris	0,98	0,05	0,98	1,00
Nanhermannia nana	0,88	0,05	0,88	1,00
34.07.02.02	Goldhaferwiese			
Pantelozetes paolii	1,00	0,04	1,00	1,00
Phthiracarus compressus	1,00	0,04	1,00	1,00
Minunthozetes semirufus	0,90	0,04	0,90	1,00
34.02.01.02.02	Halbtrockenrasen			
Fosseremus laciniatus	1,00	0,03	1,00	1,00
Rhysotritia ardua	1,00	0,03	1,00	1,00
Scutovertex sculptus	1,00	0,03	1,00	1,00
Punctoribates punctum	0,95	0,03	0,95	1,00
Peloptulus phaenotus	0,93	0,03	0,93	1,00

hohen Abundanzen auf. Eine Abfrage der Datenbank Edaphobase mit Hilfe des Analyse-Tools Edaphoclass (Abfrage vom 01.02.2018) ergab, dass ein Großteil dieser hoch stetigen und abundanten Arten auch in anderen Untersuchungen zu den 10 häufigsten Grünlandarten gehören. In der Datenabfrage wurde nach dem Biotoptyp 1. Ordnung (Code: 34., Trockenrasen sowie Grünland trockener bis frischer Standorte nach Riecken et al. 2003), zu dem alle Grünlandtypen dieser Untersuchung gehören, gefiltert. Dies bedeutet, dass diese Arten über sehr unterschiedliche Grünlandtypen hinweg häufig bzw. stetig anzutreffen sind (Tab. 111).

Obgleich das Auftreten der Oribatidenarten auf den verschiedenen Grünlandtypen ein deutlich erkennbares Muster zeigt, sind die Habitatpräferenzen der Arten in der Literatur (Weigmann & Kratz 1981, Weigmann

2006) als weiter gefächert beschrieben. So kommen viele der Arten beispielsweise auch in Wäldern (z. B. Oppiella splendens, Phthiracarus compressus) oder auch in Mooren (u. a. Rhysotritia ardua) vor. Es ist bei der Bewertung der Literaturdaten zu bedenken, dass dabei eine genaue Standortklassifizierung ebenso wie eine Bewertung der jeweiligen Arten in der gesamten Zönose (als Begleitart, Kennart, Grundart etc.) im Nachhinein nicht möglich ist. Trotzdem bilden die in der vorliegenden Studie erfassten Arten charakteristische Gruppen, die innerhalb der Biotoptypen stetig vorkommen und diese standortökologisch voneinander abgrenzen. Welches letztendlich die diesem Muster zugrundeliegenden Parameter bzw. Umweltfaktoren sind, bedarf weiterer intensiver bodenzoologischer und ökologischer Untersuchungen.

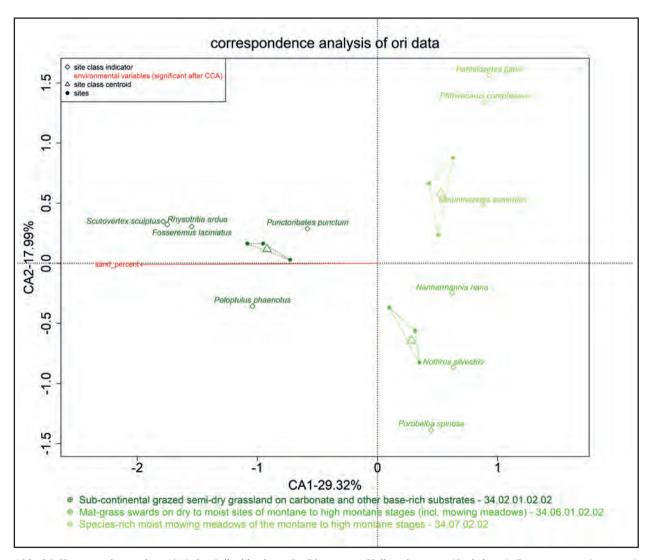


Abb. 96: Korrespondenzanalyse (CA) der Oribatidendaten der Biotoptypen Halbtrockenrasen (dunkelgrün), Borstgrasrasen (neongrün) und Goldhaferwiese (gelbgrün) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter; Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart aus der Indikatorartenanalyse; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 111: Stetigste Oribatidenarten auf Trockenrasen sowie Grünland trockener bis frischer Standorte (Biotoptyp 1. Ordnung nach Riecken et al. 2003). Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 01.02.2018; Angaben der Stetigkeiten der Arten innerhalb des Biotoptyps (Frequenz).

Trockenrasen sowie Grünland trockener bis fr Standorte (Code: 34.)	rischer
26 Standorte	Frequenz
Tectocepheus velatus (Michael, 1880)	0,9
Eupelops occultus (C. L. Koch, 1835)	0,8
Oppiella nova (Oudemans, 1902)	0,7
Punctoribates punctum (C. L. Koch, 1839)	0,7
Liebstadia similis (Michael, 1888)	0,7
Ceratozetes mediocris Berlese, 1908	0,7
Achipteria coleoptrata (Linné, 1758)	0,5
Scheloribates laevigatus (C. L. Koch, 1835)	0,5
Trichoribates novus (Sellnick, 1928)	0,5
Pilogalumna tenuiclava (Berlese, 1908)	0,4

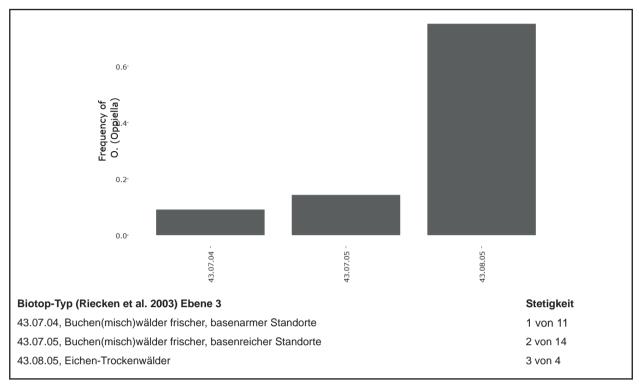
8.4.1.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Borstgrasrasen

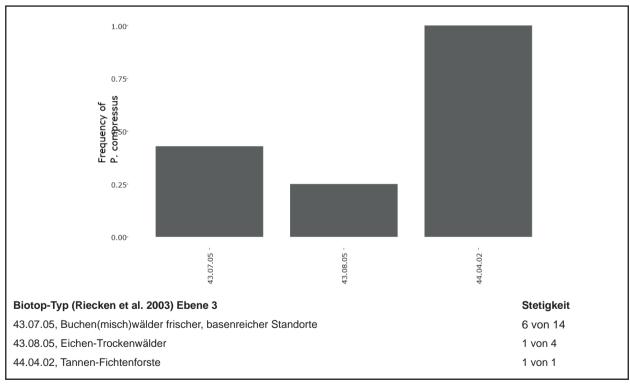
Die Borstgrasrasen sind durch das gemeinsame Vorkommen verschiedener Artengruppen gekennzeichnet. Die Kennartengruppe nährstoffarmer Borstgrasrasen um Porobelba spinosa kommt innerhalb der Offenland-Standorte der Edaphobase-Länderstudie (vgl. Kap. 3.1.4) fast ausschließlich in diesem Biotoptyp vor. Der Vergleich mit autökologischen Angaben zu diesen Arten in der Literatur (Weigmann & Kratz 1981, Weigmann 2006) zeigt, dass diese Arten generell als Waldarten einzustufen sind. Auch die Abfrage der Datenbank Edaphobase mit Hilfe des Analyse-Tools Edaphostat (Hausen et al. 2017) ergab, dass diese Arten häufig aus verschiedenen Laub- und Nadelwaldtypen gemeldet wurden (vgl. Abb. 97, *Oppiella* splendens). Lennartz (2003) schreibt, Borstgrasrasen aus pflanzensoziologischer Sicht als Ersatzgesellschaft 1. Ordnung gelten. Die Standortbedingungen von Ersatzgesellschaften 1. Ordnung ähneln denen naturnaher Waldgesellschaften, so dass auch das Vorkommen ansonsten typischer Waldarten nicht unwahrscheinlich ist (Lennartz 2003). Es ist jedoch darüber hinaus zu berücksichtigen, dass standortbezogene Oribatiden-Daten derzeit generell noch lückenhaft und die Daten der vorliegenden Studie die einzigen Daten dieser Tiergruppe sind, die auf Borstgrasrasen erhoben und in Edaphobase eingegeben wurden. Es liegen somit keine in diesem Rahmen verwertbaren Vergleichsdaten für diesen Biotoptyp vor. Um eine weitergehende standortökologische

Charakterisierung der Borstgrasrasen im Hinblick auf die Artengemeinschaft der Oribatiden vorzunehmen, bedarf es daher weiterer Untersuchungen.

Weitere edaphische- und Grundartengruppen, die auf den Borstgrasrasen auftraten, waren die Feuchtegruppe frischer bis feuchter Standorte um *Scheloribates initialis* sowie drei Grundartengruppen des Grünlands: Die des sauren, mager bis mesophilen Grünlands um *Galumna obvia*, die der mageren bis mesophilen Grünländer um *Berniniella bicarinata* und die der mageren Grünländer um *Peloptulus phaenotus*.


Die in Kapitel 8.4.1.1 (Allgemeine Angaben zu Individuen- und Artenzahlen) festgestellte Heterogenität der Individuen- und Artenzahlen der Borstgrasrasen wird durch die nähere Betrachtung der auftretenden Artengruppen bestätigt. Wie bereits in Kapitel 8.4.1.3 beschrieben, fehlen die Kennarten der Borstgrasrasen sowie die der Feuchtegruppe auf der Rhumwiese (EB_ST11) weitgehend. Die Wiese auf dem Großen Rappenberg (EB_ST12) dagegen beherbergt eine Artengruppe um *Suctobelba trigona*, die innerhalb der Untersuchung nur dort auftrat und die auf eine "Verbuschung/Verbrachung" bzw. Ruderalisierung der Fläche hinweist.

Goldhaferwiesen

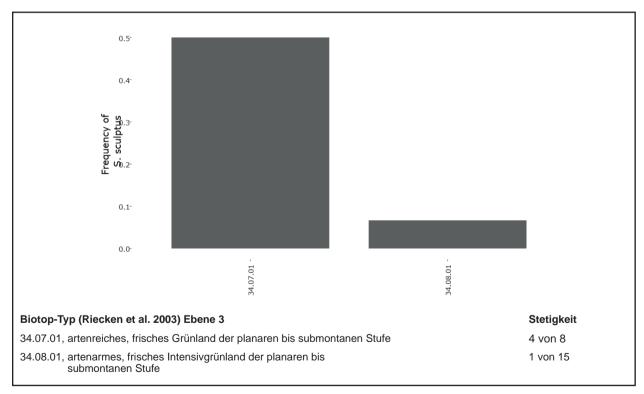

beiden Arten der Kennartengruppe Goldhaferwiesen, Phthiracarus compressus Pantelozetes paolii, wurden innerhalb der Offenland-Standorte der Edaphobase-Länderstudie (vgl. Kap. 3.1.4) fast ausschließlich in diesem Grünlandtyp gefangen. Auch mit Hilfe der ISA wurden beide Arten als Indikatorarten dieses Biotoptyps ermittelt. In der Literatur wird Phthiracarus compressus jedoch als Waldart beschrieben (siehe auch Abb. 98) und Pantelozetes paolii gilt als Art, die sowohl im Wald als auch im Grünland vorkommt (Weigmann 2006). Wie auch bei den Borstgrasrasen sind die Oribatidendaten der vorliegenden Untersuchung die einzigen, die in diesem Biotoptyp erhoben und in Edaphobase eingegeben wurden, so dass Vergleichsdaten fehlen. Die Feuchtegruppe um Scheloribates initialis zeigt die frischen Standortbedingungen dieses Biotoptyps Weitere kennzeichnende Artengruppen Goldhaferwiesen waren die Grundartengruppe des sauren, mager bis mesophilen Grünlands um Galumna obvia und des mager bis mesophilen Grünlands um Berniniella bicarinata.

Halbtrockenrasen

Die Kennarten der Halbtrockenrasen um *Rhysotritia* ardua traten innerhalb der Offenland-Standorte der Edaphobase-Länderstudie (vgl. Kap. 3.1.4) ausschließlich in diesem Biotoptyp auf. Insbesondere die Kennarten,

Abb. 97: Oppiella splendens: Biotoptypen, in denen O. splendens nachgewiesen wurde (6 Nachweise auf 106 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der untersuchten Flächen dieser Studie. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 21.03.2018).

Abb. 98: *Phthiracarus compressus*: Biotoptypen, in denen *P. compressus* nachgewiesen wurde (8 Nachweise auf 106 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der untersuchten Flächen dieser Studie. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 21.03.2018).


die auch mit Hilfe der ISA als Indikatorarten errechnet **8.4.2** wurden (beispielsweise *Fosseremus laciniatus* und **8.4.21** *Rhysotritia ardua*), zeigen innerhalb dieser Untersuchung eine deutliche Bindung an diesen Biotoptyp.

In der Literatur (Weigmann & Kratz 1981, Weigmann 2006) sind die Habitatpräferenzen der Arten Fosseremus laciniatus, Rhysotritia ardua und Pilogalumna crassiclava als breit gefächert beschrieben. Nach Weigmann (2006) ist z. B. Rhysotritia ardua eine euryöke Art, die in Wäldern, Mooren und Wiesen vorkommt. Die Art Scutovertex sculptus dagegen ist als Art verschiedener Grünlandtypen einzustufen, und auch eine Abfrage von Edaphobase mit Hilfe von Edaphostat ergab, dass die Art ausschließlich von Grünlandstandorten gemeldet wurde (vgl. Abb. 99). Wie auch bei den Borstgrasrasen und den Goldhaferwiesen existieren in Edaphobase keine weiteren Oribatidendaten für Halbtrockenrasen. Daher wären zur weitergehenden Charakterisierung auch dieses Biotoptyps weitere Untersuchungen der Oribatidenfauna sinnvoll.

Des Weiteren konnten zwei Grundartengruppen der Grünländer identifiziert werden, die beide auf die mageren Standortbedingungen (vgl. **Tab. 104**) dieses Biotoptyps hinweisen: Zum einen die Gruppe des mager bis mesophilen Grünlands um *Berniniella bicarinata* und zum anderen die des mageren

8.4.2 Collembola8.4.21 Allgemeine Angaben zu Individuenund Artenzahlen

Insgesamt wurden auf den untersuchten Flächen 23.368 Individuen aus 46 Arten nachgewiesen (vgl. Tab. 112). Wie bei den Oribatiden entfielen die meisten Individuen dabei auf die drei Borstgrasrasen (insgesamt 9755 Tiere), knapp gefolgt von den Goldhaferwiesen (insgesamt 9051 Individuen). Deutlich geringer waren Individuenzahlen auf den Halbtrockenrasen (insgesamt 4562 Individuen), was vermutlich u. a. mit dem erhöhten Störungsregime durch Regenwürmer zusammenhängt (Maraun et al. 2003). Ähnlich wie bei den Individuenzahlen nahmen die Artenzahlen in der Reihe: Borstgrasrasen (35) > Goldhaferwiesen (31) > Halbtrockenrasen (28) ab. Die häufigsten drei Arten der Untersuchung waren Parisotoma notabilis (5685 Individuen), gefolgt von Folsomia quadrioculata (3907 Individuen) und Folsomia manolachei (3634 Individuen) und machten somit 57 % aller gefangenen Individuen aus (siehe Tab. Anhang 2, 53-55). Interessant ist, dass die morphologisch sehr ähnlichen Arten F. quadrioculata und F. manolachei auf allen Untersuchungsflächen gemeinsam nachgewiesen wurden, F. manolachei wies allerdings auf den Borstgras- und Halbtrocken-

Abb. 99: Scutovertex sculptus: Biotoptypen, in denen S. sculptus nachgewiesen wurde (5 Nachweise auf 106 in der Analyse berücksichtigten Standorten). Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der untersuchten Flächen dieser Studie. Angabe der Biotoptypen nach Riecken et al. (2003) (Abfrage vom 21.03.2018).

			Individuenz	zahlen		Artenzahlei	n	
	ST11	Frühjahr	2622	4297		16	22	
	5111	Herbst	1675	4297		21	22	
Borstgras-	ST12	Frühjahr	663	1846	9755	18	26	25
rasen	3112	Herbst	1183	1040	9133	16 22 21 26 18 26 21 19 16 19 21 25 20 25 20 25 31 16 13 18 16 18 17 20 14 20 12 17 13 17	33	
	ST13	Frühjahr	1363	3612		16	26 35 19 25 25 31 18 24 20 28	
	5113	Herbst	2249	3012		14	19	
	ST21	Frühjahr	1582	3017		21	25	
	3121	Herbst	1435	3017		19	23	
Goldhafer-	ST22	Frühjahr	2389	4035	9051	20	25	21
wiese	5122	Herbst	1646	4033	9031	20	23	31
	ST23	Frühjahr	1231	1999		16	10	
	5123	Herbst	768	1999		13	18	
	ST31	Frühjahr	1044	2072		16	24	
	3131	Herbst	1028	2072		18	24	
Halbtrocken-	ST32	Frühjahr	378	714	4562	17	20	20
rasen	3132	Herbst	336	714	4302	14	20	20
	CT22	Frühjahr	850	1776		12	17	31
	ST33	Herbst	926	1//0		13	1 /	
Sachsen-Anha	alt 2015		Individuenz	zahl gesamt:	23368	Artenzahl g	gesamt:	46

Tab. 112: Arten- und Individuenzahlen der Collembolen auf den Untersuchungsflächen in Sachsen-Anhalt (Harz).

rasen höhere Individuendichten auf, während die 8.4.2.3 Individuenzahlen von F. quadrioculata auf den Goldhaferwiesen deutlich höher waren. Hinsichtlich der jahreszeitlichen Schwankungen der Individuenzahlen gab es nur innerhalb des Biotoptyps Goldhaferwiese ein einheitliches Muster: Individuen- und Artenzahlen waren hier auf allen drei Untersuchungsflächen im Frühjahr höher als im Herbst.

8.4.2.2 Faunistische Anmerkungen und kritische Arten

Auffällig ist ein großer Artenreichtum innerhalb der Gattung Protaphorura/Supraphorura (Protaphorura armata: in allen 3 Biotoptypen, P. fimata: Goldhaferwiese, P. subuliginata: Borstgrasrasen, P. humata und Supraphorura furcifera: Borstgrasrasen und Goldhaferwiese).

Bemerkenswert sind die Funde der in Deutschland Orchesella frontimaculata sehr seltenen Art den untersuchten Halbtrockenrasen. Diese in wurde Deutschland bisher im südwestdeutschen Raum nachgewiesen (siehe Abb. 100, Bodendauerbeobachtungsflächen in Baden-Württemberg, Buchenmischwälder, Biotoptyp Code: 43.07.04).

Beschreibung der ermittelten Artengruppen der drei Grünlandtypen

Kennarten

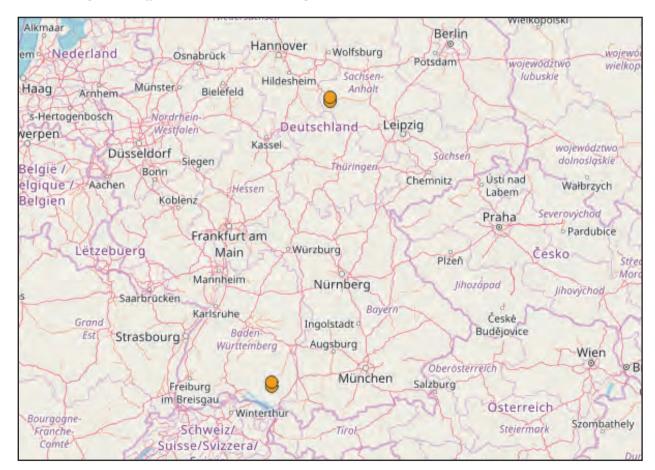
Obwohl es sich bei vielen in dieser Untersuchung nachgewiesenen Collembolenarten um Ubiquisten handelt, die in verschiedensten Lebensräumen vorkommen (z. B. Parisotoma notabilis, Folsomia quadrioculata, lanuginosus, Protaphorura armata, Lepidocyrtus Megalothorax minimus, siehe Wolters 1985, Christiansen 2000, Salamon et al. 2004, Salamon et al. 2008) konnten zumindest für die Goldhaferwiesen und Halbtrockenrasen Kennarten identifiziert werden (Tab. 113).

Paratullbergia callipygos und Protaphorura procampata traten in dieser Untersuchung ausschließlich in den Goldhaferwiesenstandorten auf und stellen somit Kennarten für diesen Biotoptyp dar. Bezogen auf Waldökosysteme wurde Paratullbergia callipygos z. B. auch in bodensauren Fichten- und Buchenwäldern des Hochsollings nachgewiesen (Salamon 2001, Salamon et al. 2008), was auf die potentielle natürliche Vegetation (Hainsimsen-Rotbuchenwald montaner Ausbildung, siehe Kap. 8.2) der hier untersuchten Goldhaferwiesenflächen hinweist und das ökologische "Langzeitgedächtnis" von Bodentieren unterstreicht (Dunger 1983).

Als Kennarten für Halbtrockenrasen wurden in dieser Studie Orchesella frontimaculata und Isotomodes

productus identifiziert. Isotomodes productus konnte z. B. auch auf relativ trockenen Ackerbrachen im Marchfeld (Österreich) nachgewiesen werden (Salamon et al. 2011), die durchaus eine gewisse Ähnlichkeit mit den hier untersuchten Halbtrockenrasen aufweisen.

Bezogen auf Collembolen, die sensitiv gegenüber dem Boden-pH sind, können *Supraphorura furcifera* als Grundart für sauer-mesophiles Grünland und *Pseudosinella alba* als charakteristische Art für basenreiche Offenlandstandorte eingestuft werden.


Supraphorura furcifera wurde ähnlich wie Paratullbergia callipygos zusätzlich in bodensauren Fichten- und Buchenwäldern nachgewiesen (Salamon 2001, Salamon et al. 2008), was auf die potentielle natürliche Vegetationderuntersuchten Grünlandstandorte hinweist (vgl. Kap. 8.2.3). Dagegen tritt Pseudosinella alba auch in anderen Untersuchungen eher auf basenreichen Standorten auf, wie beispielsweise in Kalkbuchenwäldern (Wolters 1985) oder in Grasländern auf kalkreichem Untergrund (z. B. im Schweizer Jura, siehe Salamon et al. 2004).

Hinsichtlich der Nährstoffverhältnisse im Boden konnte Metaphorura affinis als Grundart für mager-

mesophiles Grünland identifiziert werden. Diese Art ist insgesamt eher in Offenland- als in Waldökosystemen anzutreffen (Fjellberg 1998).

Kombinierter Ansatz aus Korrespondenzanalyse (CA), Kanonischer Korrespondenzanalyse (CCA) und Indikatorartenanalyse

Innerhalb der Korrespondenzanalyse (CA) trennten sich die drei Biotoptypen (Borstgrasrasen, Goldhaferwiesen, Halbtrockenrasen) deutlich voneinander **Abb. 101**). Signifikante Umweltvariablen (p < 0.05), die mit Hilfe der Kanonischen Korrespondenzanalyse (CCA) identifiziert und in das Ordinationsdiagramm integriert wurden, waren der Karbonat-Anteil am Gesamtkohlenstoffgehalt (carbonate), der prozentuale Sandanteil (sand_percent) und der Stickstoffgehalt (abgeleitet aus der Ellenbergzahl) (nitrogen ellen). Der Karbonatanteil (carbonate) und der prozentuale Sandanteil (sand percent) korrelierten positiv mit der Artenzusammensetzung der Halbtrockenrasenstandorte, wohingegen der Stickstoffgehalt stark mit Artenzusammensetzung der Goldhaferwiesenstandorte korreliert war.

Abb. 100: Fundorte von *Orchesella frontimaculata* in Deutschland. (Abfrage der Datenbank Edaphobase vom 17.04.2018, Kartendarstellung: Edaphobase).

Tab. 113: Sortierte Kreuztabelle der Collembolen; Angaben in Individuen/m²; Punkte: keine Tiere gefunden; durchgezogene Rahmen: kennzeichnende Artengruppe.

	lfd. Nr. 2: Großer Rappenberg			lfd. Nr. 4: Kümmelwiese lfd. Nr. 5: Ziegenkopf lfd. Nr. 6: Eckardsborn Goldhaferwiese 34.07.02.02			lfd. Nr. 7: Galgenberg lfd. Nr. 8: Bollenkopf lfd. Nr. 9: Schwefeltal Halbtrockenrasen 34.02.01.02.02			
Flächenkürzel Edaphobase										
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Kennartengruppen										
Kennarten der Goldhaferwieser	1						7			
Paratullbergia callipygos	•		•	16	47	109		•	•	
Protaphorura procampata			•		311	466] ·	•	•	
Kennarten basenreiche Halbtro	ckenrasei	n								
Orchesella frontimaculata	•	•	•	•	•		31	16	•	
Isotomodes productus							124	16	16	
Grundarten des Grünlandes										
Mesaphorura macrochaeta	31	47	93	109	31	47	62	16	16	
Friesea mirabilis	1119	342	389	528	280	357	47			
Säuregruppen										
Grundarten saurer-mesophiles		l					,			
Supraphorura furcifera	155	699	264	606	249	311].			
Grundarten basenreiche Offenla	andstand	orte								
Pseudosinella alba							124	404	109	
Nährstoffgruppe										
Grundarten mager - mesophiles	Grünlan	ıd								
Metaphorura affinis	155	16		62	16	31	78	62	218	
Begleitarten										
Begleiter mit hoher Stetigkeit										
Parisotoma notabilis	15884	5160	11641	13802	15978	6792	8455	4228	6419	
Isotomiella minor	1694	2191	933	2052	528	233	187	295	187	
Lepidocyrtus lignorum	1912	3963	2114	1290	1508	1212	886	264	839	
Sphaeridia pumilis	979	979	622	653	2394	1057	1212	482	560	
Protaphorura juvenil	280	404	513	528	155	78	62	264	1088	
Protaphorura armata	1414	3575	3140	4911	9061	1989	1383	187	1772	
Folsomia quadrioculata	8906	762	12962	12605	12620	8377	202	513	637	
Folsomia manolachei	15511	4616	14019	2207	7274	933	10367	901	637	
Lepidocyrtus juvenil	16	389	777	16	824		249	16	16	
Isotoma juvenil	3886	280	311	62	233	342	1166	622		
Brachystomella parvula	1865	357	404	187	528		1803	280	777	
Entomobrya lanuginosa	47	31	326		93	62	202	466	606	
Sminthurinus aureus	1306	1492	808	2487	3279	2860	389		746	
Artengruppen mit hoher Stetigk	keit									
Isotoma viridis group	6357	1010	3326	2735	5409	5269	4383	1445	12729	
Sonstige Begleiter										
Lepidocyrtus cyaneus	3901	1166	1881	109	62		31	16		
Lepiaocyrius cyaneus										
Neanura muscorum		93	62	16	47		155		78	

Tab. 113 (Fortsetzung).

	lfd. Nr. 1: Rhumwiese lfd. Nr. 2: Großer Rappenberg lfd. Nr. 3: Pfeifferberg Borstgrasrasen 34.06.01.02.02			lfd. Nr. 4: Kümmelwiese lfd. Nr. 5: Ziegenkopf lfd. Nr. 6: Eckardsborn Goldhaferwiese 34.07.02.02			lfd. Nr. 7: Galgenberg lfd. Nr. 8: Bollenkopf lfd. Nr. 9: Schwefeltal Halbtrockenrasen 34.02.01.02.02			
Flächenkürzel Edaphobase	EB_ST11	EB_ST12	EB_ST13	EB_ST21	EB_ST22	EB_ST23	EB_ST31	EB_ST32	EB_ST3	
lfd. Nr.:	1	2	3	4	5	6	7	8	9	
Dicyrtomina minuta				31	513	31	16			
Folsomia spinosa	•	16		202		16		155		
Heteromurus nitidus	16	47		62			31			
Lepidocyrtus violaceus	839	591	1492	93						
Entomobryidae juvenil		31			31		155		16	
Stenaphorura quadrispina				93	233		171	47		
Entomobrya juvenil			31	78				16	31	
Mesaphorura juvenil			16				16	31		
Desoria violacea	93			16	373					
Megalothorax minimus	•	31		311	435					
Stenaphorura denisi				47				171	16	
Pseudosinella petterseni	31						16		31	
Pogonognathellus flavescens		109		78	47					
Sminthurus viridis			16					16		
Lepidocyrtus lanuginosus		93					31			
Pseudosinella juvenil			16		62					
Protaphorura humata			16		16					
Schoettella ununguiculata	109							93		
Isotomurus graminis					62					
Sminthurus juvenil	16									
Isotomidae juvenil								16		
Folsomia juvenil								47		
Neanura juvenil							16			
Arrhopalites pseudoappendices		16					•			
Choreutinula inermis	47			•		•	•			
Entomobrya marginata							16			
Orchesella juvenil							16			
Willemia anophthalma	62			•		•	•			
Brachystomella juvenil				•		•	•		62	
Desoria tigrina				•	16	•	•			
Pogonognathellus juvenil				16						
Proisotoma juvenil				855						
Protaphorura fimata		•		•		482	•			
Protaphorura subuliginata			124							
Pseudachorutes dubius		47								
Pseudachorutes juvenil							62			
Pseudosinella immaculata	16									
Sminthurinus niger		16								
Sminthurinus juvenil	31									
Tullbergiidae juvenil							16			

Tab. 114: Collembolenarten der Biotoptypen Borstgrasrasen, Goldhaferwiese und Halbtrockenrasen, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
34.06.01.02.02	Borstgrasrasen			
Lepidocyrtus cyaneus	0,97	0,03	0,97	1,00
Lepidocyrtus violaceus	0,97	0,03	0,97	1,00
34.07.02.02	Goldhaferwiese			
Paratullbergia callipygos	1,00	0,04	1,00	1,00
34.02.01.02.02	Halbtrockenrasen			
Pseudosinella alba	1,00	0,02	1,00	1,00
Isotomodes productus	1,00	0,02	1,00	1,00

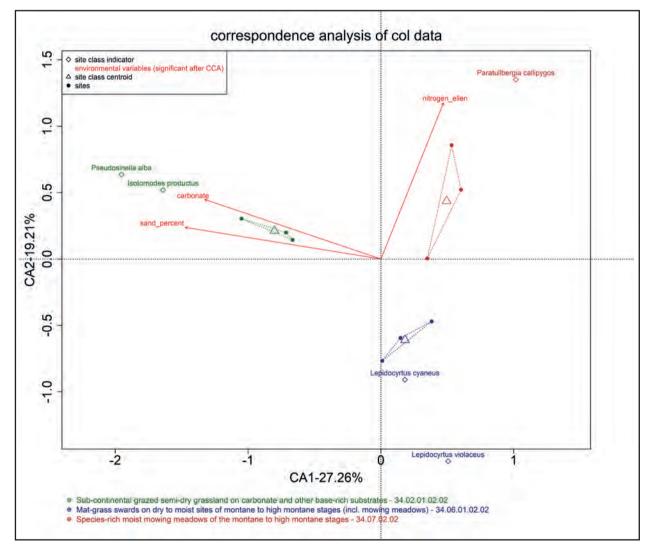


Abb. 101: Korrespondenzanalyse (CA) der Collembolendaten der Biotoptypen Borstgrasrasen (blau), Goldhaferwiese (rot) und Halbtrockenrasen (grün) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Im Rahmen der Indikatorartenanalyse (ISA) konnten die Collembolenarten *Pseudosinella alba* und *Isotomodes productus* als Indikatorarten für Halbtrockenrasen ermittelt werden (siehe **Tab. 114**), was sich auch in dem Ordinationsdiagramm der CA widerspiegelt (siehe **Abb. 101**). Beide Arten korrelierten somit gleichzeitig positiv mit einem hohen Karbonatanteil, wie er entsprechend in den kalkreichen Halbtrockenrasen vorliegt. *Isotomodes productus* wurde auch als Kennart für Halbtrockenrasen identifiziert (siehe **Tab 113**).

Indikator- und Kennart für die Goldhaferwiese ist *Paratullbergia callipygos* (siehe **Tab. 113**, **114**) und entspechend auch im Ordinationsdiagramm lokalisiert – diese Art trat damit auch vornehmlich auf Standorten mit einem hohen Stickstoffgehalt (abgeleitet aus der Ellenbergzahl) auf.

Weiterhin weist die Indikatoranalyse *Lepidocyrtus* violaceus und *Lepidocyrtus* cyaneus als Indikatorarten für Borstgrasrasen aus (**Tab. 114**), beide Arten präferierten diesen Biotoptyp auch im Rahmen der Korrespondenzanalyse (**Abb. 101**). Beide Arten können als typische "Offenlandarten" beschrieben werden (siehe z. B. Christiansen 2000, Salamon et al. 2004, Salamon et al. 2011), die in Waldöksystemen eher selten anzutreffen sind.

8.4.2.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Wie auch in anderen Untersuchungen in Graslandgemeinschaften (Christiansen 1964, Curry and Tuohy 1978, Salamon et al. 2004), hatten auch bei der vorliegenden Studie im Harz die Biotoptypen (Borstgrasrasen, Goldhaferwiese, Halbtrockenrasen) nur einen moderaten Einfluss auf die Zusammensetzung der Collembolengemeinschaft – trotzdem konnten einige Kenn- und/oder Indikatorarten für die einzelnen Biotoptypen identifiziert werden.

Festzuhalten bleibt zunächst, dass in allen drei Biotoptypen neben *Parisotoma notabilis* Arten wie beispielsweise *Folsomia quadrioculata, Folsomia manolachei, Isotomiella minor* und *Lepidocyrtus lignorum* dominierten, die in kaum einer Faunenliste Europas fehlen und auch in anderen Grasland- und Ackergemeinschaften zu den häufigsten Arten gehören (siehe z. B. Christiansen 2000, Albers 2001, Salamon et al. 2004, Brennan et al. 2006). Im Fokus der Beschreibung der untersuchten Biotoptypen stehen aber die ermittelten Kenn- und Indikatorarten.

Borstgrasrasen

Auffallend bei den untersuchten Borstgrasrasen im Harz ist das Vorkommen der Art Supraphorura furcifera,

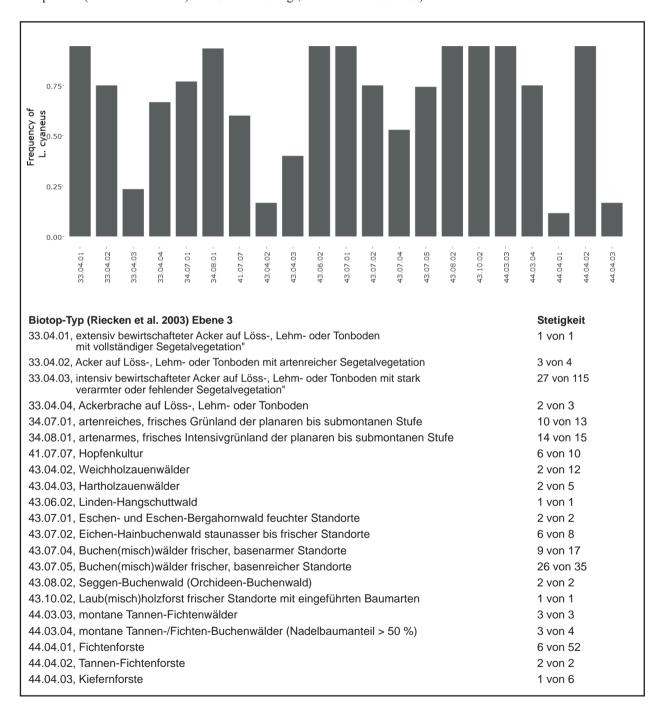
die als Grundart des sauren-mesophilen Grünlands eingestuft werden kann, aber auch häufig in bodensauren Fichten-, Buchen- und Buchen-Fichten Mischwäldern auftritt (Salamon 2001, Salamon et al. 2008), was auf die vorherige Nutzungsform/potentielle natürliche Vegetation (bodensaurer Hainsimsen-Rotbuchenwald montaner Ausprägung) der hier untersuchten Borstgrasrasen hindeutet.

Als Indikatorarten für Borstgrasrasen konnten in dieser Untersuchung *Lepidocyrtus cyaneus* und *Lepidocyrtus violaceus* identifiziert werden, die überregional aber durchaus auch in anderen Offenlandhabitaten wie Ackerbrachen (Salamon et al. 2001) oder extensiv genutzten Ackerflächen (Christiansen 2000) auftreten.

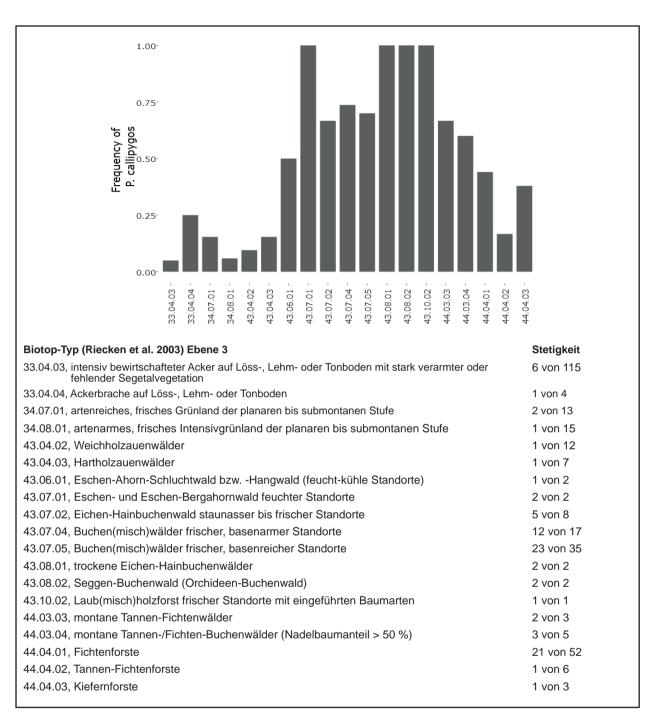
Die Collembolengemeinschaft der Borstgrasrasen stellt somit eine Mischung aus Arten dar, die ihren Verbreitungsschwerpunkt in bodensauren Wäldern (z. B. Supraphorura furcifera, Willemia anophthalma) bzw. in Offenlandhabitaten haben (u. a. Lepidocyrtus cyaneus, Lepidocyrtus violaceus). Einen wichtigen Bestandteil der Collembolengemeinschaft stellen natürlich noch die bereits genannten Ubiquisten dar, wie z. B. Parisotoma notabilis und Isotomiella minor.

Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 10.04.2018 zeigt, dass *Lepidocyrtus cyaneus* bezogen auf Offenlandsysteme in sehr unterschiedlichen Biotoptypen vorkommt, wie z. B. im artenreichen, frischen Grünland der montanen bis hochmontanen Stufe (Code: 34.07.01), das eine gewisse Ähnlichkeit mit den hier untersuchten Borstgrasrasen aufweist, oder auch in Intensivgrünländern (Code: 34.08.01) (siehe **Abb. 102**).

Goldhaferwiese


Ähnlich wie in den Borstgrasrasen ist auch in den untersuchten Goldhaferwiesen das Vorkommen von *Supraphorura furcifera* als Grundart des saurenmesophilen Grünlands bemerkenswert, da diese Art, wie bereits erwähnt, auch als typische Art bodensaurer Buchen- und Fichtenwälder anzusehen ist (Albers 1996, Salamon 2001), was auf die vorherige Waldnutzung der Flächen hindeutet.

Dies gilt in noch stärkerem Maße für die in dieser Untersuchung als Kenn- und Indikatorart für Goldhaferwiesen identifizierte Art *Paratullbergia callipygos*, die auch in den bodensauren Moderhumus-Buchenwäldern des Sollings nachgewiesen wurde (Salamon 2001, Salamon et al. 2008) und innerhalb dieser Wälder Bereiche mit niedrigen Boden-pH-Werten bevorzugt (Salamon 2001). Weiterhin wurde *Protaphorura procampata* als Kennart der Goldhaferwiesen ermittelt. Interessant in diesem Zusammenhang ist, dass es sich bei allen drei genannten Arten (*Supraphorura furcifera*,

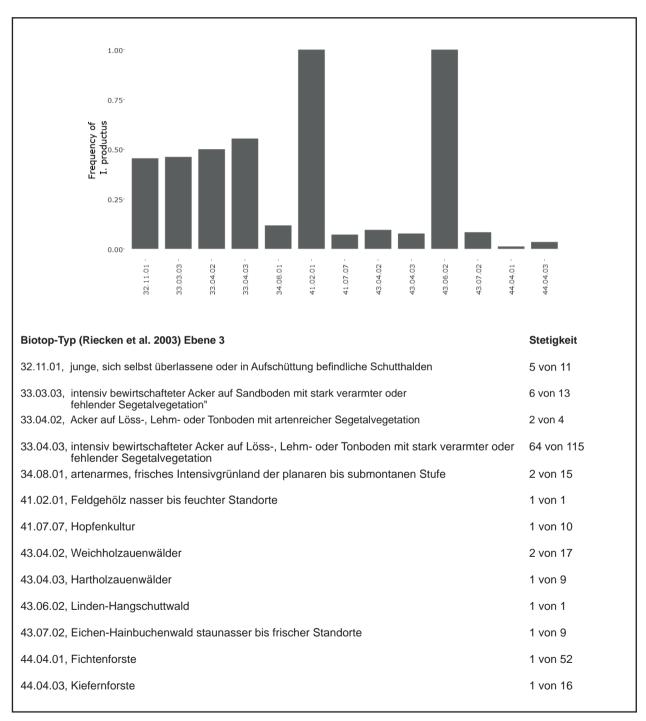

Paratullbergia callipygos, Protaphorura procampata) um euedaphische Collembolenarten handelt, die relativ wenig mobil und daher stark von aktuellen und früheren lokalen Vegetations- und Bodenbedingungen abhängig sind. Vermutlich handelt es sich bei diesen Arten daher um Relikte eines früheren Waldökosystems.

Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 13.02.2018 zeigt, dass

Paratullbergiacallipygoseinen Verbreitungsschwerpunkt in bodensauren Wäldern hat (z. B. natürliche Tannen-Fichtenwälder, Code 44.03.03), was auf die bereits erwähnten früheren Nutzungsformen der Goldhaferwiesenstandorte hinweisen könnte. Zudem tritt sie auch im artenreichen frischen Grünland der montanen bis hochmontanen Stufe auf (Code: 34.07.01, siehe Abb. 103).

Abb. 102: *Lepidocyrtus cyaneus*: Biotoptypen, in denen *L. cyaneus* nachgewiesen wurde. Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 11.04.2018).

Abb. 103: *Paratullbergia callipygos*: Biotoptypen, in denen *P. callipygos* nachgewiesen wurde. Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 11.04.2018).


Halbtrockenrasen

Für die Halbtrockenrasen konnte *Isotomodes productus* als Kenn- und Indikatorart herausgearbeitet werden. Wie bereits in Kapitel 8.4.1.3 beschrieben, konnte *Isotomodes productus* z. B. auch auf relativ trockenen Ackerbrachen im Marchfeld (Österreich) nachgewiesen werden (Salamon et al. 2011), die durchaus eine gewisse

Ähnlichkeit mit den hier untersuchten Halbtrockenrasen aufweisen. In diesem Zusammenhang betont Fjellberg (1998), dass *Isotomodes productus* eine thermophile Collembolenart ist, die wärmeexponierte Offenlandhabitate bevorzugt. Dies trifft auch auf die in dieser Studie untersuchten Halbtrockenrasen zu (siehe **Tab. 104**, Ellenbergzahlen).

Weiterhin konnten *Orchesella frontimaculata* als Kennart und *Pseudosinella alba* als Indikatorart für diesen Biotoptyp beschrieben werden. *Pseudosinella alba* gilt als eine Collembolenart, die verstärkt in basenreichen Offenlandstandorten auftritt (siehe z. B. Christiansen 2000, Salamon 2004), was auch auf die hier untersuchten kalkreichen Halbtrockenrasen zutrifft (siehe Kapitel 8.4.1.3).

Collembolenarten, die als Säurezeiger anzusehen sind und die sowohl in den hier untersuchten Borstgrasrasen und Goldhaferwiesen als auch in bodensauren Buchen- und Fichtenwäldern vorkommen, wie z. B. *Paratullbergia callipygos* oder *Supraphorura furcifera* (Albers 1996, Salamon 2001), fehlen in den kalkreichen Halbtrockenrasen dagegen völlig.

Abb. 104: *Isotomodes productus*: Biotoptypen, in denen *I. productus* nachgewiesen wurde. Angegeben ist die Stetigkeit des Vorkommens innerhalb eines Biotoptyps. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 11.04.2018).

Die Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat (Hausen et al. 2017) am 10.04.2018 zeigt, dass *Isotomodes productus* vorwiegend in Biotoptypen mit basenreichen Böden nachgewiesen wurde (ähnlich wie bei den hier untersuchten Halbtrockenrasen), wie z. B. in Äckern auf Löß/Lehmböden (Code: 33.04.02/03) oder Linden-Hangschuttwäldern (Code: 43.06.02) (siehe **Abb. 104**).

8.4.3 Diplopoda8.4.3.1 Allgemeine Angaben zu Individuenund Artenzahlen

Insgesamt wurden in der Länderstudie 626 Diplopoda mit Hilfe der Bodenfallen erfasst (vgl. **Tab. Anhang 3, 56-58**). Davon wurden 617 Individuen bis zur Art determiniert (**Tab. 115**). Diese verteilen sich auf 18 Arten aus vier Familien. Dabei ist die Familie der Schnurfüßer (Julidae) mit 11 Arten und 453 Individuen am zahlreichsten vertreten. Bei den nicht auf Artniveau identifizierten Tieren handelt es sich um Weibchen der Familie Julidae, für deren Bestimmung bisher kein Schlüssel vorliegt (Hauser & Voigtländer 2009).

Mittels Bodenstecher konnten keine weiteren Arten und insgesamt nur 19 bis zur Art determinierbare Individuen

nachgewiesen werden. In den Halbtrockenrasen wurde mit dieser Methode kein einziger Doppelfüßer erfasst.

Der Großteil der Diplopoda konnte auf den Halbtrockenrasen gefangen werden, wobei es sich hier vor allem um Exemplare von *Cylindroiulus caeruleocinctus* handelte. Der individuenreichste Standort war der Borstgrasrasen Großer Rappenberg (EB_ST12), was auf ein Massenauftreten des Saftkuglers *Glomeris marginata* zurückzuführen war. Im Gegensatz zu den beiden anderen Borstgrasrasen beherbergte der Standort, wie auch die Bergwiese am Ziegenkopf (EB_ST22) und der Halbtrockenrasen Bollenkopf (EB_ST32), zudem ein relativ großes Artenspektrum.

8.4.32 Beschreibung der ermittelten Artengruppen der drei Grünlandtypen

Die geordnete Kreuztabelle (**Tab. 116**) wurde für die Diplopoden nur mit den für diese Tiergruppe als relevant angesehenen Bodenfallenfängen erstellt (vgl. Kap. 8.4.3.1). Wie auch bei der Länderstudie im NP Eifel liegen der Sortierung der Kreuztabelle ausschließlich die Diplopoden-Daten der Länderstudie in Sachsen-Anhalt zugrunde (vgl. Anmerkungen in Kap. 5.4.3.3). Charakteristische Arten konnten für die

Tab. 115: Arten- und Individuenzahlen der in der Länderstudie nachgewiesenen Diplopoda.

			Individu	enzahlen		Artenza	ahlen	
	ST11	Falle	4	4		1	1	
	3111	Stecher	0	4		0	1	
Borstgras-	CT12	Falle	150	153	183	7	8	8
rasen	ST12	Stecher	3	133	183	2	8	8
	CT12	Falle	26	26		2	2	
	ST13	Stecher	0	26		0	2	
	ST21	Falle	65	80		4	4	
	3121	Stecher	15	80		2	4	10
Goldhafer-	ST22	Falle	19	19	134	8	8	
wiese	3122	Stecher	0	19	134	0	0	10
	ST23	Falle	34	35		6	6	
	5123	Stecher	1	33		1	O	
	ST31	Falle	107	107		4	4	,
	3131	Stecher	0	107		0	4	
Halbtro-	ST32	Falle	131	131	319	8	8	10
ckenrasen	3132	Stecher	0	131	319	0	0	10
	ST33	Falle	81	81		6	6	
	3133	Stecher	0	01		0	U	
				enzahl Fallen:	617		ahl Fallen:	18
Sachsen-Anh	Sachsen-Anhalt 2015			enzahl Stecher:	19		ahl Stecher:	5
			Individu	enzahl gesamt:	636	Artenza	ahl gesamt:	18

Halbtrockenrasen festgestellt werden. Hier bildeten Cylindroiulus caeruleocinctus, Polydesmus angustus und Propolydesmus testaceus eine Kennartengruppe. Die anderen beiden Biotoptypen wurden ausschließlich von Begleitarten ohne ein spezielles Schwerpunktvorkommen besiedelt. Auf nahezu allen Standorten konnte dabei Allajulus nitidus nachgewiesen werden, andere Diplopoden-Arten traten eher sporadisch auf. Auffallend ist die hohe Aktivitätsdichte der auf den anderen Untersuchungsflächen seltenen bzw. fehlenden Arten Glomeris marginata an Standort EB_ST12 und von Megaphyllum projectum an Standort EB_ST21.

Laut Indikatorartenanalyse (ISA) erreichten drei Arten einen Indikatorwert von 0,8 und können somit als Indikatorarten bzw. Kennarten für einen Biotoptyp angesprochen werden (**Tab. 117**). Hierbei handelt es sich um die bereits in der Kreuztabelle als Kennarten der Halbtrockenrasen identifizierte Artengruppe um Cylindroiulus caeruleocinctus.

Generell ist die darstellbare Varianz innerhalb des Datensatzes relativ gering. Die tatsächlichen Unterschiede der Gemeinschaften können mittels der Ordination der Korrespondenzanalyse (Abb. 105) nur ungenau widergespiegelt werden, auch da die teilweise großen Unterschiede innerhalb der Aktivitätsdichten einzelner Arten die scores der beiden dargestellten Achsen verzerren. Gleichwohl ist die große Ähnlichkeit der drei Halbtrockenrasen-Zönosen sowie deren Unterschiede zu den anderen beiden Biotoptypen deutlich ausgeprägt. Dieses Muster wird, wie in der Kreuztabelle aufgezeigt und durch die ISA bestätigt, insbesondere durch die Artengruppe um Cylindroiulus caeruleocinctus geprägt. Nahe dem Ursprung des Koordinatensystems liegen vier

Tab. 116: Sortierte Kreuztabelle der in den Bodenfallen nachgewiesenen Doppelfüßer (Diplopoda); Angaben in Individuen/Standort; Punkte: keine Tiere gefunden; durchgezogene Rahmen: kennzeichnende Artengruppe.

		lfd. Nr. 1: Rhumwiese lfd. Nr. 2: Großer Rappenberg lfd. Nr. 3: Pfeifferberg Borstgrasrasen 34.06.01.02.02			lfd. Nr. 4: Kümmelwiese lfd. Nr. 5: Ziegenkopf lfd. Nr. 6: Eckardsborn Goldhaferwiese 34.07.02.02			lfd. Nr. 7: Galgenberg lfd. Nr. 8: Bollenkopf lfd. Nr. 9: Schwefeltal Halbtrockenrasen 34.02.01.02.02		
	Flächenkürzel Edaphobase	EB_ST1	1 EB_ST12	EB_ST13	EB_ST21	EB_ST22	EB_ST23	EB_ST31	EB_ST32	EB_ST33
	lfd. Nr.:	1	2	3	4	5	6	7	8	9
Kennarte	n									
Ken	narten Halbtrockenrasen									
	Cylindroiulus caeruleocinctus							86	102	67
	Polydesmus angustus							6	10	1
	Propolydesmus testaceus							13	2	1
Begleitart	ten									
	Allaiulus nitidus	4	10	16	15	3	3	2	5	
	Glomeris marginata		110						3	4
	Julus scandinavius		17		23	4	4			
	Unciger foetidus		4	10		4	20			
	Megaphyllum projectum				21					
	Ommatoiulus sabulosus		5			2	5			1
	Tachypodoiulus niger									7
	Enantiulus nanus				6		1			
	Melogona voigti								5	
	Polydesmus inconstans					1	1		3	
	Cylindroiulus britannicus					3				
	Polydesmus denticulatus	•	2							
	Mycogona germanica	•	2							
	Leptoiulus proximus	•				1			1	
	Ophyiulus pilosus					1			•	
Artengru	ppen									
	Julidae		2		1		3		3	

Replikate dicht beieinander. Dies sind die relativ artenund individuenarmen Borstgrasrasen EB_ST11 und EB_ST13 sowie die Goldhaferwiesen EB_ST22 und EB_ST23. Die Varianz der ersten Achse wird durch keinen der aufgenommenen Umweltparameter erklärt, die zweite Achse hingegen korreliert mäßig mit der Ellenberg'schen Reaktions- und Temperaturzahl der Flächen (vgl. **Tab. 104**).

Mittels Abfrage der Datenbank Edaphobase via Edaphoclass konnten die zehn häufigsten in bestimmten Biotoptypen (34.07 artenreiches Grünland frischer Standorte und 34.02 Halbtrockenrasen (nach Riecken et al. 2003)) erfassten Diplopodenarten ausgegeben werden (**Tab. 118**). Für Borstgrasrasen liegen bis auf die Länderstudie bisher keine Nachweise von Diplopoden vor. Auch artenreiches Grünland wurde demnach ausgesprochen selten beprobt (6 Fundorte), insbesondere

im Vergleich mit Halbtrockenrasen (97 Fundorte). Die stetigste Art in diesen Biotoptypen ist Cylindroiulus caeruleocinctus, die außerhalb der Länderstudie in allen in Edaphobase vorliegenden Untersuchungen auf artenreichem Grünland und nahezu allen analysierten Halbtrockenrasen gefunden werden konnte. Innerhalb der Länderstudie konnte die Art hingegen ausschließlich auf den Halbtrockenrasen beobachtet werden. Die beiden anderen Kennarten kommen unregelmäßig (Propolydesmus testaceus) oder selten (Polydesmus angustus) in den dargestellten Biotoptypen vor. Sechs der zehn häufigsten Arten wurden auch in der Länderstudie beobachtet und als Begleitarten angesprochen. Glomeris marginata hat dabei laut Abfrage einen Verbreitungsschwerpunkt in den Halbtrockenrasen, der in der Länderstudie nur teilweise bestätigt werden konnte. Die Art besiedelte zwei der drei untersuchten

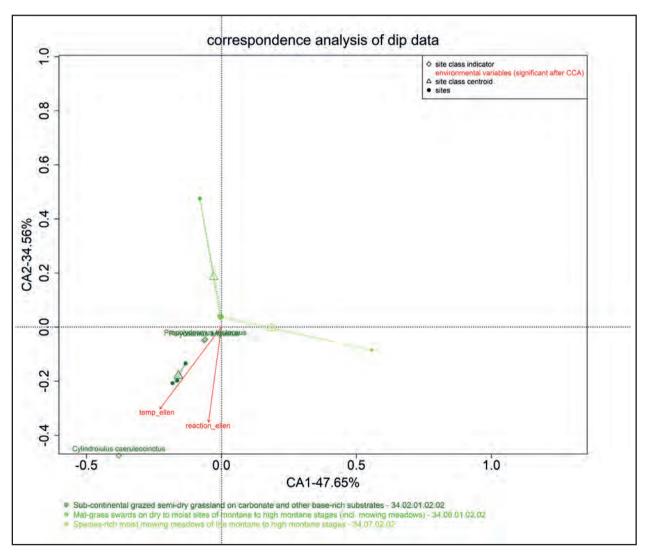


Abb. 105: Korrespondenzanalyse (CA) der Diplopoden-Daten der Biotoptypen Halbtrockenrasen (dunkelgrün), Goldhaferwiese (grasgrün) und Borstgrasrasen (oliv) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Standorte dieses Biotoptyps, aber auch einen der Borstgrasrasen. *Allajulus nitidus*, die stetigste Art der Länderstudie, wurde in anderen Untersuchungen nur relativ unregelmäßig gefunden.

Die meisten Daten über Diplopoden aus extensiven Kulturformationen, wie beispielsweise den in der Länderstudie untersuchten Graslandtypen, stammen von Aufsammlungen, die durch das Landesamt für Umweltschutz Sachsen-Anhalt beauftragt wurden. Vor allem diese zahlreichen Datenerhebungen führten zu einigen Veröffentlichungen über Diplopoden mit einem Schwerpunkt auf deren Verbreitung in Offenländern (bspw. Voigtländer 1996, 2011b, Voigtländer & Düker 2001, Voigtländer & Lindner 2010, Voigtländer & Decker 2014) und schlussendlich auch zu einer Roten Liste der Doppelfüßer Sachsen-Anhalts (Voigtländer 2004). Trotz der erwähnten intensiven Bemühungen wurden einige Biotoptypen bisher nicht (Borstgrasrasen) oder selten (artenreiche Frischwiesen) in diese Untersuchungen einbezogen. Die Daten der vorliegenden Studie leisten einen Beitrag dazu, diese Lücke zu schließen.

Allgemein gelten Diplopoden als ausgesprochen sensibel gegenüber landwirtschaftlicher Bewirtschaftung, weshalb sie in Agrarökosystemen im Vergleich zu ungestörten Habitaten wie beispielsweise Wäldern häufig nur mit geringen Arten- sowie Individuenzahlen

auftreten (Wolters & Ekschmitt 1997). Dies wird durch die Ergebnisse von bspw. Remus (1962, intensives Grünland), Scheu (1990, Kalk-Acker), Schmitt & Roth (1999, Löss-Acker) und Haase et al. (2018, Kap. 6, Sand-Acker) unterstrichen, die teilweise nur 0-3 Arten in verschiedenen intensiv genutzten Kultur-Formationen vorfanden. In extensiven Grasländern, die seltener gestört werden, können Diplopoden hingegen höhere Arten- und Individuendichten erreichen. So erfassten Voigtländer & Decker (2014) 8-15 Arten und bis zu 548 Individuen pro Standort (sechs Fallen pro Standort, Fangzeitraum März-Dezember 2009 & März-Juni 2010) auf verschieden ausgeprägten Kalkmagerrasen im FFH-Gebiet "Huy nördlich Halberstadt". 1987/88 fand Voigtländer (1996) eine ähnliche Anzahl von Arten (6-10 Taxa) auf (Halb-) trockenrasen im Hallenser Raum. Auch die Länderstudie unterstreicht den Artenreichtum der Diplopoda der untersuchten Biotoptypen (bis zu 8 Arten pro Standort), wobei auf zwei der inventarisierten Borstgrasrasen nur wenige Arten nachgewiesen werden konnten.

Eine absolute Dominanz von *Cylindroiulus caeruleocinctus* auf Halbtrockenrasen stellten schon Dunger & Steinmetzger (1981) fest, die eine Rasen-Wald-Catena ("natürliche Präferenzorgel; Hauser & Voigtländer 2009) im Thüringer Wald-Gebiet untersuchten. Hier besiedelte die Art allerdings frischere und dichtere

Tab. 117: Diplopoden-Arten der Biotoptypen Borstgrasrasen, Goldhaferwiese und Halbtrockenrasen, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
34.02.01.02.02	Halbtrockenrasen	auf karbonatisc	chem Boden, beweidet	
Cylindroiulus caeruleocinctus	1	0,048	1	1
Polydesmus angustus	1	0,048	1	1
Propolydesmus testaceus	1	0,048	1	1

Tab. 118: Stetigste Diplopodenarten der Biotoptypen 34.06 Borstgrasrasen, 34.07 artenreiches Grünland frischer Standorte und 34.02 Halbtrockenrasen (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 21.03.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps).

Biotoptyp	34.06	34.07	34.02
Anzahl Standorte	0	6	97
Cylindroiulus caeruleocinctus		1,00	0,84
Julus scandinavius		0,83	0,53
Ommatoiulus sabulosus		0,67	0,59
Glomeris marginata		0,17	0,74
Tachypodoiulus niger		0,33	0,46
Unciger foetidus		0,67	0,08
Propolydesmus testaceus		0,33	0,31
Brachydesmus superus		0,50	0,06
Allajulus nitidus		0,17	0,38
Glomeris hexasticha		0,17	0,34

Wiesen. Die in der Länderstudie stetig assoziierten Arten *Polydesmus angustus* und *Propolydesmus testaceus* konnten Dunger & Steinmetzger (1981) nur auf je einem ihrer Halbtrockenrasenstandorte finden, erstere Art dominierte dort im Buchenwald. Auch war in dieser Untersuchung eine in Hinblick auf die geringen Distanzen recht hohe Beta-Diversität zu verzeichnen. Diese fiel bei Voigtländer & Decker (2014) geringer aus. Stetige Arten der Halbtrockenrasen waren hier neben *Cylindroiulus caeruleocinctus* die Saftkugler *Glomeris marginata*, *G. hexasticha* und *G. undulata*. Sie detektierten außerdem Charakterarten für bestimmte Biotoptypen, für Halbtrockenrasen bspw. die Art *Ommatoiulus sabulosus*, welche innerhalb der Länderstudie unregelmäßig in allen Biotoptypen gefunden wurde.

8.4.3.3 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Borstgrasrasen

Zwei der drei beprobten Borstgrasrasen sind als außerordentlich artenarm zu bezeichnen, am Standort EB ST11 wurden nur 4 Individuen der Art Allajulus nitidus gefunden. EB ST13 kann zwar mit einer höheren Aktivität von Diplopoden aufwarten (26 Individuen), allerdings verteilen sich diese ebenfalls lediglich auf zwei Arten. Im Unterschied dazu war der Borstgrasrasen des Großen Rappenbergs EB ST12 mit 153 Tieren der individuenreichste Standort der Untersuchung und mit acht Arten auch einer der artenreichsten. Das eudominante Auftreten von Glomeris marginata wird evtl. durch die geringe Störung sowie die Nähe zu bewaldeten Flächen hervorgerufen. In der Literatur gilt Glomeris marginata als eurytope Waldart (Hauser & Voigtländer 2009). Laut Haacker (1968) ist die Art aber durchaus trockenresistent und damit feuchteindifferent, weshalb sie regelmäßig in Halbtrockenrasen gefunden werden kann (Tab. 118, Abb. 106). Nach Dunger & Steinmetzger (1981) ist sie relativ empfindlich gegenüber Bewirtschaftung, auch fand Voigtländer (2011b) sie eher in Sukzessionsflächen von Halbtrockenrasen vor. Der im Gegensatz zur Beweidung ausgesprochen extensive, einmalige Spätschnitt am Großen Rappenberg könnte demzufolge zu einer Förderung dieser und der anderen Arten beitragen.

Goldhaferwiese

Geprägt werden die Goldhaferwiesen vor allem durch die beiden Schnurfüßer *Julus scandinavius* und *Allajulus nitidus*, die hier stetig nachgewiesen wurden. Sie gelten als eurytope Waldarten, die aber auch regelmäßig in Offenländern beobachtet werden (Hauser & Voigtländer

2009). Insbesondere das Auftreten von J. scandinavius. der außerhalb der Goldhaferwiesen nur im Borstgrasrasen des Großen Rappenberges gefunden wurde (s. o.), deutet auf schattigere Verhältnisse der Wiesen im Gegensatz zu den rasigen Standorten hin. Dies betrifft im verstärkten Maße den Standort EB ST21, der im Aufnahmejahr bis zum Abbau der Fallen nicht bewirtschaftet wurde. Die fehlende Störung könnte evtl. auch das individuenstarke Auftreten von Megaphyllum projectum und Enantiulus nanus (hygrophil) bedingen, die ausschließlich bzw. schwerpunktmäßig hier gefangen wurden. Die Standorte EB ST22 und EB ST23 werden dagegen auch durch eher xerophile Arten wie bspw. Ommatoiulus sabulosus und Polydesmus inconstans besiedelt (vgl. Voigtländer 2011b). Hier führt die Beweidung zu einer lückigeren heterogenen Struktur, die von diesen Arten präferiert wird. Auf dem Standort Ziegenkopf EB ST22 wurde außerdem die eher seltene, in der Regel in Siedlungsbereichen vorkommende Art Cylindroiulus britannicus gefunden (Voigtländer 2016).

Halbtrockenrasen

Allgemein ist zu erwarten, dass eher thermo-xerophile Arten von der Kurzrasigkeit und der intensiven Exposition der untersuchten Halbtrockenrasen profitieren. Die Artenspektren der Halbtrockenrasen wurden von Cylindroiulus caeruleocinctus dominiert, der bereits in anderen Untersuchungen als Charakterart dieser Lebensräume geführt wird (Dunger & Steinmetzger 1981, Voigtländer & Decker 2014) und sowohl nach den experimentellen Befunden von Haacker (1968) als auch den synökologischen Auswertungen von Voigtländer (2011b) als trockenheitsresistente, xerophile Offenlandart eingestuft wird. Dass die Art weder in den Borstgrasrasen noch in den Bergwiesen nachgewiesen wurde, könnte einerseits mit der Bodenreaktion (Borstgrasrasen) und andererseits mit der höheren Wüchsigkeit und geringeren Bodentemperatur zusammenhängen Auch Propolydesmus testaceus besiedelte innerhalb der Länderstudie nur die kalkigen Halbtrockenrasen. Nach Voigtländer (2016) wird die xerophile Art zwar schwerpunktmäßig in Kalk-Gebieten gefunden, ist allerdings nicht an diese gebunden. Weitere laut Voigtländer (2011b) typische xerophile Arten der Offenländer wie Ommatoiulus sabulosus, Polydesmus inconstans, Melogona voigti und Tachypodoiulus niger treten nur vereinzelt in relativ geringen Aktivitätsdichten auf. Polydesmus angustus gilt als hygrophile (Haacker 1968) Art, die schwerpunktmäßig Wälder besiedelt (Dunger & Steinmetzger 1981, Hauser & Voigtländer 2009, Voigtländer 2011b, Voigtländer & Decker 2014). Sie konnte in der Länderstudie ausschließlich auf den Halbtrockenrasen erfasst werden.

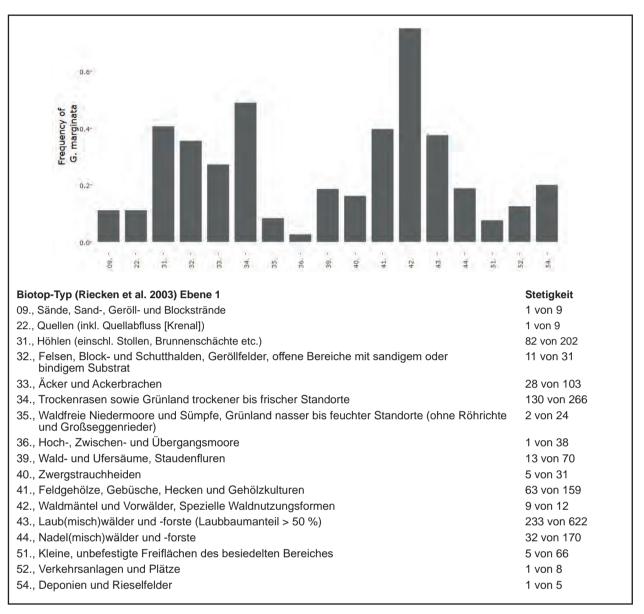


Abb. 106: Glomeris marginata: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotoptypen erster Ebene nach Riecken et al. (2003) (618 Nachweise an 1852 Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 21.03.2018).

8.4.4 Chilopoda 8.4.4.1 Allgemeine Angaben zu Individuenund Artenzahlen

Während der Länderstudie konnten 90 Chilopoda mittels Bodenfallen und 50 mit Hilfe des Bodenstechers erfasst werden (vgl. Tab. Anhang 4, 59-61), von denen 81 bzw. 38 Individuen bis zur Art bestimmt wurden. Diese verteilen sich auf 10 bzw. 7 Arten (Tab. 119). Das mit den unterschiedlichen Methoden gefundene Artenspektrum unterscheidet sich dabei relativ deutlich. So wurden sechs größtenteils epigäisch aktive Arten Chilopoda-Fauna der untersuchten Standorte

ausschließlich via Bodenfalle nachgewiesen. Drei eher endogäisch lebende Arten konnten exklusiv mit dem Bodenstecher erfasst werden, darunter die selten auftretende Art Geophilus ribauti (vgl. Kap. 8.4.4.2) in den Goldhaferwiesen EB ST21 und EB ST23. Bei den nicht auf Artniveau identifizieren Tieren handelt es sich um juvenile Tiere der Gattungen Lithobius und Geophilus. Viele bestimmungsrelevante Merkmale sind an sehr frühen Stadien dieser Taxa noch nicht ausgebildet (Koren 1986, 1992).

Bezüglich der Aktivitätsdichte bewegte sich die

Tab. 119: Arten- und Individuenzahlen der in der Länderstudie nachgewiesenen Chilopoda.

			Individ	uenzahlen		Artenza	hlen	
	ST11	Falle	4	4		3	3	,
	5111	Stecher	0	4		0	3	
Borstgras-	ST12	Falle	37	40	50	4	7	11
rasen	5112	Stecher	3	40	30	3	/	11
	ST13	Falle	2	6		2	5	
	3113	Stecher	4	0		3	3	
	ST21	Falle	14	21		2	6	,
	3121	Stecher	7	21		4	0	
Goldhafer-	ST22	Falle	1	7	45	1	4	10
wiese	3122	Stecher	6	/	43	3	4	10
	ST23	Falle	6	17		3	6	
	3123	T23 Stecher 11 17	1 /		4	0		
	ST31	Falle	7	9		3	3	
	3131	Stecher	2	9		1	3	
Halbtro-	ST32	Falle	6	9	24	3	4	5
ckenrasen	3132	Stecher	3	9	24	1	4	3
	ST33	Falle	4	6		2	3	
	3133	Stecher	2	6		1	3	
			Individ	Individuenzahl Fallen:		Artenza	hl Fallen:	10
	Sachsen-Anh	nalt 2015	Individ	uenzahl Stecher:	38	Artenza	hl Stecher:	7
			Individ	Individuenzahl gesamt:		Artenzahl gesamt: 13		13

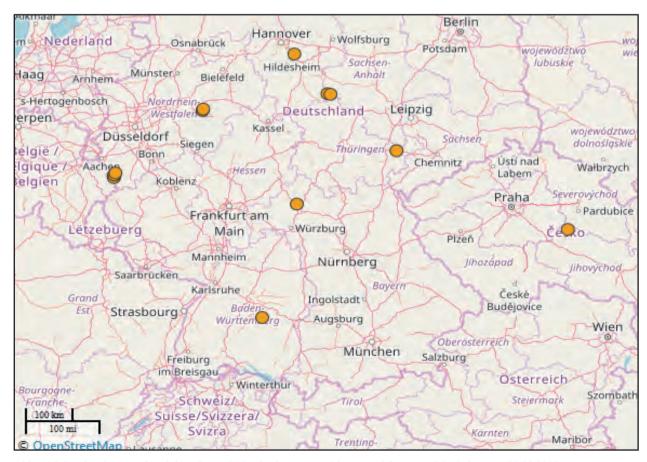


Abb. 107: Fundpunkte von Geophilus ribauti (71 Beobachtungen an 46 Orten, Abfrage von Edaphobase am 07.02.2018).

einem ähnlichen, niedrigen Niveau (vgl. Kap. 5, 6). Eine Ausnahme bildete der Borstgrasrasen am Großen Rappenberg (EB_ST12), auf dem die Art *Lithobius mutabilis* zahlreich erfasst werden konnte. Trotz der wenigen vorgefundenen Individuen sind einige Standorte der Borstgrasrasen und Goldhaferwiesen als relativ artenreich einzuschätzen (vgl. Kap. 5, 6, 7).

8.4.4.2 Faunistische Anmerkungen und kritische Arten

Geophilus ribauti Brölemann, 1908

Erwähnenswert ist der Fund von acht Individuen der selten erfassten (Decker et al. 2015) Art *Geophilus ribauti* auf zwei Goldhaferwiesen im Untersuchungsgebiet (EB_ST21 & EB_ST23, **Abb. 107**, insgesamt: 71 Funde auf 46 Standorten, Stand 07.02.2018, Edaphobase 2018). Das Taxon wurde erst kürzlich in den Artstatus erhoben (Bonato & Minelli 2014) und wurde in der Vergangenheit als Unterart von *Geophilus truncorum* geführt, was die bisher wenigen Nachweise in den Mittelgebirgen erklärt. Die endogäisch lebende Art *G. ribauti* kommt laut Decker et al. (2015) schwerpunktmäßig in kühl-feuchten Wäldern

der Mittelgebirge Mittel-, West- und Süddeutschlands vor. Offenbar ist sie auch in der Lage, zumindest extensiv bewirtschaftete Agrarökosysteme zu besiedeln.

8.4.4.3 Beschreibung der ermittelten Artengruppen der drei Grünlandtypen

Für die Darstellung der Artengruppen innerhalb der Kreuztabelle wurden für die Chilopoden sowohl die Nachweise aus den Bodenkernen als auch als die Funde der Bodenfallen betrachtet (**Tab. 120**). Die Notwendigkeit ergibt sich aus der Lebensweise von Vertretern dieser Artengruppe, die teilweise endogäisch, teilweise epigäisch aktiv sind. Wie bei den Diplopoden wurden auch bei den Chilopoden zur Sortierung der Kreuztabelle ausschließlich die Daten der Länderstudie in Bayern berücksichtigt (vgl. Anmerkungen in Kap. 5.4.3.3, 8.4.3.2).

Wie anhand der Kreuztabelle erkennbar ist, enthält keine der drei Biotoptypen charakteristische Differentialarten. Auch mittels Indikatorartenanalyse (ISA) konnten keine diagnostischen Arten ermittelt werden. Als schwache Kennart kann allenfalls *Geophilus ribauti* (vgl. Kap. 8.4.4.2) angesprochen werden, welche

Tab. 120: Sortierte Kreuztabelle der in den Bodenfallen und Bodenstecherproben nachgewiesenen Hundertfüßer (Chilopoda); Angaben in Individuen pro Standort; Bodenfalle/Bodenstecher; Punkte: keine Tiere gefunden; gepunktete Rahmen: schwach kennzeichnende Artengruppen.

		lfd. Nr. 2: Großer Rappenberg		lfd. Nr. 5 lfd. Nr. 6	lfd. Nr. 4: Kümmelwiese lfd. Nr. 5: Ziegenkopf lfd. Nr. 6: Eckardsborn Goldhaferwiese 34.07.02.02			lfd. Nr. 7: Galgenberg lfd. Nr. 8: Bollenkopf lfd. Nr. 9: Schwefeltal Halbtrockenrasen 34.02.01.02.02		
	Flächenkürzel Edaphobase	EB_ST11	EB_ST12	EB_ST13	EB_ST21	EB_ST22	EB_ST23	EB_ST31	EB_ST32	EB_ST33
	lfd. Nr.:	1	2	3	4	5	6	7	8	9
Begleitart	en									
	Geophilus ribauti				0/3		0/5].		
	Lithobius mutabilis	2/0	31/0		13/0		4/0	-	•	
	Schendyla nemorensis		0/1	0/2		0/3		2/2	0/3	0/2
	Geophilus electricus			1/0		0/2	1/2	3/0	1/0	
	Geophilus flavus		0/1	0/1	0/1	0/1	0/3			
	Lithobius calcaratus		4/0						2/0	1/0
	Lithobius crassipes		0/1		0/1	1/0			3/0	
	Lithobius forficatus		1/0					2/0		3/0
	Lithobius nodulipes	1/0	1/0		0/2	•				
	Lithobius microps	1/0				•	1/0			
	Geophilus alpinus			0/1		•	0/1			
	Lithobius curtipes			1/0						
	Strigamia acuminata				1/0					
Artengruj	ppen									
	Lithobius spec.	0/1	3/1	0/1	0/4	2/1	0/4		0/3	
	Geophilus spec.							0/1		

exklusiv auf zwei von drei Goldhaferwiesen gefunden wurde. Lithobius mutabilis und Geophilus flavus konnten relativ stetig sowohl auf den Borstgrasrasen als auch den Goldhaferwiesen, nicht jedoch auf den Halbtrockenrasen erfasst werden. Unregelmäßig in allen Biotoptypen nachgewiesen wurden Schendyla nemorensis, Geophilus electricus und Lithobius crassipes.

Anhand der in **Abb. 108** dargestellten Korrespondenzanalyse wird gezeigt, dass sich die Gemeinschaften der räumlich relativ eng beieinanderliegenden Halbtrockenrasen stark ähneln und eine klar erkennbare Gruppe bilden. Auch die Borstgrasrasen sind sich relativ ähnlich, insofern sie in zwei Fällen relativ individuenarm sind. Die artenreiche Borstgrasrasen-Gemeinschaft des Standortes EB_ST12 mit dem häufigen Auftreten von *Lithobius mutabilis* ist hingegen kaum mit diesen vergleichbar. Relativ unterschiedlich sind

die Chilopoden-Zönosen der Goldhaferwiesen. Die Art Schendyla nemorensis kommt auf allen drei Standorten vor, ansonsten werden diese jedoch durch verschiedene Artkombinationen charakterisiert. Die Varianz der ersten Achse wird durch keinen der aufgenommenen Umweltparameter erklärt, die zweite Achse hingegen korreliert stark mit dem Ellenberg'schen Feuchtewert der Flächen (vgl. **Tab. 104.** Ellenbergzahlen).

Anhand einer Abfrage der Datenbank Edaphobase via Edaphoclass konnten die zehn häufigsten in bestimmten Biotoptypen (34.07 artenreiches Grünland frischer Standorte und 34.02 Halbtrockenrasen (nach Riecken et al. 2003)) erfassten Chilopodenarten ermittelt werden (**Tab. 121**). Acht der zehn aufgeführten Arten sind oberflächenaktiv, was wahrscheinlich eher die bevorzugte Nachweismethode (Bodenfalle) als die tatsächliche Verteilung der Hundertfüßer in

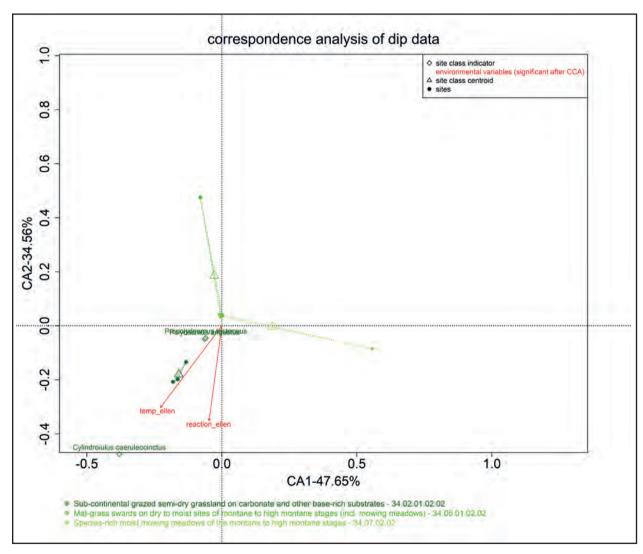


Abb. 108: Korrespondenzanalyse (CA) der Chilopoden-Daten der Biotoptypen Halbtrockenrasen (dunkelgrün), Goldhaferwiese (grasgrün) und Borstgrasrasen (oliv) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 121: Stetigste Chilopodenarten der Biotoptypen 34.06 Borstgrasrasen, 34.07 artenreiches Grünland frischer Standorte und 34.02 Halbtrockenrasen (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 21.03.2018; Angaben der Stetigkeiten der Arten innerhalb des entsprechenden Biotoptyps).

Biotoptyp	34.06	34.07	34.02
Anzahl Standorte	0	4	73
Lithobius forficatus		0,25	0,53
Lithobius calcaratus			0,62
Lithobius crassipes		0,50	0,07
Lithobius erythrocephalus		0,50	0,07
Lithobius macilentus		0,50	0,07
Lithobius muticus			0,37
Lithobius microps		0,25	0,29
Strigamia crassipes		0,25	0,25
Geophilus flavus		0,25	0,15
Schendyla nemorensis			0,21

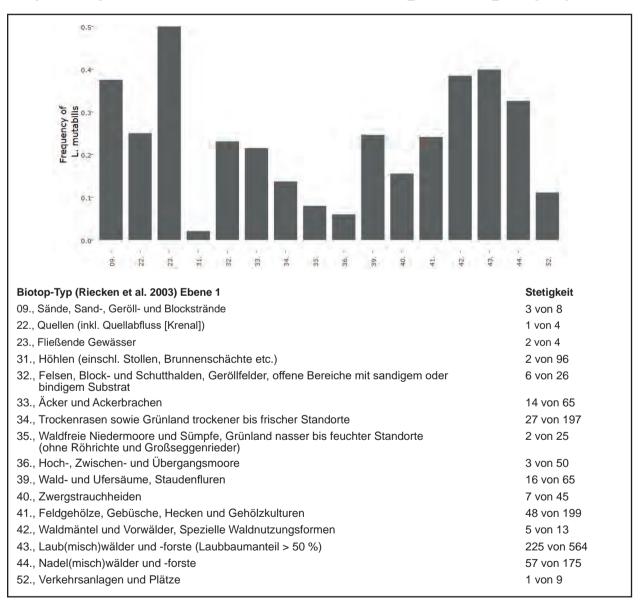
Offenlandlebensräumen widerspiegelt. Wie schon für die Diplopoden liegen auch für Chilopoden außerhalb der Länderstudie keine Nachweise aus Borstgrasrasen vor. Nur vier Untersuchungen gibt es von Standorten, die als artenreiches Grünland eingestuft wurden. Die relativ stetigen Nachweise von Lithobius crassipes, Lithobius erythrocephalus und Lithobius macilentus sind somit evtl. der geringen Stichprobengröße geschuldet. Häufig dagegen sind Datensätze von Halbtrockenrasen. In diesen wurden allerdings nur drei Arten mit einer Stetigkeit > 0,3 erfasst: Lithobius forficatus, Lithobius calcaratus und Lithobius muticus. Alle anderen Arten scheinen Halbtrockenrasen nur mehr oder weniger unregelmäßig zu besiedeln.

Agrarökosysteme, extensiv genutzte, halbnatürliche Formationen wie die untersuchten Grünlandstandorte, waren bisher, mit Ausnahme der Halbtrockenrasen, nur ausgesprochen Gegenstand chilopodenfaunistischer Erhebungen. Daher besitzen die dargestellten Daten, obschon sie nur eine Grundlage bilden und vertiefende Analysen darauf aufbauen sollten, eine hohe Relevanz. Ähnlich wie die Diplopoden reagieren Chilopoden sehr empfindlich auf die regelmäßigen Störungen in Agrarökosystemen, weshalb sie dort im Vergleich zu anderen Habitaten in der Regel arten- und individuenarm auftreten (Wolters & Ekschmitt 1997). So fanden bspw. Schmitt & Roth (1999) nur 1-2 Arten auf Löss-Äckern und intensiv genutztem Grünland. Generell sind Chilopoden lichtscheu, feuchtigkeitsliebend und schwerpunktmäßig in den Streu- oder Bodenschichten von Wäldern verbreitet (Rosenberg 2009). Dessen ungeachtet können sie auf heterogenen, extensiv genutzten Halbtrockenrasen aufgrund zahlreicher sich bietender Mikrohabitate und Mikroklimate sowie überwiegender Nachtaktivität in

nicht geringer Artenzahl von bis zu 10 Taxa auftreten (Matic et al. 1979, Becker 1982, Voigtländer 2003). Mit 3-7 Arten wurden diese Zahlen auch auf den drei Grünlandtypen der vorliegenden Studie nahezu erreicht, wobei die bisher nicht oder selten untersuchten Borstgrasrasen und Goldhaferwiesen artenreicher waren als die Halbtrockenrasen.

Die bisherigen Untersuchungen der Chilopoden-Zönosen auf Halbtrockenrasen liefern ein relativ variables Bild über die typischen Gemeinschaften dieses Biotoptyps. Als Charakterart fanden bspw. Becker (1982), Voigtländer & Dunger (1998), Voigtländer (2003) und Voigtländer & Decker (2014) Lithobius calcaratus an nahezu allen von ihnen beprobten Halbtrockenrasen-Standorten. In der Länderstudie war die Art auf zwei der drei Halbtrockenrasen und auf einem Borstgrasrasen anzutreffen. Gleiches gilt für Lithobius forficatus, wobei die Art bei Voigtländer & Decker (2014) im FFH-Gebiet "Huy nördlich Halberstadt" nur in einem der vier untersuchten Halbtrockenrasen nachgewiesen wurde, hier jedoch auch in den anderen Habitaten ungewöhnlich individuenschwach vertreten war. Wie bei Voigtländer (2003) beschrieben, werden viele andere Arten nur unregelmäßig erfasst. Dabei können einige Arten, wie insbesondere Lithobius microps und Lithobius muticus, auch stellenweise dominant auftreten, während sie auf vielen anderen Standorten fehlen.

8.4.4.4 Charakterisierung der Biotoptypen anhand der zoologischen Daten


Borstgrasrasen

Ähnlich wie bei den Diplopoden war der Borstgrasrasen am Großen Rappenberg EB_ST12 mit

sieben hier gefundenen Arten der artenreichste Standort dieses Biotoptyps, wobei der diesbezügliche Unterschied vergleichsweise gering ausfällt. Auch die Artenzusammensetzung der drei Standorte unterschied sich, wobei xerophile Arten am häufigsten auftraten (vgl. Voigtländer 2005). Die einzige als hygrophil geltende Art, *Lithobius curtipes*, wurde mit einem Exemplar am Pfeifferberg (EB_ST13) gefunden. Auffällig ist die hohe Aktivität von *Lithobius mutabilis* am nur einmalig gemähten Standort EB_ST12. Die Art gilt als weit verbreitet und eurytop (Voigtländer 2005), bewohnt aber schwerpunktmäßig Wälder (Abb. 109) und könnte am Großen Rappenberg durch dichteren Bewuchs infolge des Spätschnitts gefördert worden sein.

Goldhaferwiese

Die Hunderfüßer-Gemeinschaften der Goldhaferwiesen sind durch das Vorkommen einiger eurytoper Arten wie z. B. Geophilus flavus und Lithobius crassipes (Voigtländer 2005) geprägt. Das Auftreten der xerophilen Arten Schendyla nemorensis und Geophilus electricus (Voigtländer 2005) weist darauf hin, dass auch in den Goldhaferwiesen trocken-warme Mikroklimata existieren. Insbesondere der Standort EB_ST22 war Lebensraum für diese trockenheitsresistenten Arten. Darüber hinaus profitieren auch sonst eher Waldbiotope bevorzugende Arten wie beispielsweise Lithobius mutabilis und Geophilus ribauti, die an den Standorten EB ST21 und EB ST23 gefangen wurden

Abb. 109: *Lithobius mutabilis*: Angegeben ist die Stetigkeit des Vorkommens innerhalb von Biotoptypen erster Ebene nach Riecken et al. (2003) (419 Nachweise an 1630 Standorten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 22.03.2018).

(Kap. 8.4.4.2), vom heterogenen Aufbau der extensiv bewirtschafteten Wiesen.

Halbtrockenrasen

Generell wurden vor allem xerophile Arten, wie u. a. *Schendyla nemorensis*, *Geophilus electricus* und *Lithobius calcaratus*, auf den Halbtrockenrasen gefunden (vgl. Voigtländer 2005). Sie repräsentieren die Feuchtebzw. Wärmeverhältnisse der exponierten, kurzrasigen Halbtrockenrasen-Standorte.

6.4.5 Lumbricidae

8.4.5.1 Allgemeine Angaben zu Individuenund Artenzahlen

An den neun untersuchten Standorten wurden bei den beiden Probenahmen im Frühjahr und Herbst 2015 in toto 1688 Regenwürmer aus 10 Arten bzw. 5 Gattungen gefunden (**Tab. 122**, **Tab. Anhang 5**). Eine detaillierte Darstellung, aufgeschlüsselt nach den jeweils drei Standorten pro Biotoptyp, ist den Anhangstabellen 62-64 zu entnehmen.

Die meisten Lumbriciden wurden in den drei Goldhaferwiesen (insgesamt 1065 Individuen) gefangen, während ihre Zahl an den beiden Rasenstandorttypen um ca. den Faktor 3 (Borstgrasrasen: Insgesamt 378 Individuen) bzw. den Faktor 4 (Halbtrockenrasen: Insgesamt 245 Individuen) niedriger lag. Ähnlich hoch war hingegen die Artenzahl (Borstgrasrasen-Standorte: 10; Goldhaferwiesen: 9; Halbtrockenrasen: 8). Die

drei Borstgrasrasen unterschieden sich hinsichtlich Abundanz (maximal Faktor 2,6) und Artenzahl (in toto 4-8), zwischen den Probenahmezeitpunkten pro Standort jedoch kaum (< Faktor 2). Die Goldhaferwiesen waren dagegen überaus homogen: Hier lagen sowohl Abundanz als auch Artenzahl zwischen den drei Standorten und zwischen beiden Probenahmen am selben Standort in allen Fällen um einen Faktor < 2 auseinander. Ähnlich verhielt es sich auf den drei Halbtrockenrasen, mit zwei Ausnahmen: Die Gesamtartenzahl war am Standort EB ST31 deutlich höher als an den übrigen Standorten. Zudem war die Abundanz am Standort EB ST33 im Frühjahr 2015 um den Faktor 4 niedriger als im Herbst. Auch auf den beiden anderen Halbtrockenrasen war die Abundanz im Frühjahr niedriger, jedoch weniger ausgeprägt (< Faktor 2).

64.52 Beschreibung der ermittelten Artengruppen in den drei untersuchten Biotoptypen in Sachsen-Anhalt

In **Tab. 123** sind die Lumbricidenarten mit ihren Abundanzen nach der Häufigkeit ihres Vorkommens in den Biotoptypen geordnet. Bezogen auf die Gesamtabundanz der adulten Tiere waren die drei häufigsten Arten (in abnehmender Reihenfolge) *Aporrectodea caliginosa*, *Octolasion tyrtaeum* und *Aporrectodea rosea*, die zusammen 75 % dieser Altersklasse bzw. 32 % aller Regenwürmer stellten. Eingerahmt und damit vorläufig

Tab. 122: Arten- und Individuenzahlen der Lumbricidae auf den Untersuchungsflächen in Sachsen-Anhalt.

			Individu	enzahlen		Artenza	ahlen	
	ST11	Frühjahr	95	178		6	6	,
	5111	Herbst	83	1/0		5	U	
Borstgras-	ST12	Frühjahr	26	68	378	6	8	10
rasen		Herbst	42	00	378	5	0	10
	ST13	Frühjahr	82	132		4	4	
		Herbst	50	132		2		
	ST21	Frühjahr	153	308		8	9	,
	3121	Herbst	155	300		7	9	
Goldhafer-	ST22	Frühjahr	220	441	1065	7	8	9
wiese	3122	Herbst	221		1003	5	8	9
	ST23	Frühjahr	117	216		8	8	
	5123	Herbst	199	316		6		
	ST31	Frühjahr	33	88		4	7	
	5131	Herbst	55	00		5	/	
Kalkmager-	GT22	Frühjahr	34	92	245	3	2	8
rasen	ST32	Herbst	58	92	245	3	3	8
	ST33	Frühjahr	13	65		2	3	
		Herbst	52	65		3	3	
Sachsen-Anhalt 2015		Individu	Individuenzahl gesamt: 1688			Artenzahl gesamt: 10		

als charakteristisch eingestuft sind Arten, die in zwei oder drei Replikaten eines Biotoptyps gefunden wurden, wobei die Gruppierung so vorgenommen wurde, dass Ähnlichkeiten und Unterschiede zwischen den drei untersuchten Biotoptypen hervorgehoben werden. Zugleich wurden Ähnlichkeiten und Unterschiede innerhalb eines Biotoptyps, d. h. zwischen den Replikaten, sichtbar gemacht. Jungtiere wurden bei diesem Ansatz nicht berücksichtigt, da sie an praktisch allen Standorten Tiere aus verschiedenen Arten enthalten können.

Anhandder Kreuztabelle sowie der Indikatorarten analyse • lassen sich folgende Artengruppen identifizieren:

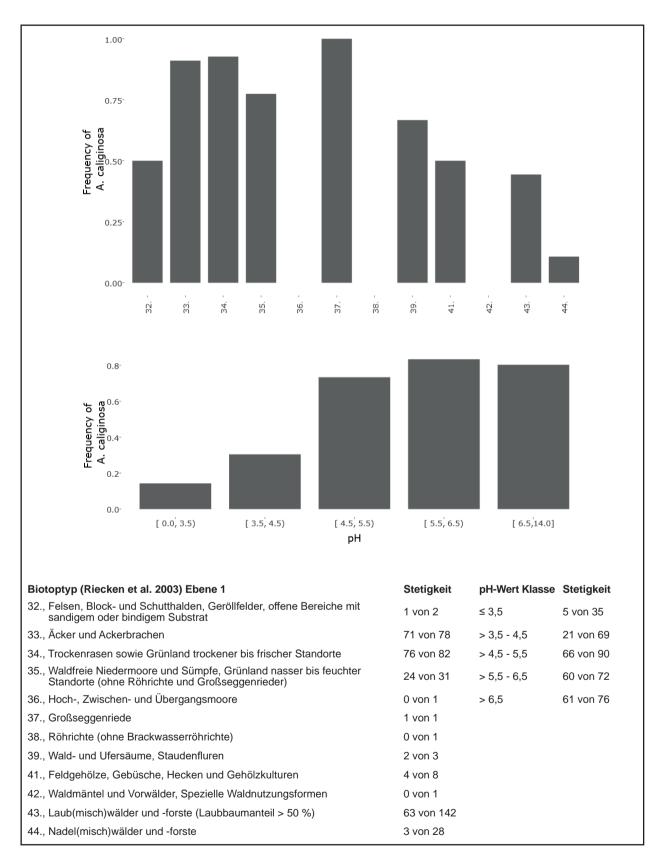
 Aporrectodea caliginosa, Aporrectodea rosea und Lumbricus terrestris bilden eine Säuregruppe für schwach saure bis neutrale Standorte. A. caliginosa

- wurde auf allen Borstgrasrasen und Goldhaferwiesen sowie einem Halbtrockenrasen nachgewiesen. *A. rosea* trat in allen drei Biotoptypen an mindestens zwei von drei Standorten auf. *L. terrestris* war auf allen drei Goldhaferwiesen sowie jeweils einem Standort der übrigen Biotoptypen vertreten.
- Als unter den Regenwürmern einzige Grundart (für Grasland- und Waldstandorte) kann *Lumbricus rubellus* angesehen werden. Sie wurde an allen Standorten bis auf einen Halbtrockenrasen nachgewiesen.
- Alle übrigen Regenwurmarten (Dendrobaena attemsi, Dendrobaena octaedra, Dendrodrilus rubidus, Lumbricus castaneus, Octolasion cyaneum, Octolasion tyrtaeum) können an diesen Standorten als sporadische Begleitarten angesehen werden.

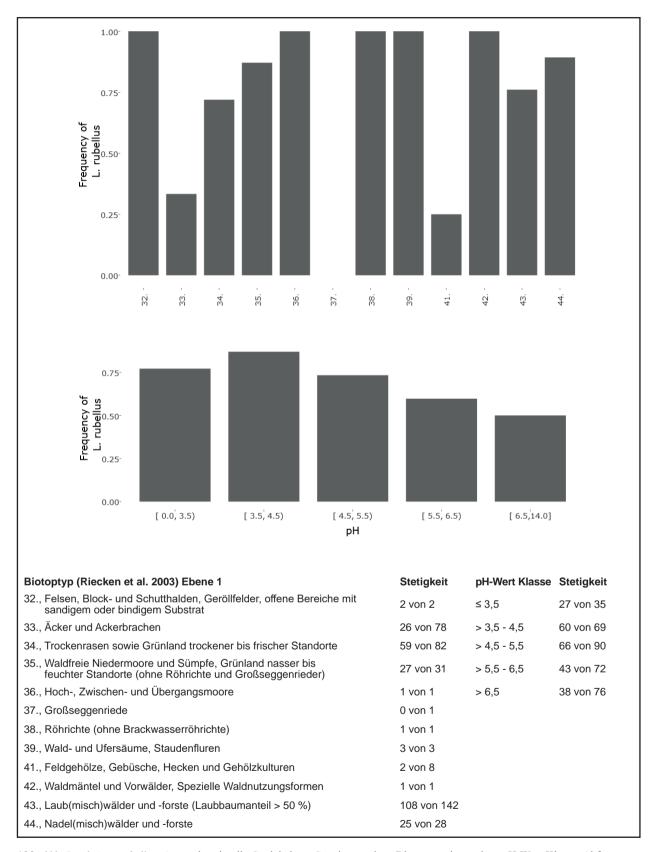
Tab. 123: Sortierte Kreuztabelle der Lumbriciden. Angaben in Ind./m². Angabe des Biotoptyps nach Riecken et al. (2003).

	lfd. Nr. 2 lfd. Nr. 3 B	lfd. Nr. 2: Großer Rappenberg 1f		lfd. Nr. 5 lfd. Nr. 6 G	l: Kümmel 5: Ziegenko 6: Eckardsb oldhaferw 34.07.02.0	opf orn iese 2	lfd. Nr. 7: Galgenberg lfd. Nr. 8: Bollenkopf lfd. Nr. 9: Schwefeltal Halbtrockenrasen 34.02.01.02.02		pf tal asen 02
Flächenkürzel Edaphobase	EB_ST11	EB_ST12	EB_ST13	EB_ST21	EB_ST22	EB_ST23	EB_ST31	EB_ST32	EB_ST33
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Säuregruppen									
schwach saure bis neutrale Stand	dorte						_		
Aporrectodea caliginosa	9,2	3,6	16,8	24	24	17,6	0,8	٠	•
Aporrectodea rosea	10,4	0,4	•	2,4	11,2	2,4	12,8		9,6
Lumbricus terrestris			3,6	1,6	0,8	0,4	0,4		
Grundarten									
Grasland- und Waldstandorte									
Lumbricus rubellus	1,6	2	3,2	5,6	16,4	6,8	0,4	0,4	
Begleitarten									
sonstige Begleiter									
Dendrobaena attemsi	6	1,2		0,4	2	0,4			
Dendrobaena octaedra		0,8		0,4	0,4				
Dendrodrilus rubidus		0,4							
Lumbricus castaneus	2,4	1,2		2,4	0,4	5,6	0,4		
Octolasion cyaneum			0,4	1,2		2,0	2		
Octolasion tyrtaeum	3,2	0,4		14,4	19,6	7,2	4,4	15,2	7,2
Juvenile Lebensstadien									
Aporrectodea sp. sensu lato	20	8,4	18	31,2	64	45,6	8	3,6	3,2
Dendrobaena sp.	1,6	1,6		1,2	2,8		0,8		
Lumbricus sp.	7,6	5,2	6,4	9,2	12,8	16,4	1,2	6	0,4
Octolasion sp.			0,4	14,4	3,6	11,6	2,4	9,6	4
endogäische Adulte	22,8	4,4	17,2	42	54,8	29,2	20	15,2	16,8
epigäische Adulte	10	5,6	3,2	8,8	19,2	12,8	0,8	0,4	
anözische Adulte			3,6	1,6	0,8	0,4	0,4		
Total	71,2	27,2	52,8	123,2	176,4	126,4	35,2	36,8	26
Artenzahl	6	8	4	9	8	8	7	3	3

In der Indikatorartenanalyse (**Tab. 124**) wurde keine Art identifiziert, die für einen der Biotoptypen als relevant und signifikant eingestuft wurde. Am nächsten kam dem noch *Lumbricus rubellus* aufgrund seiner hohen Stetigkeit und relativen Abundanz in den Goldhaferwiesen. Dies ist somit eine zusätzliche Information zu der Darstellung der Artengruppen in den sortierten Kreuztabellen, in denen die Abundanz nicht berücksichtigt wird. In den Halbtrockenrasen waren die Indikatorwerte pro Art jeweils niedriger als in den beiden anderen Biotoptypen, so dass diesem Biotoptyp keine Arten zugeordnet wurden.


Mit Hilfe des in das Edaphobase-Portal integrierten Auswerte-Werkzeugs Edaphostat (Hausen et al. 2017) können die ökologischen Profile der im Datenbestand enthaltenen Arten angezeigt werden. Es wurden Daten von Standorten in Deutschland ausgewählt, an denen das Artenspektrum der Lumbriciden quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung auch Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Damit standen Daten von insgesamt 407 Standorten für 32 verschiedene Lumbricidenarten zur Verfügung. Für den Vergleich mit Daten von den untersuchten Standorten in Sachsen-Anhalt werden beispielhaft zwei Arten hervorgehoben:

Aporrectodea caliginosa als diejenige Art mit dem insgesamt höchsten Dominanzanteil und Lumbricus rubellus, der an acht von neun untersuchten Standorten nachgewiesen wurde und den höchsten Indikatorwert aller Arten aufwies. Als Standortfaktoren werden exemplarisch zwei dargestellt, die für die vorliegende Untersuchung als besonders relevant angesehen werden können: Biotoptyp (1. Ebene) sowie Boden pH-Wert. Aus Abb. 110 und 111 wird ersichtlich, dass die in Sachsen-Anhalt gemachten Beobachtungen konsistent mit den ökologischen Profilen beider Arten sind. A. caliginosa ist eine Art mit einer klaren Präferenz für schwach saure bis neutrale Standorte, bzw. vorwiegend für Offenlandstandorte sowie einige Laubwälder, jedoch nur sehr selten für Nadelwälder. Demgegenüber dürfte L. rubellus unter den Lumbriciden diejenige Art mit der breitesten ökologischen Toleranz sein, die (mit Ausnahme von Ackerstandorten) in verschiedenen Biotoptypen mit unterschiedlichen Bodeneigenschaften, wie u. a. dem pH-Wert, mit hoher Stetigkeit auftritt.


Das CA-Diagramm (Abb. 112) visualisiert die Unterschiedlichkeit der drei Biotoptypen. Demnach korreliert die anhand der Regenwurmgemeinschaft festgelegte Anordnung der Standorte im Diagramm mit der Textur, d. h. dem Schluff- und Sandgehalt des Bodens. Es zeigt sich eine klare Trennung der drei Biotoptypen. Der homogenste Biotoptyp war dabei die

Tab. 124: Indikatorwerte (indicator_value) der Lumbriciden-Arten der Biotoptypen Borstgrasrasen, Goldhaferwiese und Halbtrockenrasen sowie die entsprechenden relativen \overline{A} bundanzen (rel_abundanze) und Stetigkeiten (rel_frequency). Ein Indikatorwert > 0.8 wird als relevant angesehen und ist signifikant bei einer Irrtumswahrscheinlichkeit (pvalue) ≤ 0.1 . Angabe des Biotoptyps nach Riecken et al. (2003).

	indicator_value	pvalue	rel_abundance	rel_frequency
34.06.01.02.02	Borstgrasrasen			
Dendrobaena attemsi	0,48	0,48	0,72	0,67
Dendrodrilus rubidus	0,33	1,00	1,00	0,33
34.07.02.02	Goldhaferwiese			
Aporrectodea sp. sensu lato	0,70	0,05	0,70	1,00
Aporrectodea caliginosa	0,68	0,05	0,68	1,00
Aporrectodea rosea	0,33	0,84	0,33	1,00
Dendrobaena octaedra	0,33	0,70	0,50	0,67
Dendrobaena sp.	0,33	0,76	0,50	0,67
Lumbricus castaneus	0,68	0,24	0,68	1,00
Lumbricus rubellus	0,79	0,05	0,79	1,00
Lumbricus sp.	0,59	0,05	0,59	1,00
Lumbricus terrestris	0,41	0,54	0,41	1,00
Octolasion cyaneum	0,38	0,68	0,57	0,67
Octolasion tyrtaeum	0,58	0,17	0,58	1,00
Octolasion sp.	0,64	0,13	0,64	1,00
34.02.01.02.02	Halbtrockenrasen			

Abb. 110: Aporrectodea caliginosa: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.04.2018).

Abb. 111: Lumbricus rubellus: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps bzw. einer pH-Wert-Klasse. Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 27.04.2018).

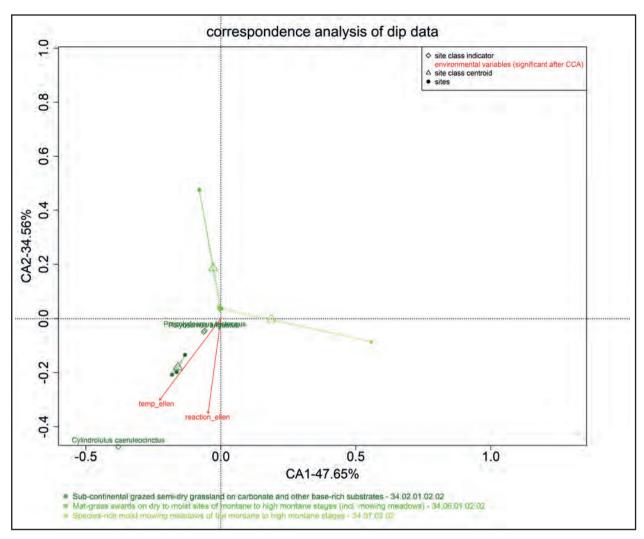


Abb. 112: Korrespondenzanalyse (CA) der Lumbricidendaten der Biotoptypen Borstgrasrasen (grün), Goldhaferwiese (hellgrün) und Halbtrockenrasen (dunkelgrün) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Goldhaferwiese, die auch die höchste Diversität und Abundanz zeigte. Die Halbtrockenrasen sind aufgrund ihrer insgesamt geringeren Artenzahl und speziell wegen des Fehlens von *Dendrobaena*-Arten von den beiden anderen Biotoptypen abgesetzt. Die Borstgrasrasen haben insgesamt eine geringere Regenwurm-Abundanz und einzelne Taxa zeigen eine geringere Stetigkeit als in den Goldhaferwiesen, wie z. B. *Lumbricus terrestris* oder *Octolasion* sp.

8.4.5.3 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Mit dem Edaphobase-Auswerte-Werkzeug Edaphoclass lässt sich aus dem in Edaphobase enthaltenen Datenbestand ein Vergleich der in Sachsen-Anhalt

untersuchten Standorten zu anderen Standorten des gleichen Biotoptyps (2. Ebene) vornehmen (Tab. 125). Voraussetzung für die Vergleichbarkeit ist, dass das Artenspektrum der Lumbriciden dort quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung zudem Daten von Experimentalflächen (z. B. denen aus ökotoxikologischen Untersuchungen). Nach der nach diesen Kriterien erfolgten Filterung standen 6 Standorte des Biotoptyps 34.07: artenreiches Grünland frischer Standorte, für einen Vergleich zur Verfügung. Für die beiden anderen Biotoptypen lagen auf der 2. Biotoptypen-Ebene leider keine Daten von weiteren Standorten vor. Daher konnten für einen Vergleich nur Standorte der höheren 1. Ebene (Biotoptyp 34.: Trockenrasen sowie Grünland trockener

bis frischer Standorte) herangezogen werden, von denen 87 zur Verfügung standen. Für diese Standorte wurde die Stetigkeit der Lumbricidenarten berechnet. Diese Stetigkeit ist somit ein Maß dafür, mit welcher Wahrscheinlichkeit eine einzelne Art an einem Standort des jeweiligen Biotoptyps erwartet werden kann.

Borstgrasrasen

Für diesen Biotoptyp (2. Ebene) standen in Edaphobase leider keine weiteren Standorte für einen Vergleich zur Verfügung. Aus den in Tab. 125 enthaltenen Werten ist erkennbar, dass an Standorten des Biotoptyps 34. (d. h. der 1. Ebene) vier Arten mit einer hohen Wahrscheinlichkeit erwartet werden können: Aporrectodea caliginosa, Aporrectodea rosea. Lumbricus rubellus Lumbricus terrestris. Es ist jedoch unklar, inwieweit diese Erwartungswerte auch für stärker differenzierte Biotoptypen der tieferen Ebenen repräsentativ sind. Von diesen vier Arten wurden A. caliginosa und L. rubellus auch an allen drei Standorten in Sachsen-Anhalt nachgewiesen. A. rosea wurde an zwei Standorten gefunden, fehlte jedoch am Standort Pfeifferberg. Dort wurde hingegen als einzigem der drei Standorte L. terrestris gefangen. An den Standorten Rhumwiese

Tab. 125: Angaben der Stetigkeiten der Lumbricidenarten innerhalb der Biotoptypen 34.07 artenreiches Grünland frischer Standorte und 34. Trockenrasen sowie Grünland trockener bis frischer Standorte(nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 25.04.2018).

Biotoptyp	34.	34.07	
Anzahl Standorte	87	6	
A. caliginosa	0,93	1,00	
A. chlorotica	0,45	0,83	
A. jassyensis	0,01		
A. limicola	0,11	0,17	
A. longa	0,14	0,50	
A. rosea	0,72	1,00	
A. thaleri	0,01		
D. octaedra	0,15		
D. rubidus	0,09	0,33	
E. tetraedra	0,10	0,17	
L. badensis	0,01		
L. castaneus	0,38	0,50	
L. festivus	0,01		
L. rubellus	0,70	1,00	
L. terrestris	0,63	1,00	
M. minuscula	0,03		
O. cyaneum	0,21		
O. tyrtaeum	0,45	0,83	
P. antipae	0,05		

und Großer Rappenberg traten zusätzlich Dendrobaena attemsi, Lumbricus castaneus und Octolasion tyrtaeum auf. Außerdem kamen am Standort Großer Rappenberg noch Dendrobaena octaedra und Dendrodrilus rubidus sowie am Standort Pfeifferberg Octolasion cvaneum vor. Mit Ausnahme von D. attemsi ist das Auftreten dieser weiteren Arten nicht überraschend. D. attemsi wurde im bislang in Edaphobase enthaltenen Datenbestand an keinem anderen Standort dieses Biotoptyps (1. Ebene) nachgewiesen. Die dominanteste Art war für die Standorte Großer Rappenberg und Pfeifferberg A. caliginosa (36 % bzw. 70 % der Adulti), am Standort Rhumwiese war dies A. rosea (32%). Das Artenspektrum war somit zwischen den drei Standorten teilweise unterschiedlich. Insbesondere der Standort Pfeifferberg wich von den beiden übrigen Standorten ab. Hinsichtlich der Gesamtabundanz zeigten sich zwischen den Standorten hingegen keine starken Unterschiede (maximal Faktor 2,6). Insgesamt lässt sich schlussfolgern, dass die drei Borstgrasrasen-Standorte keine besonderen Auffälligkeiten vorbehaltlich der Tatsache zeigten, dass in Edaphobase keine Standorte des gleichen Biotoptyps (2. Ebene) zum direkten Vergleich zur Verfügung standen.

Goldhaferwiese

Gemäß der in Tab. 125 angegeben Stetigkeiten der verschiedenen Arten können an Standorten dieses Biotoptyps (2. Ebene) sechs Arten mit sehr hoher Wahrscheinlichkeit erwartet werden: Allolobophora chlorotica, Aporrectodea caliginosa, Aporrectodea rosea, Lumbricus rubellus, Lumbricus terrestris sowie Octolasion tyrtaeum. Mit Ausnahme von A. chlorotica wurden diese auch an allen drei Standorten in Sachsen-Anhalt nachgewiesen. Zusätzlich wurden an jeweils zwei bis drei Standorten Dendrobaena attemsi, Dendrobaena octaedra, Lumbricus castaneus sowie Octolasion cyaneum gefunden. Von diesen wurden an den sechs Vergleichsstandorten D. attemsi, D. octaedra und O. cyaneum bislang nicht nachgewiesen. Dies ist jedoch insbesondere angesichts der schmalen Vergleichsdatenlage nicht als Auffälligkeit zu bewerten. Die dominanteste Art war für alle drei Standorte A. caliginosa (46 %, 32 % bzw. 42 % der Adulti). Die drei Goldhaferwiesen ähnelten sich somit im Artenspektrum und der Gesamtabundanz insgesamt sehr stark und sind als typisch für diesen Biotoptyp anzusehen.

Halbtrockenrasen

Wie bereits bei den Borstgrasrasen standen auch für diesen Biotoptyp (2. Ebene) in Edaphobase keine Daten weiterer Standorte für einen Vergleich zur Verfügung. Somit musste erneut auf die Daten von Standorten

des Biotoptyps 34., also der 1. Ebene, zurückgegriffen Bollenkopf und Schwefeltal auffällig niedrig. Eine werden, mit den o. g. möglichen Einschränkungen ihrer Repräsentativität für stärker differenzierte Biotoptypen. Vier Arten können dort mit einer hohen Wahrscheinlichkeit erwartet werden (Tab. 125): Aporrectodea caliginosa, Aporrectodea rosea, Lumbricus rubellus und Lumbricus terrestris. Von diesen wurden nur am Standort Galgenberg alle vier gefunden, während am Standort Bollenkopf nur L. rubellus und am Standort Schwefeltal nur A. rosea nachgewiesen wurden. An diesen beiden Standorten wurden jedoch auch juvenile Exemplare der Gattungen Allolobophora/Aporrectodea (Aporrectodea sensu lato) und Lumbricus gefunden, sodass jeweils mindestens eine weitere Art vorhanden war. Am Standort Galgenberg traten zusätzlich noch Lumbricus castaneus, Octolasion cyaneum, Octolasion tyrtaeum sowie Juvenile der Gattung Dendrobaena (d. h. eine weitere Art) auf. O. tyrtaeum wurde auch an den beiden übrigen Standorten gefunden. Somit weist der Standort Galgenberg ein deutlich breiteres Artenspektrum auf als die beiden anderen Halbtrockenrasen, die sich insbesondere angesichts der gefundenen Juvenilen recht stark ähnelten. Die dominanteste Art war für die Standorte Galgenberg und Schwefeltal A. rosea (60% bzw. 57% der Adulti), am Standort Bollenkopf war dies O. tyrtaeum (97%). Die Gesamtabundanz war dagegen zwischen den drei Standorten ähnlich hoch. Es wurden insgesamt keine Arten gefunden, die an Graslandstandorten gar nicht erwartet wurden. Insgesamt erscheint die Artenzahl an den Standorten

abschließende Beurteilung ist jedoch nicht möglich, da in Edaphobase keine Standorte des gleichen Biotoptyps (2. Ebene) zum direkten Vergleich zur Verfügung standen.

8.4.6 **Enchytraeidae** Allgemeine Angaben zu Indiviuen-8.4.6.1 und Artenzahlen

Insgesamt wurden auf allen untersuchten Flächen 21.012 Individuen aus 66 Arten und 13 Gattungen nachgewiesen (Tab. 126, 127, Tab. Anhang 6, 65-67). Darunter sind 11 unidentifizierte Formen, die großteils neue Arten darstellen. Die hohe Zahl noch unbeschriebener, d. h. potentiell neuer Arten ist bei Enchytraeiden nicht ungewöhnlich - die taxonomische Durcharbeitung dieser Gruppe ist noch immer unzureichend. Viele dieser neuen Formen sind zwar bereits aus anderen Untersuchungen bekannt; ihre hohe Zahl ist dennoch bemerkenswert.

Der individuenreichste Biotoptyp waren die drei Borstgrasrasen mit insgesamt 10.317 Individuen, der individuenärmste die Halbtrockenrasen mit insgesamt 4043 Exemplaren. Letzterer wies auch die stärksten Schwankungen der Individuenzahl zwischen den drei Flächen auf. Innerhalb einer Fläche unterschieden sich die Individuenzahlen zwischen Frühjahrs- und Herbstprobenahme jedoch lediglich um den Faktor 1.1-2.4.

Tab. 126: Arten- und Individuenzahlen der Enchytraeidae auf den Untersuchungsflächen in Sachsen-Anhalt.

			Individue	enzahlen		Artenza	hlen	
	ST11	Frühjahr	1480	2802		19	22	
		Herbst	1322	2002		20	22	
Borstgras-	GT-10	Frühjahr	2871	4024	10317	14	18	29
rasen	ST12	Herbst	1153	4024	1031/	14	18	29
	ST13	Frühjahr	1938	3491		10	14	
	5113	Herbst	1553	3491		14	14	
•	ST21	Frühjahr	1311	1998	6652	29	36	
		Herbst	687			33	30	
Goldhafer-	ST22	Frühjahr	960	2145		31	36	51
wiese		Herbst	1185			30	30	
	ST23	Frühjahr	1416	2509		27	34	
		Herbst	1093			23	34	
	ST31	Frühjahr	1067	1646		22	24	
	3131	Herbst	579	1040		20	24	
Kalkmager-	ST32	Frühjahr	455	795	4043	13	16	27
rasen	8132	Herbst	340	/93	4043	14	10	21
	ST33	Frühjahr	854	1602		14	16	
		Herbst	748	1002		13	10	
Sachsen-Anhalt 2015			Individue	enzahl gesam	nt: 21012	Artenza	hl gesamt: 66	

Tab. 127: Sortierte Kreuztabelle der Enchytraeidae. Angaben in Ind./m2. Angaben des Biotoptyps nach Riecken et al. (2003).

	lfd. Nr. lfd. Nr. I	3: Pfeifferb Borstgrasra 34.06.01.02	Rappenberg erg asen .02	lfd. Nr. lfd. Nr. (4: Kümme 5: Ziegenk 6: Eckards foldhaferv 34.07.02.	copf born wiese .02	lfd. Nr. lfd. Nr. H a	7: Galgent 8: Bollenk 9: Schwef albtrocker 34.02.01.0	copf eltal nrasen 2.02
Flächenkürzel Edaphobase						2 EB_ST23			
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Kennarten									
Borstgrasrasen				7					
Achaeta parva	305	284	102	142	•	•		•	•
Goldhaferwiesen							_		
Achaeta sp. (BUUS)				81	1340	1096	·		
Achaeta unibulba				41	305	41	-		
Cernosvitoviella sp.				345	20		-	•	
Enchytronia baloghi	41	•		711	203	203	-		•
Hemifridericia parva				365	325		.		
Marionina deminuta				1035	1360	41	<u>]</u> .		
Halbtrockenrasen									
Achaeta eiseni							122	1482	325
Bryodrilus librus							974		2111
Fridericia lenta							3329	2071	3898
Fridericia maculatiformis							61	4040	2598
Fridericia sp. (ALAT)							4608	1137	6090
iuregruppen									
sauer									
Cognettia chlorophila	9216	24198	32887	731	934	2578	٦.		
Enchytronia sp. (TENU)	1340	1482	914	690	771	589	1.		
Oconnorella tubifera	17418	8993	6374	1401	3471	3248			
Achaeta affinis	3126	1868	10252	1.01		142	1.	·	·
Enchytraeus norvegicus	12180	3573	4791		•	690		·	·
Oconnorella cambrensis	1259	11023	1076		•	20		•	•
schwach sauer, Grünland/Wald		11023	1070	⊥ ∶	· ••••••••	20	. <u>:</u> ·	•	•
				1200	264	406	T ₁₁₅₇		1502
Fridericia bisetosa	487			. 1380	264	406	1157	61	1583
Fridericia dura	365	853		. 792	223	325	<u> </u>	.	
Grünland, basenreich, frisch							:-:		
Fridericia christeri	•	•		•	•		305	690	3167
Marionina communis		•					832	406	1076
Henlea ventriculosa							2091	.	
Offenland, basenreich							_		
Fridericia galba				2659	954	20			
rundarten									
Offenland									
Enchytraeus bulbosus	1624			284	41	102	1462	1807	1360
Enchytronia sp. (MINO)				1543	61		102	690	
egleitarten	•••••						1		
Begleitarten mit hoher Stetigkeit									
Buchholzia appendiculata	264			2923	1320	6659	10556	792	7288

Tab. 127 (Forsetzung).

	lfd. Nr. 1: Rhumwiese lfd. Nr. 2: Großer Rappenberg lfd. Nr. 3: Pfeifferberg Borstgrasrasen 34.06.01.02.02			lfd. Nr. 4: Kümmelwiese lfd. Nr. 5: Ziegenkopf lfd. Nr. 6: Eckardsborn Goldhaferwiese 34.07.02.02			lfd. Nr. 7: Galgenberg lfd. Nr. 8: Bollenkopf lfd. Nr. 9: Schwefeltal Halbtrockenrasen 34.02.01.02.02		
Flächenkürzel Edaphobase	EB_ST11	EB_ST12	EB_ST13	EB_ST21	EB_ST22	EB_ST23	EB_ST31	EB_ST3	2 EB_ST
lfd. Nr.:	1	2	3	4	5	6	7	8	9
Enchytraeus buchholzi	426	122	792	11389	12140	12343	1238	162	122
Enchytraeus sp. (FGRA)			•	325	954	792	20		102
Enchytraeus sp. (GRAN)	670	1604	264	2335	974	2071	162	264	
Enchytronia parva	5826	17803	8567	3329	3796	6192	183		
Fridericia connata	487	20		2456	487	954	1340		
Fridericia paroniana				122		284	832	1583	731
sonstige Begleiter									
Achaeta camerani		8161				7653			
Achaeta bibulba			832			61	41		
Achaeta bohemica						81			
Achaeta danica		1462	508			832			
Achaeta sp.			20						
Achaeta sp. (DZWI)				162					
Achaeta sp. (HEAL)				284					
Achaeta sp. (MINI)								81	
Buchholzia fallax								20	
Cognettia chalupskyi					142				
Cognettia cognettii		122							
Cognettia varisetosa			609		589	284			
Enchytraeus lacteus				122	61				
Enchytronia sp. (OMNI)		•	·	203	609	·	•	·	·
Fridericia benti	20	•	•	203	122	1766	•	•	
Fridericia bulboides	1157	61	•	203		995	•	•	81
Fridericia cylindrica	1137	01	2883	20	81	203	•	·	01
Fridericia deformis	•	•	2003	20	183	203	•		•
Fridericia isseli	•	•	•	305	103		•		•
	•	•	•	303	•		. 41	•	•
Fridericia nix Fridericia ratzeli s.s.	305	•	•	325	142	20	41	•	•
Fridericia raizeti s.s. Fridericia schmelzi	505	•	•	244	223	81	•	•	
Friaericia schmeizi Fridericia semisetosa	•	•		∠ 44	443			•	•
	•	•					122		•
Fridericia striata	•	•	•	325		•		. 052	
Fridericia sylvatica	•	•	•				2517	853	1746
Fridericia ulrikae		•		2558	5806	61			
Henlea perpusilla	223			•	122		1177		244
Marionina clavata	20	20			61		•		•
Marionina mendax	•	•		386	5319		•	•	
Marionina sambugarae					81		•		
Mesenchytraeus armatus					41				
Mesenchytraeus glandulosus				244		61			
Mesenchytraeus pelicensis		41							
Stercutus niveus	122		•	102	20	41		•	

8.4.6.2 Beschreibung der ermittelten Artengruppen in den drei untersuchten Biotoptypen

Die fünf häufigsten Arten waren (in abnehmender Reihenfolge) Cognettia chlorophila, Enchytronia parva, Oconnorella tubifera, Enchytraeus buchholzi und Buchholzia appendiculata. Sie machten zusammen 52,9% aller gefangenen Individuen aus.

Cognettia chlorophila ist weitgehend deckungslgeich mit der bekannten und in sauren Wäldern dominanten Art Cognettia sphagnetorum. Die Änderung des Artnamens geht auf eine taxonomische Aufspaltung von C. sphagnetorum in mehrere Arten zurück (Martinsson et al. 2015).

In **Tab. 127** sind die Arten mit ihren Abundanzen nach der Häufigkeit ihres Vorkommens in den jeweiligen Biotoptypen geordnet. Eingerahmt und damit vorläufig als charakteristisch eingestuft sind Arten, die in zwei oder drei Replikaten eines Biotoptyps gefunden wurden, wobei die Gruppierung so vorgenommen wurde, dass Ähnlichkeiten und Unterschiede zwischen den drei untersuchten Biotoptypen zum Vorschein kommen. Zugleich wurden Ähnlichkeiten und Unterschiede innerhalb eines Biotoptyps, d. h. zwischen den Replikaten, sichtbar gemacht.

Der Einteilung in Kennarten, Grundarten und Begleitarten (Kap. 4.5) liegt der gesamte Datensatz aller vier Länderstudien zugrunde. Außerdem wurden Arten ohne besondere Biotopbindung, aber mit spezifischer pH-Präferenz, in sog. Säuregruppen eingeteilt.

Anhand der Kreuztabelle lassen sich folgende Artengruppen identifizieren:

- Achaeta parva wurde auf allen drei Borstgrasrasen,
 darüber hinaus jedoch nur auf einer der
 Goldhaferwiesen nachgewiesen und dementsprechend als (einzige) Kennart dieses Biotoptyps identifiziert.
- Achaeta sp. (BUUS), Achaeta unibulba, Cernosvitoviella sp., Enchytronia baloghi, Hemifridericia parva und Marionina deminuta wurden als Kennarten der Goldhaferwiesen ermittelt, da sie ausschließlich an den Standorten dieses Biotoptyps nachgewiesen wurden. Die einzige Ausnahme bildet E. baloghi, die in niedriger Abundanz ebenfalls in einem Borstgrasrasen gefunden wurde.
- Achaeta eiseni, Bryodrilus librus, Fridericia lenta, Fridericia maculatiformis und Fridericia sp. (ALAT) wurden nur in allen drei Halbtrockenrasen gefunden (nur B. librus fehlte an einem dieser Standorte) und wurden daher als Kennarten für diesen Biotoptyp eingestuft.

- Achaeta affinis, Cognettia chlorophila, Enchytraeus norvegicus, Enchytronia sp. (TENU), Oconnorella cambrensis und Oconnorella tubifera bilden auch unter Berücksichtigung der Beobachtungen aus den übrigen Länderstudien (Kap. 5, 6, 7) gemeinsam eine Säuregruppe für saure Standorte, zu denen die Borstgrasrasen und Goldhaferwiesen zählen. Für A. affinis, E. norvegicus und O. cambrensis ist diese Einstufung im vorliegenden Datensatz weniger stark ausgeprägt, da sie an zwei der drei Goldhaferwiesen fehlten.
- Fridericia bisetosa und Fridericia dura wurden in der Zusammenschau aller in den Länderstudien untersuchten Biotoptypen als Säuregruppe für schwach saure Grünland- und Waldstandorte eingruppiert. Im vorliegenden Datensatz ist dieses Muster jedoch relativ schwach ausgeprägt, da F. dura auch in zwei der drei sauren Borstgrasrasen sowie F. bisetosa in den eher neutralen Halbtrockenrasen auftraten.
- Fridericia christeri, Henlea ventriculosa und Marionina communis bilden unter Berücksichtigung aller Länderstudienergebnisse eine Säuregruppe für frisches, basenreiches Grünland. Im vorliegenden Datensatz traten F. christeri und M. communis in allen drei Halbtrockenrasen auf.
- Fridericia galba wurde in eine Säuregruppe für basenreiche Offenlandstandorte eingeordnet, trat im vorliegenden Datensatz jedoch nur in den drei Goldhaferwiesen, aber nicht den Halbtrockenrasen auf.
- Enchytraeus bulbosus und Enchytronia sp. (MINO) können insgesamt als Grundarten für Offenlandstandorte angesehen werden. Sie fehlten jedoch, vermutlich aufgrund des niedrigen pH-Wertes, bis auf eine Ausnahme in den Borstgrasrasen.
- Alle übrigen Enchytraeidenarten können an diesen Standorten als Begleitarten mit unterschiedlich hoher Stetigkeit angesehen werden.

In der Indikatorartenanalyse (**Tab. 128**) wurden die folgenden Arten identifiziert, die für einen der Biotoptypen als relevant und signifikant eingestuft wurden:

Borstgrasrasen: Achaeta affinis, Achaeta parva, Cognettia chlorophila, Enchytraeus norvegicus, Oconnorella cambrensis und Oconnorella tubifera. Alle sechs Arten waren dementsprechend auch einer der Artengruppen in der Kreuztabelle zugeordnet (A. parva als Kennart der Borstgrasrasen, die übrigen als Säuregruppe für saure Standorte). C. chlorophila und O. tubifera traten jeweils auch auf allen drei Goldhaferwiesen auf. Sie erreichten jedoch in den Borst-grasrasen eine erheblich höhere Abundanz, was sich in einem entsprechend hohen Wert für die relative Abundanz niederschlug.

- Goldhaferwiese: Achaeta sp. (BUUS), Achaeta unibulba, Enchytraeus buchholzi, Enchytraeus sp. (FGRA), Enchytronia baloghi, Fridericia benti, Fridericia galba, Fridericia schmelzi, Fridericia ulrikae und Marionina deminuta. Von diesen wurden A. sp. (BUUS), A. unibulba, E. baloghi und M. deminuta auch als Kennarten für die Goldhaferwiesen identifiziert. F. galba wurde einer Säuregruppe für basenreiches Offenland zugeordnet. E. buchholzi kam an allen neun Standorten in Sachsen-Anhalt vor und wurde nur aufgrund ihrer deutlich höheren Abundanz in den Goldhaferwiesen als Indikatorart erkannt. Ähnliches gilt auch für E. sp. (FGRA), die in niedriger Abundanz auch in zwei der drei Halbtrockenrasen gefunden wurde. Daher wurden diese beiden, wie auch die übrigen Indikatorarten, unter Berücksichtigung der
- Ergebnisse der übrigen Länderstudien (Kap. 5, 6, 7) als Begleitarten eingestuft.
- Halbtrockenrasen: Achaeta eiseni, Fridericia christeri, Fridericia lenta, Fridericia maculatiformis, Fridericia paroniana, Fridericia sp. (ALAT), Fridericia sylvatica und Marionina communis. A. eiseni, F. lenta, F. maculatiformis und F. sp. (ALAT) wurden dementsprechend auch als Kennarten für die Halbtrockenrasen identifiziert sowie F. christeri und M. communis in eine Säuregruppe für frische, basenreiche Grünlandstandorte eingruppiert. F. paroniana trat auch auf zwei der drei Goldhaferwiesen auf und wurde aufgrund ihrer deutlich höheren Abundanz in den Halbtrockenrasen als Indikatorart erkannt, in der Kreuztabelle jedoch als Begleitart eingestuft. Dies galt unter Hinzunahme der Ergebnisse der übrigen Länderstudien auch für F. sylvatica.

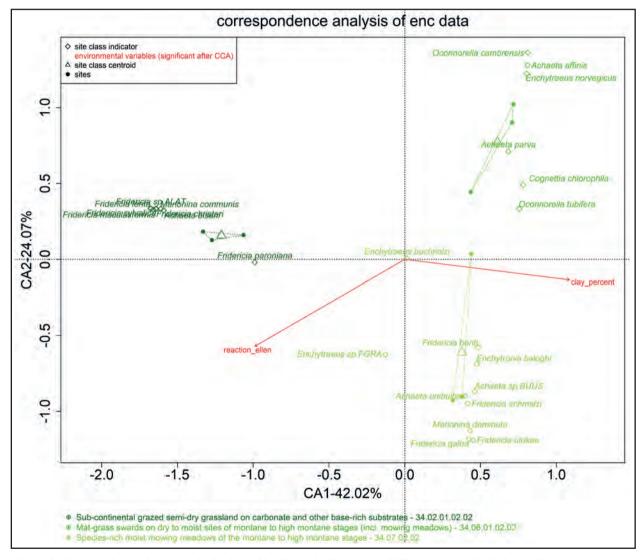


Abb. 113: Korrespondenzanalyse (CA) der Enchytraeiden-Daten der Biotoptypen Halbtrockenrasen (dunkelgrün), Borstgrasrasen (grün) und Goldhaferwiese (gelbgrün) sowie die mit der Kanonischen Korrespondenzanalyse (CCA) ermittelten relevanten Umweltparameter. Richtung der Pfeile: Größte Änderung der Umweltparameter-Werte. Raute: Indikatorart; Punkt: Untersuchungsfläche; Dreieck: Biotoptyp (Schwerpunkt). (Analyse: Dr. Björn Scholz-Starke, RWTH Aachen).

Tab. 128: Indikatorwerte (indicator_value) der Enchytraeiden-Arten der Biotoptypen Borstgrasrasen, Goldhaferwiese und Halbtrockenrasen sowie die entsprechenden relativen Abundanzen (rel_abundance) und Stetigkeiten (rel_frequency). Ein Indikatorwert > 0.8 wird als relevant angesehen und ist signifikant bei einer Irrtumswahrscheinlichkeit (pvalue) ≤ 0.1 . Angabe des Biotoptyps nach Riecken et al. (2003)

	indicator_value	pvalue	rel_abundance	rel_frequency
34.06.01.02.02	Borstgrasrasen			
Achaeta affinis	0,99	0,04	0,99	1,00
Achaeta bibulba	0,30	1,00	0,89	0,33
Achaeta camerani	0,17	1,00	0,52	0,33
Achaeta danica	0,47	0,49	0,70	0,67
Achaeta parva	0,83	0,07	0,83	1,00
Achaeta sp.	0,33	1,00	1,00	0,33
Cognettia chlorophila	0,94	0,04	0,94	1,00
Cognettia cognettii	0,33	1,00	1,00	0,33
Enchytraeus norvegicus	0,97	0,04	0,97	1,00
Enchytronia parva	0,70	0,07	0,70	1,00
Enchytronia sp. TENU	0,65	0,04	0,65	1,00
Fridericia bulboides	0,35	0,72	0,53	0,67
Fridericia cylindrica	0,30	1,00	0,90	0,33
Marionina clavata	0,26	0,66	0,40	0,67
Mesenchytraeus pelicensis	0,33	1,00	1,00	0,33
Oconnorella cambrensis	1,00	0,04	1,00	1,00
Oconnorella tubifera	0,80	0,04	0,80	1,00
34.07.02.02	Goldhaferwiese			
Achaeta bohemica	0,33	1,00	1,00	0,33
Achaeta sp. BUUS	1,00	0,04	1,00	1,00
Achaeta sp. DZWI	0,33	1,00	1,00	0,33
Achaeta sp. HEAL	0,33	1,00	1,00	0,33
Achaeta unibulba	1,00	0,04	1,00	1,00
Cernosvitoviella sp.	0,67	0,27	1,00	0,67
Cognettia chalupskyi	0,33	1,00	1,00	0,33
Cognettia varisetosa	0,39	0,68	0,59	0,67
Enchytraeus buchholzi	0,93	0,04	0,93	1,00
Enchytraeus lacteus	0,67	0,27	1,00	0,67
Enchytraeus sp. FGRA	0,94	0,04	0,94	1,00
Enchytraeus sp. GRAN	0,64	0,07	0,64	1,00
Enchytronia baloghi	0,96	0,04	0,96	1,00
Enchytronia sp. MINO	0,45	0,65	0,67	0,67
Enchytronia sp. OMNI	0,67	0,27	1,00	0,67
Fridericia benti	0,99	0,04	0,99	1,00
Fridericia connata	0,68	0,19	0,68	1,00
Fridericia deformis	0,33	1,00	1,00	0,33
Fridericia dura	0,50	0,35	0,50	1,00
Fridericia galba	1,00	0,04	1,00	1,00
Fridericia isseli	0,33	1,00	1,00	0,33
Fridericia ratzeliss	0,61	0,10	0,61	1,00

Tab. 128 (Fortsetzung).

	indicator_value	pvalue	rel_abundance	rel_frequency
34.06.01.02.02	Borstgrasrasen			
Fridericia schmelzi	1,00	0,04	1,00	1,00
Fridericia striata	0,33	1,00	1,00	0,33
Fridericia ulrikae	1,00	0,04	1,00	1,00
Hemifridericia parva	0,67	0,27	1,00	0,67
Marionina deminuta	1,00	0,04	1,00	1,00
Marionina mendax	0,67	0,27	1,00	0,67
Marionina sambugarae	0,33	1,00	1,00	0,33
Mesenchytraeus armatus	0,33	1,00	1,00	0,33
Mesenchytraeus glandulosus	0,67	0,24	1,00	0,67
Stercutus niveus	0,57	0,13	0,57	1,00
34.02.01.02.02	Kalkmagerrasen			
Achaeta eiseni	1,00	0,03	1,00	1,00
Achaeta sp. MINI	0,33	1,00	1,00	0,33
Bryodrilus librus	0,67	0,22	1,00	0,67
Buchholzia appendiculata	0,63	0,16	0,63	1,00
Buchholzia fallax	0,33	1,00	1,00	0,33
Enchytraeus bulbosus	0,69	0,11	0,69	1,00
Fridericia bisetosa	0,52	0,43	0,52	1,00
Fridericia christeri	1,00	0,03	1,00	1,00
Fridericia lenta	1,00	0,03	1,00	1,00
Fridericia maculatiformis	1,00	0,03	1,00	1,00
Fridericia nix	0,33	1,00	1,00	0,33
Fridericia paroniana	0,89	0,03	0,89	1,00
Fridericia semisetosa	0,33	1,00	1,00	0,33
Fridericia sp. ALAT	1,00	0,03	1,00	1,00
Fridericia sylvatica	1,00	0,03	1,00	1,00
Henlea perpusilla	0,54	0,21	0,80	0,67
Henlea ventriculosa	0,33	1,00	1,00	0,33
Marionina communis	1,00	0,03	1,00	1,00

Die Indikatorartenanalyse liefert somit zusätzliche Informationen zu der Darstellung der Artengruppen in den sortierten Kreuztabellen, in denen die Abundanz nicht berücksichtigt wurde.

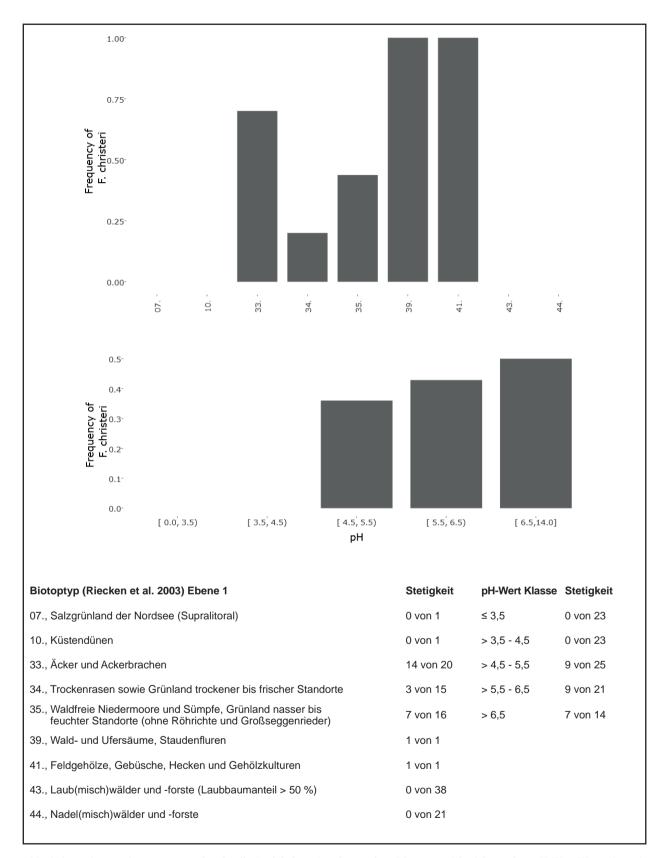
Das CA-Diagramm (**Abb. 113**) visualisiert die Unterschiedlichkeit der drei Biotoptypen. Als Hauptfaktoren wurden pH-Wert (hier durch Ellenberg-Zahlen der Pflanzendecke dargestellt) und Lehmgehalt ermittelt.

Generell fällt der Artenreichtum der untersuchten Standorte auf (**Tab. 127**); hervorzuheben ist hier besonders die Goldhaferwiese mit einer hohen Zahl an Kenn- und Begleitarten. Ebenfalls bemerkenswert ist das Vorkommen von Arten in Borstgrasrasen und

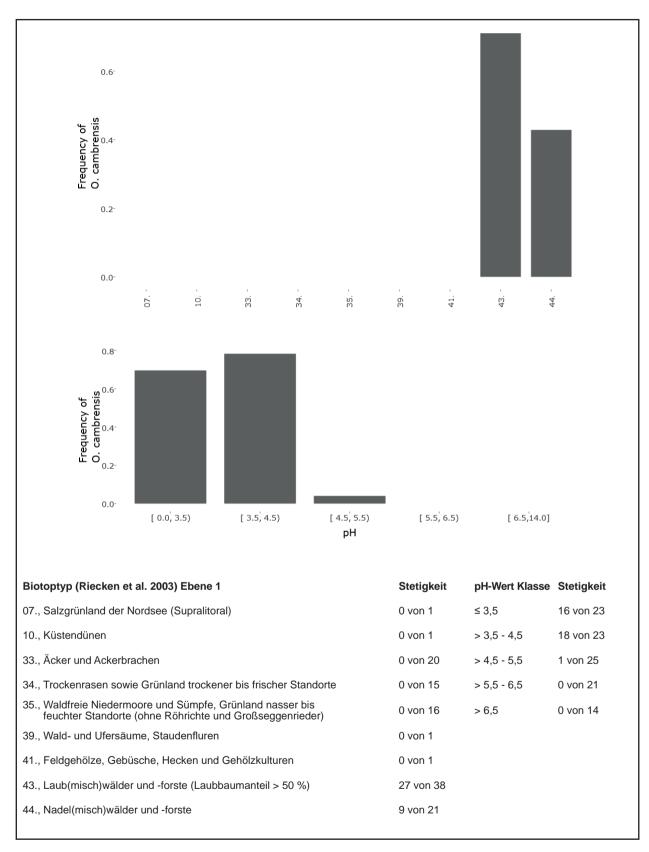
Goldhaferwiesen, die im Offenland selten, im Wald aber häufig sind (*Stercutus niveus*, *Oconnorella tubifera*). Dieses Muster konnte bereits auch für die Oribatiden und Collembolen festgestellt werden (siehe Kap. 8.4.1.4, 8.4.2.4). Da jedoch die Biotoptypen bislang selten (Halbtrockenrasen) oder gar nicht (Borstgrasrasen, Goldhaferwiese) auf Enchytraeiden hin untersucht worden sind, kann eine vergleichende Diskussion hier nur in sehr beschränktem Rahmen stattfinden.

Die faunistischen Unterschiede der Biotoptypen sind offenbar mit der Bodenreaktion und der Bodenart korreliert (vgl. **Abb. 113**). So ist der Halbtrockenrasen sowohl faunistisch als auch in der Bodenreaktion deutlich von den beiden anderen Biotoptypen abgesetzt. Die größten faunistischen Unterschiede bestehen zwischen Borstgrasrasen und Halbtrockenrasen; diese sind auch im pH-Wert am weitesten voneinander entfernt. Die artenreiche Goldhaferwiese dagegen enthält zahlreiche Arten, die auch in den jeweils anderen Biotoptypen vertreten sind. Diese Korrelation von pH-Wert und faunistischer Ähnlichkeit geht setzt sich auf der Ebene der Replikate fort: Von den drei Replikaten des Borstgrasrasens ist das am wenigsten saure (EB_ST11) der Goldhaferwiese am ähnlichsten. Von den drei Replikaten der Goldhaferwiese ist das sauerste (EB_ST23) dem Borstgrasrasen am ähnlichsten. Und von den drei Replikaten des Halbtrockenrasens ist das sauerste (EB_ST31) der Goldhaferwiese am ähnlichsten.

Weiterhin fällt auf, dass alle feuchteliebenden Arten auf die Goldhaferwiese beschränkt sind: Cernosvitoviella sp., Cognettia chalupskyi, Marionina deminuta, M. mendax, M. sambugarae, Hemifridericia parva und Mesenchytraeus armatus. Dies legt nahe, die hohe Artenzahl dieses Biotoptyps mit seiner – im Vergleich zu den anderen beiden Biotoptypen – besseren Bodendurchfeuchtung in Beziehung zu setzen.


Auch im CA-Diagramm (**Abb. 113**) sind die drei Biotoptypen deutlich voneinander unterschieden, der Halbtrockenrasen ist dabei stärker abgesetzt.

Mit Hilfe des in das Edaphobase-Portal integrierten Auswerte-Werkzeugs Edaphostat (Hausen et al. 2017) können die ökologischen Profile der im Datenbestand enthaltenen Arten angezeigt werden. Es wurden Daten von Standorten in Deutschland ausgewählt, an denen das Artenspektrum der Enchytraeiden quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung auch Daten von Experimentalflächen z. B. aus ökotoxikologischen Untersuchungen. Damit standen Daten von insgesamt 119 Standorten für 95 verschiedene Enchytraeidenarten zur Verfügung. Für den Vergleich mit Daten von den untersuchten Standorten in Sachsen-Anhalt werden beispielhaft zwei Arten hervorgehoben: 1) Fridericia christeri, die unter Berücksichtigung aller Länderstudienergebnisse in eine Säuregruppe für frisches, basenreiches Grünland eingeordnet wurde; diese sich parthenogenetisch fortpflanzende Art wird häufig an gestörten Standorten (z. B. Äckern) gefunden (Abb. 114). 2) Oconnorella cambrensis, die bislang in erster Linie als acidotolerante Waldart eingeschätzt (Jänsch & Römbke 2003) und in eine Säuregruppe für saure Standorte eingeordnet wurde (Abb. 115). Standortfaktoren werden exemplarisch dargestellt, die für die vorliegende Untersuchung als besonders relevant angesehen werden können: Biotoptyp (1. Ebene) sowie Boden-pH-Wert. Aus Abb. 114


und 115 wird ersichtlich, dass die in Sachsen-Anhalt gemachten Beobachtungen größtenteils konsistent mit den ökologischen Profilen beider Arten sind. *F. christeri* ist eine Art mit einer klaren Präferenz für schwach saure bis neutrale Offenlandstandorte. Demgegenüber zeigt *O. cambrensis* eine klare Präferenz für (stark) saure Standorte und wurde bislang ausschließlich an Waldstandorten nachgewiesen (Abb. 115). Die Tatsache, dass diese Art in der vorliegenden Untersuchung auch in den sauren Borstgrasrasen (und einer sauren Variante der Goldhaferwiese) in teils hoher Abundanz auftrat, bestätigt die Annahme, dass für das Vorkommen von Enchytraeiden weniger die Landnutzung bzw. Vegetation, sondern Bodeneigenschaften, in diesem Fall der pH-Wert, ausschlaggebend sind.

8.4.6.3 Charakterisierung der Biotoptypen anhand der zoologischen Daten

Mit dem Edaphobase Auswerte-Werkzeug Edaphoclass sich aus dem in Edaphobase enthaltenen Datenbestand ein Vergleich der in Sachsen-Anhalt untersuchten Standorten zu anderen deutschen Standorten gleichen Biotoptyps (2. Ebene) vornehmen (Tab. 129). Voraussetzung für die Vergleichbarkeit ist, dass das Artenspektrum der Enchytraeiden dort quantitativ aufgenommen wurde, also ohne Einzelfunde (z. B. Objekte aus Museumssammlungen). Ausgeschlossen wurden neben den Standorten aus der vorliegenden Untersuchung zudem Daten von Experimentalflächen (z. B. denen aus ökotoxikologischen Untersuchungen). Nach der nach diesen Kriterien erfolgten Filterung stand nur ein Standort des Biotoptyps 34.07: artenreiches Grünland frischer Standorte, für einen Vergleich zur Verfügung. Für die beiden übrigen Biotoptypen lagen auf der 2. Ebene leider keine Daten von weiteren Standorten vor. Daher konnten für einen Vergleich nur Standorte der höheren 1. Ebene (Biotoptyp 34.: Trockenrasen sowie Grünland trockener bis frischer Standorte) herangezogen werden, von denen 15 zur Verfügung standen. Für diese Standorte wurde die Stetigkeit der Enchytraeidenarten berechnet. Diese Stetigkeit ist somit ein Maß dafür, mit welcher Wahrscheinlichkeit eine einzelne Art an einem Standort des jeweiligen Biotoptyps erwartet werden kann. Aus den in Tab. 129 enthaltenen Werten ist erkennbar, dass an Standorten des Biotoptyps 34. (d. h. der 1. Ebene) neun Arten mit einer hohen Wahrscheinlichkeit erwartet werden können: Buchholzia appendiculata, Enchytraeus buchholzi, Enchytraeus christenseni, Enchytraeus norvegicus, Enchytronia parva, Fridericia bisetosa, Fridericia bulboides, Fridericia ratzeli s.l.

Abb. 114: *Fridericia christeri*: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps (oben) bzw. einer pH-Wert-Klasse (unten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 04.07.2018).

Abb. 115: Oconnorella cambrensis: Angegeben ist die Stetigkeit an Standorten eines Biotoptyps (oben) bzw. einer pH-Wert-Klasse (unten). Abfrage von Edaphobase mittels Edaphostat (Hausen et al. 2017) unter Ausschluss der in dieser Studie untersuchten Standorte (Abfrage vom 04.07.2018).

und *Henlea ventriculosa*. Es ist jedoch unklar, inwieweit diese Erwartungswerte auch für stärker differenzierte Biotoptypen der tieferen Ebenen repräsentativ sind.

Borstgrasrasen

Von den neun für den Biotoptyp Nr. 34. (Ebene 1, Trockenrasen sowie Grünland trockener bis frischer Standorte) mit hoher Wahrscheinlichkeit zu erwartenden Arten (Tab. 129) wurden vier (Enchytraeus buchholzi, Enchytronia Enchytraeus norvegicus, Fridericia bulboides) auch in mindestens zwei der drei Borstgrasrasen nachgewiesen. Die übrigen fünf Arten wurden hingegen an nur einem dieser Standorte oder gar nicht gefunden. Dies ist vermutlich mit dem im Vergleich zu der überwiegenden Anzahl der Grünlandstandorte in Deutschland sehr niedrigen pH-Wert der Borstgrasrasen zu erklären. Dies zeigt sich auch daran, dass am Standort Rhumwiese, der den höchsten pH-Wert (4,2) der drei Borstgrasrasen aufwies, sieben der neun zu erwartenden Arten gefunden wurden, während es an dem sauersten Standort Pfeifferberg (pH 3,6) nur drei waren. Die Enchytraeiden-Gemeinschaft des Borstgrasrasens ist durch einige Arten von den beiden anderen hier untersuchten Biotoptypen abgesetzt, wobei aber nur eine, Achaeta parva, als Kennart ausgewiesen ist. Besonders bemerkenswert ist die hohe Abundanz von Oconnorella tubifera, einer Art der frischen Laubwälder mit Humusform mullartiger Moder (Graefe & Schmelz 1999). Generell ist die hohe Artenzahl und Dominanz von sog. Waldarten hervorzuheben: Cognettia chlorophila, Oconnorella cambrensis und Marionina clavata. Auf der anderen Seite ist der Artenreichtum höher, als in solchen Wäldern zu erwarten wäre. Man könnte hier also von einer Misch- oder Übergangsgesellschaft sprechen. Es lässt sich aber auch die umgekehrte Hypothese formulieren,

Tab. 129: Stetigste (> 50%) Enchytraeidenarten innerhalb des Biotoptyps 34. Trockenrasen sowie Grünland trockener bis frischer Standorte (nach Riecken et al. 2003; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphoclass am 02.07.2018).

•	*
Biotoptyp	34.
Anzahl Standorte	15
Buchholzia appendiculata	0,53
Enchytraeus buchholzi	0,67
Enchytraeus christensi	0,87
Enchytraeus norvegicus	0,53
Enchytronia parva	0,73
Fridericia bisetosa	0,80
Fridericia bulboides	0,87
Fridericia ratzeli s.l.	0,53
Henlea ventriculosa	0,53

dass es weniger die Vegetationsformen (Wald vs. Offenland) als vielmehr die Bodeneigenschaften wie pH-Wert und Humusform sind, welche das Vorkommen oder Fehlen von Enchytraeidenarten bestimmen. Hier wären Untersuchungen an weiteren sauren Offenlandstandorten hilfreich.

Goldhaferwiese

Von den neun in Tab. 129 gelisteten Arten (= Erwartungswerte für Biotoptyp 34., Trockenrasen sowie Grünland trockener bis frischer Standorte) kamen fünf auch in allen drei Goldhaferwiesen vor: Buchholzia appendiculata, Enchytraeus buchholzi, Enchytronia parva, Fridericia bisetosa und Fridericia ratzeli. Am Standort Eckardsborn wurden zusätzlich noch Enchytraeus norvegicus und Fridericia bulboides gefunden. Wie auch bei den Borstgrasrasen könnte das Fehlen der übrigen Arten möglicherweise mit dem vergleichsweise niedrigen pH-Wert dieser Standorte erklärt werden. Dieser mit insgesamt 51 Taxa artenreichste Biotoptyp aus dem gesamten Spektrum der Edaphobase-Länderstudien muss als besonders wertvoll betrachtet werden. Er enthält "Waldarten" (z. B. Stercutus niveus) und ein breites Spektrum an Mäßig- bis Schwachsäurezeigern sowie an Feuchteund Nässezeigern. Darüber hinaus deutet die hohe Abundanz des r-Strategen E. buchholzi auf gute Nährstoffversorgung hin, was auch im CA-Diagramm widergespiegelt ist (Abb. 113: "cn ratio"). Eine Art (Achaeta sp. BUUS) wurde bislang nur hier gefunden. Die mäßig saure Bodenreaktion erlaubt die Koexistenz von Arten mit unterschiedlichen pH-Präferenzen.

Halbtrockenrasen

Im Vergleich mit den in Tab. 129 aufgeführten Erwartungswerten für den Biotoptyp der 1. Ebene Nr. 34. (Trockenrasen sowie Grünland trockener bis frischer Standorte) fällt auf, dass nur drei der neun stetigsten Arten auch in allen drei Halbtrockenrasen nachgewiesen wurden: Buchholzia appendiculata, Enchytraeus buchholzi und Fridericia bisetosa. Am Standort Galgenberg wurde zusätzlich noch Henlea ventriculosa und Enchytronia parva sowie am Standort Schwefeltal Fridericia bulboides gefunden. Das Fehlen weiterer erwartbarer Arten ist möglicherweise durch die relativ starke Trockenheit dieser Standorte zu erklären. Dieser Biotoptyp ist durch Kennarten, Begleitarten und durch Arten der Säuregruppen von den beiden anderen deutlich abgesetzt: Säurezeiger fehlen völlig, stattdessen dominieren Basen- und Schwachsäurezeiger. Obwohl bislang wenige Vergleichsdaten zu trockenen oder halbtrockenen Wiesenstandorten vorliegen, kann die Artenzahl als hoch angesehen werden.

Zusammenfassend lässt sich feststellen, dass sich die drei hier untersuchten Biotoptypen mithilfe der Artengemeinschaft der bodenlebenden Enchytraeiden charakterisieren und voneinander abgrenzen lassen. Dies geschieht nicht allein durch Kennarten, sondern auch durch die Begleitarten und die in den Säuregruppen zusammengefassten Arten. Die für den Biotoptyp der 1. Ebene abgeleiteten Erwartungswerte sind für die drei hier betrachteten Biotoptypen nur teilweise repräsentativ. Eine Verfeinerung der Erwartungswerte für Biotoptypen niedrigerer Ebenen ist daher durch eine Erweiterung der Datenlage notwendig, wozu der vorliegende Datensatz einen wichtigen Beitrag leistet.

8.5 Taxonübergreifende Charakterisierung der Lebensgemeinschaften der einzelnen Biotoptypen

Oribatiden, Enchytraeiden und Collembolen zeigten anhand ihres Vorkommens innerhalb dieser Untersuchung ein Muster sowohl aus Kennarten für die verschiedenen Grünlandtypen (Borstgrasrasen, Goldhaferwiese, Halbtrockenrasen) als auch aus unterschiedlichen (edaphischen) Artengruppen (Feuchte- und Säuregruppen, verschiedene Grundartengruppen). So wiesen z. B. die basenreichen Halbtrockenrasen Kennarten aus den Tiergruppen Oribatida, Collembola, Enchytraeidae und Diplopoda auf (siehe Kap. 8.4). Borstgrasrasen dagegen hatten nur Kennarten aus zwei untersuchten Bodentiergruppen (Oribatida, Enchytraeidae). Für Lumbriciden und Chilopoden wurden in dieser Studie keine Kennarten für die untersuchten Biotoptypen identifiziert. Einige Lumbriciden-Arten konnten in die Säuregruppe "schwach saure bis neutrale Standorte" eingestuft werden.

Eine Zusammenfassung der verschiedenen Artengruppen sowie der zugrundeliegenden taxonomischen Gruppen ist **Tab. 130** zu entnehmen.

Die bodenzoologische Untersuchung der Borstgrasund Halbtrockenrasen sowie der Goldhaferwiesen ergab insgesamt 60.399 Individuen aus 256 Arten (siehe **Tab. 131**). Die individuenreichste Artengruppe waren dabei die Collembolen, gefolgt von den Enchytraeiden und Oribatiden. Die Individuenzahlen der Lumbriciden, Diplo- und Chilopoden fielen deutlich geringer aus. Mit insgesamt 103 Taxa waren die Oribatiden die artenreichste Gruppe der Länderstudie in Sachsen-Anhalt, die geringsten Artenzahlen ergaben die Lumbriciden.

Der Biotoptyp, der die meisten Individuen beherbergte, waren die Borstgrasrasen mit 26.533 Tieren an den drei Standorten. Dort wurden etwa doppelt so viele Individuen gefangen wie auf den drei HalbtrockenrasenFlächen, der den individuenärmsten Biotoptyp darstellte. Zudem wurden hier mit 128 Taxa auch die wenigsten Arten nachgewiesen, die Biotoptypen Borstgrasrasen und Goldhaferwiese erwiesen sich mit insgesamt 164 und 167 Arten als deutlich artenreicher.

Kreuzblumen-Borstgrasrasen (*Polygalo vulgaris-Nardetum* Oberhofer 1957)

Biotoptyp: 34.06.01.02.02 Beweideter Borstgrasrasen trockener bis frischer Standorte der montanen bis hochmontanen Stufe (Riecken et al. 2003) / E1.712 Sub-Atlantic [Nardus]-[Galium] grasslands (EUNIS-Klassifikation 2016)

Schutzstatus: FFH-Gebiet Harzer Bachtäler

Kurzcharakterisierung: Die untersuchten bewirtschaftete Borstgrasrasen sind extensiv Grünlandgesellschaften, die als primäre Ersatzgesellschaft der ursprünglichen Waldgesellschaft (hier Hainsimsen-Rotbuchenwald montaner Ausprägung) zu verstehen sind. Die auf einer Höhenlage zwischen 564 und 584 m ü. NHN gelegenen Untersuchungsflächen sind durch einen sauren pH-Wert (pH = 3,61-4,16) und magere Standortbedingungen (niedrige Ellenbergzahlen den Stickstoffgehalt) gekennzeichnet. Untergrundgestein wird aus den Mischformationen der Stieger- (EB ST11) und Harzgeröder Schichten (EB ST13) gebildet, die vorwiegend Tonschiefer, Sandsteine und Quarzite enthalten. Das Untergrundgestein der Untersuchungsfläche EB ST12 besteht aus Diabas. Durch die unterschiedlichen Ausgangsgesteine variieren auch die Bodentypen der Untersuchungsflächen (EB ST11: Gley-Pseudogley, EB ST12: Humusgley, EB ST13: Braunerde/Parabraunerde). Der Humus wird als Mull eingestuft, die Bodenart ist sandig lehmiger Schluff (EB ST12 und ST13) bzw. schwach toniger Schluff (EB ST11). Mit einer Hangneigung zwischen 0° und 3° weisen die untersuchten Borstgrasrasen wenig Gefälle auf. Die Ellenbergzahlen aus den Vegetationsdaten ergaben saure, trocken (EB ST11) bis frische (EB ST12 und ST13) und helle Standortbedingungen (Volllicht), einen geringen Stickstoffgehalt sowie mäßig warme Temperaturen.

Charakteristische Pflanzenarten/Artengruppen

Alledrei Untersuchungsflächensind der Zentralassoziation des Violion, d. h. dem sogenannten *Polygalo-Nardetum* zuzuordnen. Bei detaillierterer Betrachtung sind die Borstgrasrasen der Flächen EB_ST11 und EB_ST12 als *Galium saxatile* Vikariante anzusprechen - diese ozeanisch beeinflussten, basenarmen Bestände werden durch die Trennarten *Meum athamanticum*, *Lathyrus*

Tab. 130: Übersicht über die Tiergruppen, die Kennarten(gruppen), Feuchte-, Säure- und Nährstoffgruppen sowie Grundarten(gruppen) für die Biotoptypen Borstgrasrasen, Goldhaferwiese und Halbtrockenrasen aufwiesen.

	Borstgrasrasen	Goldhaferwiese	Halbtrockenrasen
Kennarten			
	Oribatida		
	Enchytraeidae		
		Oribatida	
		Collembola	
		Enchytraeidae	
			Oribatida
			Collembola
			Diplopoda
			Enchytraeidae
Feuchtegruppen			
frisch bis feuchte Standorte	Oribatida	Oribatida	
Säuregruppen			
saure Standorte	Enchytraeidae	Enchytraeidae	
schwach saure bis neutrale Standorte	Lumbricidae	Lumbricidae	Lumbricidae
(Grünland/Wald)		Enchytraeidae	
basenreiches Offenland		Enchytraeidae	Collembola
Grundarten			
sauer-mesophiles Grünland	Oribatida	Oribatida	
	Collembola	Collembola	
mager-mesophiles Grünland	Oribatida	Oribatida	Oribatida
	Collembola	Collembola	Collembola
mageres Grünland	Oribatida		Oribatida
Grundarten des Grünlandes			
	Collembola	Collembola	Collembola
Grundarten des Offenlandes			
	Enchytraeidae	Enchytraeidae	Enchytraeidae
Grundarten Verbuschung/Verbrachung			
	Oribatida		
	(nur EB_ST12)		

Tab. 131: Übersicht über die Individuen- und Artenzahlen der untersuchten Tiergruppen, die in den Borstgras- und Halbtrockenrasen sowie den Goldhaferwiesen nachgewiesen wurden.

	Borstgrasrasen		Goldha	Goldhaferwiese		kenrasen	Gesamt	
	Individuen	Artenzahl	Individuen	Artenzahl	Individuen	Artenzahl	Individuen	Artenzahl
Oribatida	5.850	71	3.793	56	3.933	50	13.576	103
Collembola	9.755	35	9.051	31	4.562	28	23.368	46
Diplopoda	183	8	134	10	319	10	636	18
Chilopoda	50	11	45	10	24	5	119	13
Lumbricidae	378	10	1.065	9	245	8	1.688	10
Enchytraeidae	10.317	29	6.652	51	4.043	27	21.012	66
gesamt	26.533	164	20.740	167	13.126	128	60.399	256

linifolius und Galium saxatile angezeigt. Die Fläche EB_ST13 ist floristisch verarmter, bis auf Galium saxatile fehlen die Kennarten dieser Vikariante.

Charakteristische Bodentierarten

Kennarten	
Oribatida	Enchytraeidae
Porobelba spinosa	Achaeta parva
Chamobates cuspidatus	
Oppiella (Oppiella) splendens	

Kennzeichnende Artengruppen:

Feuchtegruppe: frische bis feuchte Standorte **Säuregruppen**: saure, schwach saure bis neutrale

Standorte

Grundartengruppen: sauer-mesophiles, mager-mesophiles und mageres Grünland, Grün- und Offenland, Verbuschung/Verbrachung

Storchschnabel-Goldhaferwiese (Geranio sylvatici-Trisetetum Knapp ex Oberd. 1957)

Biotoptyp: 34.07.02.02 Artenreiche, frische (Mäh-) Weide der montanen bis hochmontanen Stufe (Riecken et al. 2003) / E2.231 Western Hercynian submontane hay meadows (EUNIS-Klassifikation 2016) **Schutzstatus:** FFH-Gebiet Harzer Bachtäler

Kurzcharakterisierung: Die hier untersuchten Goldhaferwiesen werden durch einschürige Wiesennutzung (EB ST21), extensive Beweidung (EB_ST22) bzw. Mähweide-Wechselnutzung (EB_ ST23) unterschiedlich gepflegt und erhalten. Weiterhin sind die auf einer Höhenlage zwischen 510 und 591 m ü. NHN gelegenen Untersuchungsflächen durch einen sauren pH-Wert (pH = 4,33-4,85) und mäßige bis eutrophe Standortbedingungen gekennzeichnet. Das Untergrundgestein wird aus den Mischformationen der Stieger- (EB_ST21 und ST22) und Harzgeröder Schichten (EB ST23) gebildet, die beide unter anderem Tonschiefer, Sandsteine und Quarzite enthalten. Der Bodentyp der Flächen EB ST21 und ST22 ist als Braunerde, der der Fläche EB ST23 ist als Gley-Pseudogley anzusprechen. Der Humus wird auf allen Flächen als Mull und die Bodenart als schwach toniger Schluff eingestuft. Mit einer Hangneigung zwischen 0° und 3° weisen die untersuchten Goldhaferwiesen wenig Gefälle auf. Im Gegensatz zu den gemessenen Boden-pH-Werten ergaben die Ellenbergzahlen aus den Vegetationsdaten eher neutrale Standortbedingungen, darüber hinaus frische (EB ST21 und ST23) bis feuchte

(EB_ST22) und generell helle Standortbedingungen (Volllicht), einen geringen bis mäßigen Stickstoffgehalt sowie mäßig warme Temperaturen.

Charakteristische Pflanzenarten

Die Standorte aller drei Flächen gehören der Zentralassoziation, dem *Geranio-Trisetum* an. Die Flächen zeichnen sich durch Kennarten des Verbands und Unterverbands, wie z. B. *Geranium sylvaticum*, *Phyteuma nigrum* und *Bistorta officinalis*, aus. Klar definierte Charakterarten, die die Gesellschaft eindeutig kennzeichnen, sind für diese Gesellschaft nicht vorhanden. Arten wie beispielsweise *Bistorta officinalis* zeigen den sehr frischen Charakter der Hochland-Wiesen an.

Charakteristische Bodentierarten

	Kennarten	
Oribatida	Enchytraeidae	Collembola
Phthiracarus compressus	Achaeta sp. (BUUS)	Paratullbergia callipygos
Pantelozetes paolii	Achaeta unibulba	Protophorura procampata
	Cernovitoviella sp.	
	Enchytronia baloghi	
	Hemifridericia parva	
	Marionina deminuta	

Kennzeichnende Artengruppen:

Feuchtegruppe: frische bis feuchte Standorte **Säuregruppen**: saure, schwach saure bis neutrale Standorte, basenreiches Offenland

Grundartengruppen: sauer-mesophiles, mager-mesophiles Grünland, Grün- und Offenland

Enzian-Schillergras-Rasen (basenreicher Halbtrockenrasen) (*Gentiano-Koelerietum* pyramidatae Knapp ex bornkamm 1960)

Biotoptyp: 34.02.01.02.02 subkontinentaler Halbtrockenrasen auf karbonatischem oder sonstigem basenreichen Boden, beweidet (inkl. Mähweide) (Riecken et al. 2003) / E1.2623 Harz [Mesobromion] (EUNIS-Klassifikation 2016)

Schutzstatus: FFH-Gebiet Devonkalkgebiet bei Elbingerode und Rübeland

Kurzcharakterisierung: Die untersuchten Halbtrockenrasen sind durch extensive Beweidung entstandene Grünländer, die als primäre Ersatzgesellschaft anspruchsvoller Buchenwälder (hier Zahnwurz-Buchenwälder) gelten. Extensive Beweidung durch Schafe

B.6

Erhalt der Halbtrockenrasen. Die Untersuchungsflächen liegen auf einer Höhe zwischen 462 bis 489 m ü. NHN und sind durch einen neutralen Boden-pH-Wert (pH= 6,05-6,82) und magere Standortbedingungen (niedrige Ellenbergzahlen für den Stickstoffgehalt) gekennzeichnet. Bedingt durch das Untergrundgestein (heller massiver Kalkstein), liegt der Boden-pH-Wert somit deutlich höher als in den Borstgrasrasen und Goldhaferwiesen. Als Bodentypen haben sich auf allen drei Halbtrockenrasen-Standorten Braunerden-Fahlerden und Fahlerden ausgebildet. Die Humusform ist durchgehend Mull, die Bodenart auf den Flächen EB_ST31 und EB_ST33 sandiger Schluff und auf der Fläche Ench konn

Die Hangneigung variiert zwischen den Untersuchungsflächen deutlich: Die Fläche EB_ST31 hat kein Gefälle, die Flächen EB_ST32 und EB_ST33 weisen mit Hangneigungen von jeweils 20° dagegen ein starkes Gefälle auf. Die Ellenbergzahlen aus den Vegetationsdaten ergaben basische, trockene und helle Standortbedingungen (Vollicht), einen geringen Stickstoffgehalt sowie warme Temperaturen.

Charakteristische Pflanzenarten/Artengruppen

Alle drei Untersuchungsflächen gehören zur Gesellschaft des Gentiano Koelerietum typicum. Die Gesellschaft wird in dieser Untersuchung durch die Kennarten Cirsium acaule und Koeleria pyramidata gekennzeichnet. Eine relativ gute Wasserversorgung der Flächen wird durch die Arten der Primula veris-Gruppe angezeigt.

Charakteristische Bodentierarten

	Kennarten		
Oribatida	Enchytraeidae	Diplopoda	Collembola
Rhysotritia ardua	Achaeta eiseni	Cylindroiulus caeruleocinctus	Orchesella frontimaculata
Fosseremus laciniatus	Bryodrilus librus	Polydesmus angustus	Isotomodes productus
Scutovertex sculptus	Fridericia lenta	Propolydesmus testaceus	
Pilogalumna crassiclava	Fridericia maculatiformis		
	Fridericia sp. (ALAT)		

Kennzeichnende Artengruppen:

Säuregruppen: schwach saure bis neutrale Standorte, basenreiche Offenlandstandorte

Grundartengruppen: mager-mesophiles und mageres Grünland, Grün- und Offenland

8.6 AuswertungderFragestellungen in Bezug auf die ausgewählten FFH-Lebensraumtypen in Sachsen-Anhalt

Frage 1: Inwieweit konnte eine bodenbiologische Charakterisierung der ausgewählten Biotoptypen umgesetzt werden?

Durch das umfangreiche Probenahmedesign, das die Erfassung abiotischer Bodenparameter (z. B. BodenpH-Wert, Wassergehalt etc.), standortsspezifischer Ellenbergzahlen, zentraler Bodentiergruppen (Oribatida, Collembola, Diplopoda, Chilopoda, Lumbricidae und Enchytraeidae) und Vegetationsaufnahmen beinhaltete, konnte eine gute bodenbiologische Charakterisierung Biotoptypen erreicht werden. drei bodenbiologische Charakterisierung wurde durch die Anwendung verschiedener Auswertungsmethoden (z. B. Erstellung von Kreuztabellen zur Ermittlung von Kennarten, Korrespondenz- und Indikatorartenanalysen) Die erhobenen unterstützt: Datensätze (statistisch) analysiert und bodenbiologische "Muster" der einzelnen Biotoptypen verdeutlicht.

Als eine wichtige Basis für die bodenbiologische Charakterisierung der Biotoptypen ist das jeweilige Ausgangsgestein der Untersuchungsflächen anzusehen, das zusammen mit den klimatischen Bedingungen die Bodenbildung und den Boden-pH-Wert steuert. Speziell Unterschiede im Boden-pH-Wert in Kombination mit Unterschieden in den Feuchtigkeitsverhältnissen zwischen den Biotoptypen führen zu deutlichen Unterschieden in den Bodentiergemeinschaften:

So weisen die basenreichen Halbtrockenrasen bei Elbingerode Kalkstein als Ausgangsgestein auf, der Boden-pH-Wert liegt entsprechend im neutralen Bereich und die Ellenbergzahlen der nachgewiesenen Pflanzenarten zeigen sogar basenreiche Verhältnisse an. Neben dem relativ hohen pH-Milieu zeichnen sich die Habitatbedingungen der untersuchten Halbtrockenrasen durch Trockenheit und Wärme aus (siehe Ellenbergzahlen der Pflanzen). Die Kombination dieser miteinander verzahnten Faktoren (hoher Boden-pH-Wert, Wärme, Trockenheit, spezifische Pflanzengesellschaft) führt vermutlich dazu, dass 4 der 6 untersuchten Tiergruppen Kennartengruppen für Halbtrockenrasen aufweisen (Borstgrasrasen 2, Goldhaferwiesen 3 der 6 untersuchten Tiergruppen). Diese Kennartenartengruppen Halbtrockenrasen beinhalten entsprechend Arten, bei denen bekannt ist, dass sie basenreiche, wärmeexponierte Habitate besiedeln (siehe Isotomodes productus innerhalb der Collembolen).

Im Gegensatz zu dem Ausgangsgestein der Halbtrockenrasen variiert das Ausgangsgestein der Borstgrasrasenund Goldhaferwiesenflächen seiner Zusammensetzung stark: Es handelt sich dabei um Mischformationen der Stieger Schichten und der Harzgeröder Zone (beide Mischformationen liegen in den Borstgrasrasen- und Goldhaferwiesenflächen vor), die jeweils Anteile an z.B. Tonschiefer, Sandsteinen und Quarziten enthalten, aber auch Diabas (Stieger Schichten) und Kalkstein (Harzgeröder Schichten). Eine Borstgrasrasenfläche (Großer Rappenberg, EB ST12) weist "reinen" Diabas als Untergrundgestein auf. Entsprechend der Diversität des Ausgangsgesteins haben sich sehr unterschiedliche Bodentypen auf den Untersuchungsflächen entwickelt (z. B. Gley-Pseudogleye und Braunerden), wobei der Boden-pH-Wert der Goldhaferwiesen zwar auch im sauren Bereich liegt (Mittelwert: 4,64), aber durchgehend höher ist als in den Borstgrasrasen (Mittelwert: 3,87). Auch in diesen beiden Biotoptypen wird die Struktur der Bodentiergemeinschaft durch eine Kombination von Faktoren gesteuert: Die sauren, mageren Bedingungen der Goldhaferwiesen und Borstgrasrasen werden z. B. durch Grundarten des sauer-mesophilen Grünlandes angezeigt, wie u. a. Supraphorura furcifera (Collembola) oder Galumna obvia (Oribatida). Weiterhin sind z. B. Supraphorura furcifera (innerhalb der Collembola), Porobelba spinosa (innerhalb der Oribatida) und Oconnorella tubifera (innerhalb der Enchytraeidae) Indikatoren für die waldähnlichen Standortbedingungen der Borstgrasrasenflächen, die somit "Waldarten" aufweisen (z. B. Supraphorura furcifera, Paratullbergia callipygos) aber auch typische Offenlandarten wie Metaphorura affinis (Collembola). Innerhalb Oribatiden gibt es zudem Arten, die der Feuchtegruppe "frisch bis feuchte Standorte" zugeordnet werden können und entsprechend in den Borstgrasrasen und Goldhaferwiesen nachgewiesen wurden, nicht aber in den Halbtrockenrasen. Trotz der auffälligen Ähnlichkeiten in der "bodenbiologischen Charakteristik" der Biotoptypen Borstgrasrasen und Goldhaferwiese gab es auch deutliche Unterschiede: So konnten aufgrund der Unterschiede im Boden-pH-Wert innerhalb der Enchytraeidae wesentlich mehr Arten auf den Borstgrasrasen der Säuregruppe "sauer" zugeordnet werden als auf den Goldhaferwiesen. Die Art Fridericia galba, die basenreiches Offenland bevorzugt, konnte dagegen nur in den Goldhaferwiesen nachgewiesen werden. Insgesamt lassen sich die 3 Biotoptypen somit gut bodenbiologisch charakterisieren und auch voneinander abgrenzen, wobei sich vor allem die basenreichen Halbtrockenrasen deutlich von den beiden anderen Biotoptypen (Borstgrasrasen, Goldhaferwiesen) unterschieden.

Kennartengruppen wurden innerhalb der untersuchten Bodentiergruppen für alle 3 Biotoptypen identifiziert,

was darauf hinweist, dass es auch hinsichtlich der Bodenbiologie und Pflanzensoziologie deutliche Unterschiede zwischen den auf den ersten Blick "ähnlichen"Borstgrasrasen- und Goldhaferwiesenflächen gab. Auf diese Kennartengruppen wird bei der Beantwortung von Frage 2 näher eingegangen.

Frage 2: Konnten Charakter-/Kennarten innerhalb der Bodentiergemeinschaften der 3 ausgewählten Biotoptypen identifiziert werden?

Für alle drei untersuchten Biotoptypen (FFH-Lebensraumtypen) konnten Kennarten innerhalb der untersuchten Bodentiergemeinschaft werden. Dabei wiesen die Oribatiden und Enchytraeiden für alle Biotoptypen (Borstgrasrasen, Goldhaferwiesen, Halbtrockenrasen) Kennartengruppen bzw. Kennarten was auf die Eignung dieser Tiergruppen für auf. Kennartenidentifizierung/Kennartennutzung eine geschützten FFH-Lebensraumtypen hinweist. der Auch die untersuchten Collembolengemeinschaften beinhalteten zumindest für die Halbtrockenrasen und die Goldhaferwiesen Kennarten(gruppen); die Diplopoden wiesen für die Halbtrockenrasen 3 Kennarten auf. Festzuhalten bleibt, dass viele der identifizierten Kennarten auch in anderen Biotoptypen nachgewiesen werden konnten (siehe z. B. Isotomodes productus (Collembola) als Kennart für die Halbtrockenrasen; Abfrage der Datenbank Edaphobase mit Hilfe von Edaphostat). Trotzdem muss das Fehlen einer Art wie beispielsweise Isotomodes productus in einem als "basenreichen Halbtrockenrasen" definierten Biotoptyp als kritisch beurteilt werden, da sie "überregional" verbreitet ist (es handelt sich also nicht um einen "lokalen Effekt") und von ihrer Ökologie her in einem solchen relativ trockenen, wärmeexponierten und basenreichen Lebensraum zu erwarten ist. Das Fehlen mehrerer dieser Kennarten bzw. des Artenkomplexes deutet somit auf eine Störung des untersuchten Biotoptyps hin. Auch das Fehlen von Kennarten-Komplexen anderer Bodentiergruppen in dem entsprechenden Biotoptyp (z. B. die Kennartengruppe der basenreichen Halbtrockenrasen um Rhysotritia ardua, Oribatida) ist als kritisch zu bewerten. Denn eine Störung der Bodentier-Lebensgemeinschaft zeigt sich in besonderem Maße, wenn die Kennartengruppen mehrerer taxonomischer Gruppen ausfallen.

Insgesamt lassen sich mit den hier identifizierten Kennartengruppen der untersuchten Bodentiergruppen (speziell Oribatida, Collembola, Enchytraeidae, Diplopoda) Kennartenlisten für die drei untersuchten FFH-Lebensraumtypen (Biotoptypen: Borstgrasrasen, Goldhaferwiese, basenreicher Halbtrockenrasen) erstellen.

Inwieweit sich die identifizierten Kennarten der untersuchten Bodentiergruppen in die Empfehlungen für die Erfassung und Bewertung von Arten als Basis für das Monitoring nach Artikel 11 und 17 der FFH-Richtlinie in Deutschland integrieren lassen, ist zu diskutieren. Für Pseudoskorpione gibt es z.B. schon entsprechende Empfehlungen. Die vorliegende Untersuchung gibt in jedem Fall Hinweise darauf, welche Arten in den "Steckbriefen" (Kriterien zur Bewertung des Erhaltungszustandes der Populationen der entsprechenden Bodentierarten) berücksichtigt werden könnten. Speziell zur Methodik der Erfassung von Bodentieren/abiotischen Bodenparametern liefert diese Länderstudie einen wertvollen Beitrag (siehe z. B. die quantitative Erfassung von Bodentieren mittels Stechzylindern). Zusätzliche Datensätze aus der Datenbank Edaphobase können zudem helfen, Verbreitungsschwerpunkte der einzelnen Bodentierarten zu ermitteln.

Als Empfehlung für zukünftige Untersuchungen erscheinen weitere Datenerhebungen (Umweltparameter, Bodentiergemeinschaften) in den entsprechenden Biotoptypen (Borstgrasrasen, Goldhaferwiesen, Halbtrockenrasen) in anderen Regionen Deutschlands (z. B. Halbtrockenrasen in der Rhön, Hessen) zur Beurteilung der Qualitäten der hier ermittelten Kennarten(gruppen) als sinnvoll.

Frage 3: Konnten Habitatfaktoren bestimmt werden, die wichtige Steuergrößen für die Biodiversität der Bodentiergemeinschaften darstellen?

Wie in vielen anderen Untersuchungen (Hågvar 1984, Schaefer & Schauermann 1990, Salamon 2001) scheint der pH-Wert in dieser Freilandstudie eine wichtige Steuergröße für die Verbreitung, Abundanz und Biodiversität der Bodentiergemeinschaft zu sein.

Innerhalb dieser Untersuchung unterschied sich der Boden-pH-Wert deutlich zwischen den basenreichen Halbtrockenrasen, den mäßig sauren Goldhaferwiesen und den sauren Borstgrasrasen, was zu Unterschieden in den einzelnen Bodentiergemeinschaften führte (siehe z. B. Collembola, Enchytraeidae und Lumbricidae). Vor allem innerhalb der Lumbricidae und Enchytraeidae wurden viele Arten identifiziert, die bestimmten Säuregruppen zugeordnet werden konnten (z. B. Aporrectodea caliginosa (Lumbricidae): Schwach saure bis neutrale Standorte; Achaeta affinis (Enchytraeidae): Saure Standorte).

Azidophobe Collembolenarten wie *Pseudosinella alba* fehlten völlig in den bodensauren Borstgrasrasen und Goldhaferwiesen, traten aber in den basenreichen Halbtrockenrasen auf. Eine azidophile Collembolenart wie *Supraphorura furcifera*, die auch in bodensauren Wäldern vorkommt, fehlte dagegen in den basenreichen Halbtrockenrasen.

Auch die Standortbedingungen Feuchte und Wärme. ermittelt anhand der Ellenbergzahlen der Pflanzen, sind wichtige Steuergrößen für die Struktur der untersuchten Bodentiergemeinschaften der 3 Biotoptypen. Eine wärmeliebende Collembolenart, wie z. B. Isotomodes productus, die relativ warme und trockene Habitate bevorzugt, konnte als Kennart für die Halbtrockenrasen identifiziert werden und fehlte in den frischen bis feuchten und mäßig warmen Borstgrasrasen und Goldhaferwiesen. Eine Art wie Paratullbergia callipygos, die auch in den regenreichen und relativ kühlen Fichtenund Buchenwäldern des Sollings nachgewiesen wurde (mittlerer Jahresniederschlag: 1045 mm, durchschnittliche Jahrestemperatur im langjährigen Mittel: 6,5 °C), konnte dagegen auf den warmen Halbtrockenrasenflächen nicht nachgewiesen werden. Auch für die Chilopoden ist die Ellenbergzahl für Feuchte eine wichtige Steuergröße für die Zusammensetzung der Gemeinschaft, was sich u. a. daran zeigt, dass sie als signifikante Umweltvariable mit Hilfe der Kanonischen Korrespondenzanalyse (CCA) identifiziert wurde (siehe Kapitel 8.4.4.3). Für die Diplopoden ist die Ellenbergzahl für Wärme eine Umweltvariable, die die Struktur der Gemeinschaft mitprägt (siehe Kapitel 8.4.3.2).

Frage 4: Ist aus den Ergebnissen dieser Untersuchung abzuleiten, ob über Kennarten die Qualität der Biotope einzuschätzen ist (naturschutzfachliches Ziel)?

Ja, die identifizierten Kennarten eignen sich, um die Qualität einzelner Biotope einschätzen zu können, wobei das Fehlen mehrerer Kennarten auf Störungen der Biotope hindeuten könnte (z. B. eine zunehmende Versauerung der basenreichen Halbtrockenrasen). Wie bereits erwähnt, fehlen allerdings weiterführende Untersuchungen, z. B. die Erfassung von Bodentiergemeinschaften auf anderen basenreichen Halbtrockenrasen (wie beispielsweise im Göttinger Raum), um die Qualität der in dieser Studie ermittelten Kennarten abschließend beurteilen zu können.

"Geeignete Kennarten" für einen bestimmten Biotoptyp sind Bodentierarten, die überregional auftreten (also z. B. in Halbtrockenrasen des Harzes, des Göttinger Raumes oder der Rhön) und so als Bewertungsmaßstab für die Qualität einzelner Biotoptypen herangezogen werden können.

9 Abschlussdiskussion

Diskussion der Länderstudienergebnisse

Die Ziele der Edaphobase-Länderstudien waren, 1) konkrete naturschutzfachliche Fragestellungen zu bearbeiten, 2) einen umfassenden bodenökologischen

Datensatz zu erheben, der sowohl als Grundlage für Referenzwertbildungen für verschiedene Biotoptypen als auch der Erweiterung des langfristig verfügbaren Datenbestands von Edaphobase dienen sollte und 3) die Nutzbarkeit der Datenbank für ein bodenbiologisches Monitoring zu testen (vgl. Kap. 3.1.4). Im Folgenden wird diskutiert, inwieweit diese Ziele im Rahmen des Projekts erreicht wurden.

Zu 1) Zu Beginn der Studien wurden durch Vertreter dreier Landesbehörden (Sachsen, Sachsen-Anhalt, Bayern) sowie des Nationalparks Eifel konkrete Fragestellungen formuliert (siehe Kap. 5.1, 6.1, 7.1, 8.1), die anschließend bearbeitet wurden. Die Fragestellungen unterschieden sich hinsichtlich ihrer Zielsetzungen entsprechend der Aufgaben und Interessensschwerpunkte der Institutionen:

- Nationalpark Eifel: Die Fragestellungen des NP Eifel bezogen sich vor dem Hintergrund des Waldumbaus (Umwandlung von Fichtenin Laubwaldbestände) insbesondere auf Wald-Biotoptypen sowie ein maßnahmenbegleitendes Biodiversitäts-Monitoring (Kap. 5.1, 5.6).
- Sachsen: Der Fokus der Länderstudie in Sachsen lag darauf, die ökologische Bedeutung der Bodentiere zu erfassen, um den Einfluss anthropogener Eingriffe auf Bodenorganismen einschätzen zu können (Kap. 6.1, 6.6).
- Bayern: Das Interesse der Vertreter der LfL Bayern bestand schwerpunktmäßig darin, eine Beurteilung der Boden-Biodiversität, insbesondere der Regenwürmer, in landwirtschaftlich genutzten Flächen durchzuführen (Kap. 7.1, 7.6).
- Sachsen-Anhalt: Die Ziele der Länderstudie in Sachsen-Anhalt waren, die untersuchten FFH-Lebensraumtypen bodenbiologisch zu charakterisieren, spezifische Kennarten zu identifizieren und deren Eignung als Indikatoren zu bewerten (Kap. 8.1, 8.6).

Im Projektverlauf wurden die verschiedenen Fragestellungen durch die Projektpartner mittels einheitlicher Standardmethodik bearbeitet (vgl. Kap. 4), wobei verschiedene Bodentiergruppen (Oribatida, Collembola, Chilopoda, Diplopoda, Lumbricidae, Enchytraeidae), ausgewählte Standortfaktoren und die Vegetation erfasst wurden. Es konnte gezeigt werden, dass die Bodentiere zur Charakterisierung von Standorten und zur Bewertung verschiedener anthropogener Einflüsse verwendet werden können. Die Ergebnisse der vier Länderstudien sind in Kap. 5-8 aufgeführt.

Zu 2) Trotz der o. g. unterschiedlichen Schwerpunkte bzw. Themengebiete der beteiligten Landesbehörden und des NP Eifel beinhalten die Fragestellungen einige grundlegende Gemeinsamkeiten: Alle Interessensbekundungen enthalten die Zielsetzung Bodentier-Lebensgemeinschaften zur Beurteilung des Bodenzustands und ggf. zur Kontrolle durchgeführter Naturschutz-Maßnahmen oder anthropogener Einflüsse heranzuziehen. Hierzu ist es erforderlich, Referenz-Lebensgemeinschaften für sinnvoll ausgewählte Standortklassen zu bestimmen ("Soll-Werte"), denen eine aktuelle, zu bewertende Zönose vergleichend gegenüberstellt wird ("Ist-Werte"). Einer Bewertung des aktuellen Zustands muss die Definition von Grenzwerten bzw. Minimum-Standards vorausgehen, d. h. einer Schwelle, ab der die Störung einer Lebensgemeinschaft als nicht hinnehmbar einzustufen ist (siehe Kap. 3.1.1-3.1.3).

Eine gemeinsame Betrachtung der Daten aller vier Bundesländer wurde bereits in den einzelnen Studien durchgeführt, indem jeweils die gesamten Datensätze der Tiergruppen für die Identifizierung der Kennarten sowie der edaphischen- und Grundartengruppen herangezogen wurden. Dies wurde als notwendig erachtet, da die Betrachtung der Artenspektren aller Biotoptypen eine breitere Basis für die Auswertungen ergab und die Standorttypen (Wald, Acker, Grünland) auf die verschiedenen Bundesländer verteilt waren (siehe Tab. 1). Die Zönosen der Bodentiere, die auf den untersuchten Biotoptypen nachgewiesen wurden, ließen ein jeweils charakteristisches Muster in der Verteilung der Taxa erkennen. Dieses bestand zum einen aus den Kennartengruppen, deren Vertreter im gesamten Länderstudien-Datensatz entweder nahezu ausschließlich in dem entsprechenden Biotoptyp auftraten, oder aber innerhalb der beiden Formationen Wald und Offenland die jeweiligen Biotoptypen charakterisierten (z. B. Oribatida, Abb. 116, 117). Zum anderen existierten verschiedene edaphische Gruppen, deren Vorkommen durch die Bodeneigenschaften (Säuregehalt, Feuchtebedingungen etc.) bestimmt wurde sowie die Grundartengruppen mit einer weiteren ökologischen Amplitude, die jedoch bestimmte Standorttypen (Laubwälder etc.) präferierten. Darüber hinaus wurden stetige und sporadisch auftretende Begleitarten erfasst (vgl. Kap. 4.5).

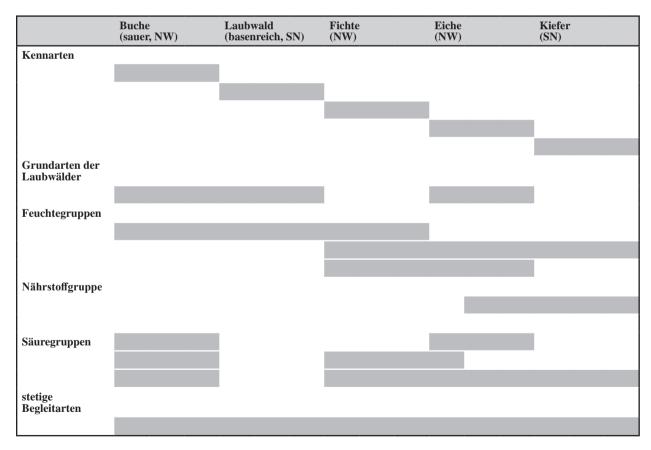
Die Entscheidung, zu Projektbeginn die Standorte in zwei Standortgradienten (basisch und sauer, von naturnahen Waldstandorten bis hin zu Ackerflächen) anzulegen, zeigte sich als zielführend, um synökologischen Beziehungen von Standorten deren Lebensgemeinschaften zu analysieren. und Weiteren konnte gezeigt werden, dass über Tiergruppen und Pflanzenbestände hinweg eindeutige synökologische Beziehungen ausgebildet sind. Für die Sichtbarmachung dieser Beziehungen ist eine synökologische Bewertung einzelner Arten über den jeweiligen Untersuchungsrahmen (d. h. den Datensatz

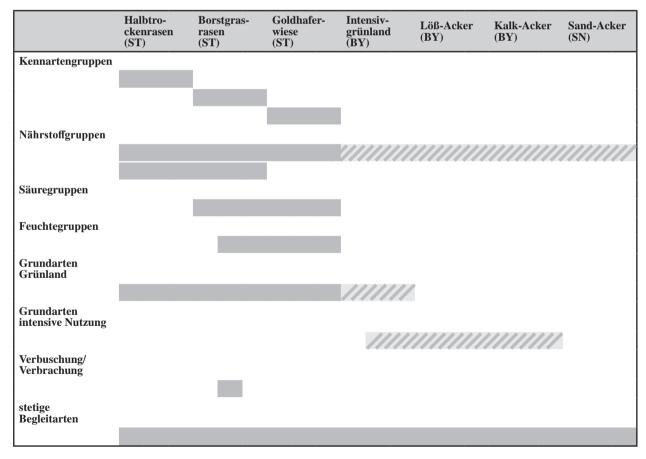
einer einzelnen Studie, z. B. Nationalpark Eifel) hinweg erforderlich. Statistische Analysen sind hierfür nur dann als sinnvoll einzustufen, wenn es gelingt, synökologische Erfahrungen aus einem größeren Kontext einzubinden. Bislang fehlen jedoch vergleichbare systematische bodenbiologische Untersuchungen der entsprechenden Biotoptypen, um die Ergebnisse der Länderstudien in einen weiteren geographischen Kontext zu setzen. Vergleiche mit anderen Studien waren meist nur auf höheren Biotoptypen-Ebenen möglich (siehe z. B. Kap. 8.4.1.3, 8.4.6.2). Um einschätzen zu können, inwieweit die Muster aus Kennarten/Kennartengruppen, edaphischen-Grundartengruppen auch überregional als Referenzen für die jeweiligen Biotoptypen zu bewerten sind, ist es daher notwendig, weitere Untersuchungen der gleichen Biotoptypen und taxonomischen Großgruppen anderen Regionen vorzunehmen. Hierfür ist das Informationssystem Edaphobase die geeignete Datenbank und Plattform, auf der Datensätze hinterlegt werden können und für spätere und umfassendere Analysen online zugänglich werden.

Ein weiteres Ziel der Länderstudien war es, den Datenbestand von Edaphobase zu erweitern. Dies ist gelungen, indem der Datenbank insgesamt 25.517

Datensätze (d. h. Beobachtungen eines Taxons zu einem Zeitpunkt an einem Ort) hinzugefügt wurden. Bei einem aktuellen Datenbestand von 356.875 Datensätzen (Abfrage von Edaphobase am 13.03.2019) beträgt der Anteil der Länderstudiendaten somit 7,2%. Insbesondere bei der gesonderten Betrachtung von Aufsammlungen, bei denen vollständige Artenspektren aufgenommen wurden, macht der Länderstudien-Datensatz einen bedeutenden Anteil aus: Insgesamt liegen in Edaphobase 179.696 Datensätze aus umfassenderen Erhebungen (Artenspektrum, qualitativ und quantitativ) vor, wovon ein Anteil von 14,2% auf die Länderstudien-Daten entfällt.

Zu 3) Für die Auswertung der erhobenen Länderstudiendaten kam die Datenbank Edaphobase zum Einsatz. Die beiden Analyse-Tools Edaphostat (Hausen et al. 2017) sowie Edaphoclass wurden dazu genutzt, Habitatpräferenzen einzelner Arten sowie die typischen Artenspektren ausgewählter Biotoptypen zu ermitteln. Dies erwies sich als hilfreich für die Beurteilung der vorgefundenen Ergebnisse (Kap. 5-8). Es zeigte sich jedoch auch, dass die Verwendbarkeit dieser Tools erheblich davon abhängt, dass eine ausreichende Anzahl verwendbarer Datensätze in Edaphobase hinterlegt ist, die bestimmten Qualitätsanforderungen




Abb. 116: Artengruppen der Oribatiden, die in den untersuchten Waldstandorten der Länderstudien nachgewiesen wurden; NW: Nationalpark Eifel, SN: Sachsen.

entsprechen. Darüber hinaus wurden die Länderstudien-Daten in Edaphobase hochgeladen, so dass sie über das Edaphobase-Portal (https://portal.edaphobase.org/, aufgerufen am 13.03.2019) online zur Verfügung stehen und als Vergleichsdatensätze anderer bodenbiologischer Datenerhebungen verwendet werden können.

Empfehlungen zur Auswahl von Bodentiergruppen für Monitoring-Vorhaben

In einer Richtlinie des VDI (2014) wurden verschiedene Kriterien zur Auswahl von Bodentiergruppen für das Monitoring der Wirkungen gentechnisch veränderter Organismen bereits ausführlich vorgestellt. Diese Kriterien sowie weitere Informationen anderer Autoren (Bispo et al. 2009, Pulleman et al. 2012, Faber et al. 2013) wurden für die Auswahl der in den Länderstudien untersuchten Taxa berücksichtigt. Ein wichtiges Kriterium war insbesondere der Informationswert der taxonomischen Gruppe für bestimmte Standorttypen (Wald, Grasland, Acker) durch das Auftreten von Zeigerarten (VDI 2014, vgl. Kap. 3.2.1). Die Ergebnisse der Länderstudien verdeutlichen die Wichtigkeit, den Informationswert der

Bodentiergruppen bei der Planung bodenbiologischer Untersuchungen einzubeziehen. Der Vergleich zwischen den Bodentiergruppen ergab, dass bestimmte Taxa besser zur Charakterisierung der unterschiedlichen Standorttypen geeignet waren als andere. Es zeigte sich beispielsweise, dass die Oribatiden innerhalb der Wald- und extensiven Grünlandstandorte deutliche Artengruppen bildeten, die Ackerflächen und Intensivgrünländer iedoch nahezu ausschließlich von unspezifisch auftretenden Begleitarten besiedelt waren. Im Gegenzug dazu konnten für die Enchytraeiden zumindest für die Intensivgrünländer und Löss-Äcker Kennarten identifiziert werden (vgl. Kap. 7.4.6.2, **Tab. 94**). Für geplante Monitoring-Vorhaben muss daher berücksichtigt werden, dass die Artengruppen ausgewählt werden, die für den gewählten Biotoptyp eine entsprechende Aussagekraft aufweisen. Analog zur VDI-Richtlinie (VDI 2014) ist darüber hinaus zu empfehlen, mehrere Artengruppen zu untersuchen, die verschiedene Größenklassen, Lebensformen und Ernährungstypen abdecken, da die Tiere entsprechend ihrer Lebensweise unterschiedlich auf verschiedene Standortfaktoren reagieren. Zudem sollten Standard-Methoden zur Erfassung existieren, die erlauben, die

Abb. 117: Artengruppen der Oribatiden, die in den untersuchten Offenlandstandorten der Länderstudien nachgewiesen wurden; NW: Nationalpark Eifel, SN: Sachsen, BY: Bayern; schraffierte Balken: schwach kennzeichnende Artengruppen.

Ergebnisse mit denen anderer Datenerhebungen zu vergleichen und somit in einen weiteren Kontext zu setzen (siehe auch Griffith et al. 2016). Die Ergebnisse der Länderstudien zeigen, dass sich für die Untersuchung und bodenbiologische Bewertung von Waldstandorten die Artengruppen der Enchytraeidae, Diplopoda, Oribatida, Chilopoda und teilweise auch der Collembola in besonderem Maße eignen (siehe **Tab. 132**). Für die Grünländer sind dies die Enchytraeidae, Collembola und Oribatida, und lediglich die Enchytraeidae weisen eine Musterbildung auf, die eine bodenbiologische Bewertung ausgewählter Ackerstandorte auf der Grundlage von Kennartengruppen erlaubt.

Tab. 132: Artengruppen, die innerhalb der verschiedenen Standorttypen der Länderstudien ein Muster aus Kennarten-Grundarten- und edaphischen Gruppen ausbildeten (in Klammern: schwach kennzeichnende Gruppenbildung).

Wald	Grünland	Ackerland
Enchytraeidae	Enchytraeidae	Enchytraeidae
Diplopoda	Collembola	
Oribatida	Oribatida	
Chilopoda		
(Collembola)		

10 Zusammenfassung

Das ökologisch-taxonomische Informationssystem "Edaphobase" wurde in einer ersten Phase als Repositorium bodenzoologischer Daten entwickelt und der Öffentlichkeit zur Verfügung gestellt. In einer zweiten Projektphase (2013-2018) war das Ziel, die Datenbank hinsichtlich ihrer Anwendbarkeit zu überprüfen sowie eine bedarfsgerechte Weiterentwicklung und Vernetzung vorzunehmen. Ein wesentlicher Baustein hierbei waren die Edaphobase-Länderstudien, deren Ergebnisse in dieser Publikation vorgestellt werden und in denen die Anwendung von Edaphobase zur Bearbeitung konkreter naturschutzfachlicher Fragestellungen verschiedener Behörden, z. B. zur Qualität und zum Erhaltungszustand des Bodens, getestet wurde. Dafür wurden in den Bundesländern Nordrhein-Westfalen, Bayern und Sachsen-Anhalt Daten verschiedener Bodentiergruppen (Oribatida, Collembola, Chilopoda, Diplopoda, Lumbricidae, Enchytraeidae) erhoben, parallel dazu wurde die Vegetation sowie verschiedene Standortparameter aufgenommen. In jedem Bundesland wurden drei verschiedene Lebensraumtypen ausgewählt, um damit ein möglichst breites Biotoptypenspektrum abzudecken. Es wurden zwei Standortgradienten (sauer und basenreich) von naturnaher Vegetation (z. B. naturnahe Waldstandorte) bis hin zu Ersatzgesellschaften

dritter Ordnung (Äcker) untersucht. Die Probenahmen erfolgten entsprechend tiergruppenspezifischer Standardmethoden in den Jahren 2014 (Nordrhrein-Westfalen, Sachsen) und 2015 (Bayern, Sachsen-Anhalt). Die erhobenen Daten wurden synökologisch, statistisch sowie mit Hilfe von Edaphobase hinsichtlich der vorab formulierten Fragestellungen ausgewertet. Die Ergebnisse zeigen, dass das Vorkommen und die Verteilung von Bodentieren typische wiederkehrende Muster bilden, die vom Biotoptyp und von den standörtlichen Gegebenheiten abhängen. Die typischen wiederkehrenden Artenzusammensetzungen wurden in Referenz-Steckbriefen charakterisiert und dargestellt. Es konnte gezeigt werden, dass Bodentiergruppen sich zur Standortcharakterisierung und Bewertung anthropogener Einflüsse eignen. Des Weiteren wurde durch die Edaphobase-Länderstudie der Datenbestand von Edaphobase für die verschiedenen Tiergruppen und für verschiedene, teilweise naturschutzfachlich relevante Lebensraumtypen, erweitert. Die Durchführung der Studie, die durch das Forschungsinstitut für Ökosystemanalyse und -bewertung, gaiac (Aachen) koordiniert wurde, erfolgte in enger Kooperation mit folgenden Partnern: Senckenberg Museum für Naturkunde Görlitz, ECT Oekotoxikologie GmbH (Flörsheim a. M.), Staatliches Museum für Naturkunde Karlsruhe, Institut für Umweltforschung (Bio V) an der RWTH Aachen, Dr. Jörg Salamon, Naturforschende Gesellschaft der Oberlausitz e.V.

11 Danksagung

Die Verfasser bedanken sich bei den folgenden Personen und Institutionen für die gute Zusammenarbeit, die Bereitstellung von Informationen und Daten sowie für weiterführende Hilfestellungen:

Dr. Henning Andreae (Staatsbetrieb Sachsenforst), Dr. B. Balkenhol (SMNG), Prof. Dr. L. Beck (SMNK), Blöchinger (Bayerische Landesanstalt Landwirtschaft, LVFZ Kringell), T. Bräutigam † (Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie), Dr. P. Decker (SMNG), Deutscher Wetterdienst (DWD), B. Dickmann (NP Eifel), S. Dillan (SMNG), M. Döhler (SMNG), W. Eberlein (Sulzthal), E. Falkenberg (NP Eifel), G. Gerl (Scheyern), C. Gromotka (NP Eifel), F. Jacob (Staatsbetrieb Sachsenforst), T. Jansen (Wetterstation in Gemünd-Malsbenden), H. Jechorek (SMNG), Heike und Frank Kleemann (Benzingerode), H. Kolb (Großenhül), J. Konrad (Bayerische Landesanstalt für Landwirtschaft, LVFZ Almesbach), Helmut Koth (Heimburg), S. Krischer (Wetterstation in Heimbach-Hasenfeld), S. Lehnert (Untere Naturschutzbehörde

Landkreis Harz), Hans Joachim Mautschke (Gut Krauscha), Dr. R. Lehmitz (SMNG), V. Möller (NP Eifel), J. Müller (NfGOL), S. Obermeier (Leiblfing), Dr. A. Pardey (NP Eifel), Kerstin Rieche (LPV Harz E. V.), Dr. M. Röös (NP Eifel), K. Röther (Bayerische Landesanstalt für Landwirtschaft, LVFZ Almesbach), Dr. G. Sautter (SMNK), Dr. P. Schnitter (Landesamt für Umweltschutz Sachsen-Anhalt), Dr. H.-J. Schulz (SMNG), Dr. T. Stierhof (SMNK), I. Turre (SMNG), Untere Naturschutzbehörde Görlitz, Dr. K. Voigtländer (SMNG), R. Walter (Bayerische Landesanstalt für Landwirtschaft), Dr. S. Woas (SMNK), Prof. Dr. W. Xylander (SMNG).

Ein besonderer Dank gebührt dem Bundesministerium für Bildung und Forschung für die Finanzierung des Projekts (Förderkennzeichen: 01LI1301E).

12 Literatur

- Adis, J. (1979): Problems of interpreting arthropod sampling with pitfall traps. Zoologischer Anzeiger **202**: 77–184.
- Albers, D. (1996): Netzbeutelversuche mit Springschwänzen
 (Collembolen) in einem Gradienten von Fichte (Picea abies)
 zu Buche (Fagus sylvatica) auf Buntsandstein: Sukzession
 in der Streu und Relation zur mikrobiellen Biomasse. –
 Diplomarbeit, Universität Göttingen.
- Albers, D. (2001) Nahrungsnetz und Stoffdynamik auf extensiv bewirtschafteten Ackerflächen die Untersuchung stabiler Isotope (δ 13C, δ 15N) im Zersetzer-Subsystem. Dissertation, Universität Göttingen, Cuvillier Verlag Göttingen.
- Altermann, M. & K. Rabitzsch (1976): Quartiäre Deckschichten im Raum Elbingerode-Rübeland (Harz). N. F. Hercynia **13** (3): 295–331.
- Arbeitsgruppe Boden (1996): Bodenkundliche Kartieranleitung. 4. Aufl., Nachdr. Hannover: 392 pp.
- Barber, H. S. (1931): Traps for cave-inhabiting insects. Journal of the Elisha Mitchel Scientific Society **46**: 259–266.
- Bardgett, R. D. & W. H. van der Putten (2014): Belowground biodiversity and ecosystem functioning. Nature **515**: 505–511. [doi: 10.1038/nature13855].
- Barsch, H., K. Billwitz & E. Scholz (1984): Labormethoden in der physischen Geographie. Haack, Gotha: 160 pp.
- Barth, N., W. Brandtner, E. Cordsen, T. Dann, K.-H. Emmerich,
 D. Feldhaus, B. Kleefisch, B. Schilling & J. Utermann
 (2000): Boden-Dauerbeobachtung Einrichtung und Betrieb
 von Boden-Dauerbeobachtungsflächen. In: Rosenkranz,
 D., G. Bachmann, W. König & G. Einsele (Hrsg.):
 Bodenschutz. Erich Schmidt Verlag, Berlin: 127 pp.
- Barth, N. & H. Forberg (2013): Boden-Dauerbeobachtungsprogramm des LfULG Sachsen. Standortcharakteristika. – LfULG, Dresden, 336 pp.

- BBodSchG (1998): Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz). Bundesgesetzblatt I, 502 vom 17. März 1998. [https://www.gesetze-im-internet.de/bbodschg/BBodSchG.pdf].
- Beck, L., J. Römbke, A. M. Breure & C. Mulder (2005): Considerations for the use of ecological classification and assessment concepts in soil protection. – Ecotoxicology and Environmental Safety 62: 189–200.
- Beck, L., J. Römbke, F. Meyer, J. Spelda & S. Woas (2007): Bodenfauna. – In: Meyer, M. & E. Carrières (Hrsg.): Erfassung der Biodiversität im Waldgebiet "Schnellert" (Gemeinde Berdorf). – Ferrantia, Travaux Scientifiques du Musée national d'histoire naturelle Luxembourg 50: 67–129
- Becker, J. (1975): Art und Ursachen der Habitatbindung von Bodenarthropoden (Carabidae [Coleoptera], Diplopoda, Isopoda) xerothermer Standorte in der Eifel. Beiträge Landespflege Rheinland–Pfalz, Beiheft 4: 89–140.
- Becker, J. (1982): Hundertfüssler (Chilopoda) des Bausenbergs und der östlichen Eifel. Decheniana, Beiheft **27**: 76–86.
- Behan-Pelletier, V. M. (1999): Oribatid mite biodiversity in agroecosystems: role for bioindication. Agriculture, Ecosystem and Environment **74**: 411–423.
- Bellinger, P. F., K. A. Christiansen & F. Janssens (1996-2019): Checklist of the Collembola of the World. [http://www.collembola.org; acc. 02.05.2019].
- Benito, J. C. S. & J. G. Palacios-Vargas (2007): New species of Pseudosinella (Collembola: Entomobryidae) from Iberian Peninsula. Zootaxa **1479**: 9–19.
- Beylich, A. & U. Graefe (2009): Investigations of annelids at soil monitoring sites in Northern Germany: reference ranges and time-series data. Soil Organisms 81: 175–196.
- Beylich, A. & U. Graefe (2007): Artenzahlen von Annelidengemeinschaften (Regenwürmer und Kleinringelwürmer)
 Referenzwertbereiche für unterschiedliche Standortsituationen. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 110: 745–746.
- Beylich, A. & U. Graefe (2014): Gesamtgutachten zu den bodenzoologischen Untersuchungen an Boden-Dauerbeobachtungsflächen in Schleswig-Holstein für den Zeitraum 1992 bis 2012. Abschlussbericht im Auftrag des Landesamtes für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein: 204 pp.
- Bispo, A., D. Cluzeau, R. Creamer, M. Dombos, U. Graefe,
 P. H. Krogh, J. P. Sousa, G. Peres, M. Rutgers, A. Winding
 & J. Römbke (2009): Indicators for Monitoring Soil
 Biodiversity. Integrated Environmental Assessment
 Management 5: 717–719.
- Blakemore, R. J. (2002): Cosmopolitan earthworms an eco-taxonomic guide to the peregrine species of the world. (First CD Edition). VermEcology, P. O. Box 414 Kippax, ACT 2615, Australia: 426 pp. + 80 Abb.

- Blakemore, R. J. (2008): An updated list of valid, invalid and synonymous names of Criodriloidea (Criodrilidae) and Lumbricoidea (Annelida: Oligochaeta: Sparganophilidae, Ailoscolecidae, Hormogastridae, Lumbricidae, and Lutodrilidae). In: Ito, M. T. & N. Kaneko (Hrsg.): A series of searchable texts on earthworm biodiversity, ecology and biosystematics from various regions of the world. Yokohama University: 1–80.
- BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2011): Nationale Strategie zur biologischen Vielfalt. 3. Auflage, Berlin.
- Bonato, L. & A. Minelli (2014): Chilopoda Geophilomorpha of Europe: a revised list of species, with taxonomic and nomenclatorial notes. Zootaxa **3770** (1): 1–136.
- Bouché, M. B. (1972): Lombriciens de France. Ecologie et Systématique. INRA Publ. 72-2, Institut National de Recherches Agriculturelles Annales de Zoologie. Ecologie animale, hors série 72 (2), Paris, France: 671 pp.
- Bouché, M. B. (1977): Strategies lombriciennes. In: Lohm,
 U. & T. Persson (Hrsg.): Soil organisms as components of ecosystems. Ecological Bulletins 25: 122–132.
- Braun-Blanquet, J. (1928, 1964): Pflanzensoziologie. Grundzüge der Vegetationskunde. 1, 3. Aufl., Springer, Berlin, Wien, New York.
- Brennan, A., T. Fortune & T. Bolger (2006): Collembola abundances and assemblage structure in conventionally tilled and conservation tillage arable systems. Pedobiologia **50**: 135–145.
- Bretfeld, G. (1975): Neue Funde symphypleoner Collembolen (Insecta, Apterygota). Mitt. Naturwiss. Ver. Steiermark **105**: 301–303.
- Bretfeld, G. (1999): Synopses on Palaearctic Collembola. Volume 2. Symphypleona. Abhandlungen und Berichte des Naturkundemuseums Görlitz **71** (1): 1–318.
- Briones, M. J. I., R. Mascato & S. Mato (1995): Autecological study of some earth-worm species (Oligochaeta) by means of eco-logical profiles. Pedobiologia **39**: 97–106.
- Brocksieper, I. (1973): Faunistisch-Ökologische Untersuchungen an Isopoden, Diplopoden und Chilopoden im Naturschutzgebiet Siebengebirge. Diplomarbeit, Universität Bonn: 73 pp.
- Brohmer, P. (1988): Faunavon Deutschland. Ein Bestimmungsbuch unserer heimischen Tierwelt. 17. überarbeitete Aufl., Quelle und Meyer, Heidelberg, Wiesbaden: 586 pp.
- Brussaard, L. (2012): Ecosystem Services Provided by the Soil
 Biota. In: Wall, D., R. D. Bardgett, V. Behan-Pelletier,
 J. E. Herrick, T. H. Jones, K. Ritz, J. Six, D. R. Strong,
 & W. H. van der Putten (Hrsg.): Soil Ecology and Ecosystem
 Services. Oxford University Press: 45–58.
- Burkhardt, U., D. J. Russell, P. Decker, M. Döhler, H. Höfer, J. Römbke, C. Trog, J. Vorwald, E. Wurst & W. E. R. Xylander (2014): The Edaphobase project of GBIF-Germany A new online soil-organism zoological data

- warehouse. Applied Soil Ecology **83**: 3–12. [http://dx.doi.org/10.1016/j.apsoil.2014.03.021].
- Christensen, B. & G. Glenner (2010): Molecular phylogeny of Enchytraeidae (Oligochaeta) indicates separate invasions of the terrestrial environment. Journal of Zoological Systematics and Evolutionary Research **48**: 208–212.
- Christiansen, K. (1964): Bionomics of Collembola. Annual Review of Entomology **9**: 147–178.
- Christiansen, K. (2000): Extensivierung in der Landwirtschaft: Auswirkung auf Collembolen, mikrobielle Biomasse und Zersetzung von Rapsstreu. – Dissertation, Universität Göttingen, Cuvillier Verlag Göttingen.
- Clapperton, J. (1999): Tillage practices, and temperature and moisture interactions affect earthworm populations and species composition. Pedobiologia **43** (6): 658–665.
- Creer, S., K. Deiner, S. Frey, D. Porazinska, P. Taberlet, W. K. Thomas, C. Potter & H. M. Bik (2016): The ecologist's field guide to sequence-based identification of biodiversity. – Methods in Ecology and Evolution 7: 1008–1018.
- Csuzdi, C. S. & A. Zicsi (2003): Earthworms of Hungary (Annelida: Oligochaeta, Lumbricidae). In: Csuzdi, C. S. & S. Mahunka (Hrsg.): Pedozoologica Hungarica No. 1, Budapest: 271 pp.
- Curry, J. P. & C. F. Tuohy (1978): A comparison of the epigeal arthropod fauna of grassland swards managed for silage production. – Journal of Applied Ecology 15: 727–741.
- Dauber J., S. Klimek & T. G. Schmidt (2016): Konzept für ein Biodiversitätsmonitoring Landwirtschaft in Deutschland.
 Thünen Working Paper 58, Johann Heinrich von Thünen-Institut, Braunschweig: 31 pp.
- De Caceres, M. & P. Legendre (2009): Associations between species and groups of sites: indices and statistical inference.

 Ecology [http://sites.google.com/site/miqueldecaceres/; http://vegmod.ctfc.cat/].
- Decaens, T., D. Porco, R. Rougerie, G. G. Brown & S. W. James (2013): Potential for DNA barcoding for earthworm research in taxonomy and ecology. Applied Soil Ecology **65**: 35–42.
- Decker, P. & K. Hannig (2011): Checkliste der Hundert- und Tausendfüßer (Myriapoda: Chilopoda, Diplopoda) Nordrhein-Westfalens. Abhandlungen aus dem Westfälischen Museum für Naturkunde **73** (1): 3–48.
- Decker, P., C. Schmidt & K. Hannig (2009): Die Hundertfüßer und Tausendfüßer (Myriapoda, Chilopoda, Diplopoda) des Truppenübungsplatzes Haltern-Borkenberge (Kreise Coesfeld und Recklinghausen). In: Hannig, K., M. Olthoff, K. Wittjen & T. Zimmermann: Die Tiere, Pflanzen und Pilze des Truppenübungsplatzes Borkenberge. Abhandlungen aus dem Westfälischen Museum für Naturkunde 71 (3): 469–478.
- Decker, P., K. Hannig, K., Voigtländer & T. Wesener (2015): Nachtrag zur Checkliste der Hundert- und Tausendfüßer (Myriapoda: Chilopoda, Diplopoda) und Artenverzeichnis der

- Zwerg- und Wenigfüßer (Symphyla, Pauropoda) Nordrhein-Westfalens. - Abhandlungen aus dem Westfälischen Museum für Naturkunde 80: 5-22.
- Decker, P., K. Voigtländer, J. Spelda, H. S. Reip & E. N. Lindner (2016): Rote Liste und Gesamtartenliste der Hundertfüßer (Myriapoda: Chilopoda) Deutschlands. - In: Gruttke, H., M. Binot-Hafke, S. Balzer, H. Haupt, N. Hofbauer, G. Ludwig, G. Matzke-Haiek & M. Ries (Red.): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 4: Wirbellose Tiere (Teil 2). Naturschutz und Biologische Vielfalt 70 (4): 327-346.
- Deharveng, L. (2004): Recent advances in Collembola systematics. – Pedobiologia 48: 415–433.
- De Vries, F. T., E. Thébault, M. Liiri, K. Birkhofer, M. A. Tsiafouli, L. Bjørnlund, H. B. Jørgensen, M. V. Brady, S. Christensen, P. C. de Ruiter, T. d'Hertefeldt, J. Frouz, K. Hedlund, L. Hemerik, W. H. G. Hol, S. Hotes, S. R. Mortimer, H. Setälä, S. P. Sgardelis, K. Uteseny W. H. van der Putten, V. Wolters & R. D. Bardgett (2013): Soil food web properties explain ecosystem services across European land use systems. - Proceedings of the National Academy of Sciences of the USA 110: 14296-14301.
- Didden, W. A. M. (1990): Involvement of Enchytraeidae (Oligochaeta) in soil structure evolution in agricultural fields. - Biology and Fertility of Soils 9: 152-158.
- Didden, W. A. M. (2003): Oligochaeta. In: Markert, B. A., A. M. Breure & H. G. Zechmeister (Hrsg.): Bioindicators and Biomonitors (Chapter 16). - Elsevier Science Ltd., Amsterdam, Netherlands: 555-576.
- Didden, W. A. M. & J. Römbke (2001): Enchytraeids as indicator organisms for chemical stress in terrestrial ecosystems. Ecotoxicology and Environmental Safety **50**: 25–43.
- Dierschke, H. (1994): Pflanzensoziologie. Ulmer, Stuttgart: 683 pp.
- Dierschke, H. (1997): Molinio-Arrhenatheretea (E1). Kulturgrasland und verwandte Vegetationstypen. Teil 1: Arrhenatheretalia, Wiesen und Weiden frischer Standorte. - In: Dierschke, H. (Hrsg.): Synopsis der Pflanzengesellschaften Deutschlands, Heft 3. – Selbstverlag der floristischen- soziologischen Arbeitsgemeinschaft E. V., Göttingen.
- Doppelreiter, H. (1979): Untersuchungen über Artenspektrum, Verteilung und Biozidempfindlichkeit von Collembolen im Fichtenwaldboden. – Zeitschrift für angewandte Entomologie **88**: 113-124.
- Dufrêne, M. & P. Legendre (1997): Species assemblages and indicator species: the need for a flexible asymmetrical approach. - Ecological Monographs 67: 345-366.
- Dunger, W. (1963): Praktische Erfahrungen mit Bodenfallen. Entomologische Nachrichten 4: 41-46.
- rekultivierten Kippen und Halden des Braunkohlentagebaues. Ein Beitrag zur pedobiologischen Standortsdiagnose. -

- Abhandlungen und Berichte des Naturkundemuseums Görlitz 43 (2): 257 pp.
- Dunger, W. (1972): Systematische und ökologische Studien an der Apterygotenfauna des Neißetals bei Ostritz (Oberlausitz). - Abhandlungen und Berichte des Naturkundemuseums Görlitz 47: 1-42.
- Dunger, W. (1983): Tiere im Boden. Ziemsen, Wittenberg Lutherstadt: 280 pp.
- Dunger, W. (2006): Die Neubelebung von Haldenböden Jahrhundert bodenzoologischer ein Forschung. - Sitzungsberichte und Abhandlungen der naturwissenschaftlichen Gesellschaft "ISIS" in Dresden 2004-2005: 47-64.
- Dunger, W. & K. Steinmetzger (1981): Ökologische Untersuchungen an Diplopoden einer Rasen-Wald-Catena im Thüringer Kalkgebiet. – Zoologische Jahrbücher - Abteilung für Systematik, Ökologie und Geographie der Tiere 108 (4):
- Dunger, W. & H. J. Fiedler (Hrsg.) (1997): Methoden der Bodenbiologie. – 2. neubearbeitete Auflage, Fischer Verlag Jena: 539 pp.
- Dunger, W. & B. Schlitt (2011): Tullbergiidae. Synopses on Palaearctic Collembola 6/1. Soil Organisms 83: 1-68.
- Dunger, W., I. Dunger, H. Engelmann & R. Schneider (1972): Untersuchungen zur Langzeitwirkung von Industrie-Emissionen auf Böden, Vegetation und Bodenfauna des Neißetales bei Ostritz/Oberlausitz. - Abhandlungen und Berichte des Naturkundemuseums Görlitz 47 (3): 40 pp.
- Eason, E. H. (1964): Centipedes of the British Isles. Frederick Warne: 294 pp.
- EC (European Commission) (2009): Regulation (EC) 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. - Official Journal of the European Union L 309: 1-50.
- Edaphobase (2018): Länderstudie [https://portal.edaphobase. org/, Projekt: Länderstudie].
- Edwards, C. A. (1998): Earthworm ecology. CRC Press, Boca Raton: 389 pp.
- Edwards, C. A. & P. R. Bohlen (1997): Biology of earthworms. - Chapman & Hall, London: 276 pp.
- Edwards, W. & M. J. Shipitalo (1998): Consequences of earthworms in agricultural soils: Aggregation and porosity. - In: Edwards, C. A. (Hrsg.): Earthworm ecology. - CRC Press, Boca Raton: 147-161.
- Ehrnsberger, R. (Hrsg.) (1993): Bodenmesofauna Naturschutz. Informationen zu Naturschutz Landschaftspflege in Nordwestdeutschland, Bd. 6. - Günter Runge, Cloppenburg: 452 pp.
- Dunger, W. (1968): Die Entwicklung der Bodenfauna auf Eisenbeis, G. & R. Feldmann (1991): Zoologische Untersuchungen zum Status der Bodenfauna im Lennebergwald. - In: Licht, W. & S. Klos (Hrsg.): Das Ökosystem Lennebergwald

bei Mainz. Ergebnisse eines interdisziplinären Forschungsprojektes 1987-1990. – Pollichia, Bad Dürkheim: 521–681.

- Elbrecht, V., E. E. Vamos, K. Meissner, J. Aroviita & F. Leese (2017): Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods in Ecology and Evolution 8: 1265–1275.
- Ellenberg, H., H. E. Weber, R. Düll, V. Wirth, W. Werner & D. Paulissen (1991): Zeigerwerte von Pflanzen in Mitteleuropa (Scripta Geobotanica; 18). 3. verbess. und erw. Aufl., Verlag Erich Goltze KG, Göttingen: 248 pp.
- Erséus, C., E. Rota, L. Matamoros & P. de Wit (2010): Molecular phylogeny of Enchytraeidae (Annelida. Clitellata). Molecular Phylogenetics and Evolution 57: 849–858.
- EU (European Union) (1992): Richtlinie 92/43/EWG des Rates vom 21. Mai 1992 zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen. Brüssel.
- EU (European Union) (2002): Towards a Thematic Strategy for Soil Protection. Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions. COM (2002) 179 final., Brüssel, 35 pp.
- EU (European Union) (2006a): Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions. Thematic Strategy for Soil Protection plus Summary of the Impact Assessment. COM 231 (2006) final., Brüssel, 12 + 8 pp.
- EU (European Union) (2006b): Proposal for a Directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC. COM 232 (2006) final., Brüssel, 30 pp.
- EUNIS-Klassifikation (2016): Habitat types search. [http://eunis.eea.europa.eu/habitats.jsp, aufgerufen am 13.03.2019].
- Faber, J. H., R. E. Creamer, C. Mulder, J. Römbke, M. Rutgers, J.
 P. Sousa, D. Stone & B. S. Griffiths (2013): The practicalities and pitfalls of establishing a policy-relevant and costeffective soil biological monitoring scheme. Integrated Environmental Assessment and Management (IEAM) 9: 276–284.
- Feldmann, R. (1993): Die Bodenmakrofauna im Lennebergwald. 2. Die Makrosaprophagen (Enchytraeidae, Lumbricidae, Isopoda, Diplopoda, Dipterenlarven). Mainzer naturwissenschaftliches Archiv 31: 327–348.
- Filser, J., H. Koehler, A. Ruf, J. Römbke, A. Prinzing & M. Schaefer (2008): Ecological theory meets soil ecotoxicology: Challenge and chance. Basic Applied Ecology 9: 346–355.
- Fjellberg, A. (1998): The Collembola of Fennoscandia and Denmark. Part I: Poduromorpha. Brill, Leiden. Fauna Entomologica Scandinavica Volume **38**: 184 pp.

- Fjellberg, A. (2007): The Collembola of Fennoscandia and Denmark. Part II: Entomobryomorpha and Symphypleona.
 Fauna Entomologica Scandinavica Volume 42. Brill, Leiden: 264 pp.
- Gardi, C., S. Jeffery & A. Saltelli (2013): An estimate of potential threats levels to soil biodiversity in EU. – Global Change Biology 19 (5): 1538–1548. [https://doi.org/10.1111/ gcb.12159].
- Geologisches Landesamt Nordrhein-Westfalen (Hrsg.) (1980): Geologische Karte der nördlichen Eifel 1:100000 und Erläuterungen. – 3. Aufl., Krefeld: 155 pp. + Kartenmaterial.
- Gisi, U. (1990): Bodenökologie. Georg Thieme Verlag, Stuttgart: 304 pp.
- Gisin, H. (1960): Collembolenfauna Europas. Genève: 312 pp.
- Graefe, U. (2004): Das vertikale Verteilungsmuster der Kleinringelwurmzönose als Indikator der Prozessdynamik im Humusprofil. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft **103**: 27–28.
- Graefe, U. & R. Schmelz (1999): Indicator values, strategy types and life forms of terrestrial Enchytraeidae and other microannelids. Newsletter on Enchytraeidae 6: 59–68.
- Graefe, U. & R. Schmelz (2017): Description of *Enchytronia pygmaea* sp. n. (Enchytraeidae, Clitellata), a very small enchytraeid in European soils. Opuscula Zoologica **48** (2): 3–10.
- Graff, O. (1953): Die Regenwürmer Deutschlands. Schriftenreihe der Forschungsanstalt für Landwirtschaft Braunschweig-Völkenrode 7: 70 pp.
- Griffiths, B. S., S. Caul, J. Thompson, A. N. E. Birch,
 C. Scrimgeour, J. Cortet, A. Foggo, C. A. Hackett & P.
 H. Krogh (2006): Soil Microbial and Faunal Community
 Responses to Bt Maize and Insecticide in Two Soils. –
 Journal of Environmental Quality 35: 734–741.
- Griffiths, B. S., J. Römbke, R. Schmelz, S. Jänsch, J. Faber, J. Bloem, G. Peres, D. Cluzeau, A. Chabbi, M. Suhadolc, J. P. Sousa, P. Martins da Silva, F. Carvalho, S. Mendes, P. Morais, R. Francisco, D. Costa, C. Pereira, M. Bonkowski, S. Geisen, R. D. Bardgett, T. Bolger, O. Schmidt, A. Winding, N. B. Hendriksen, A. Johansen, L. Philippot, P. Plassart, D. Bru, B. Thomson, R. I. Griffiths, M. Rutgers, C. Mulder, E. Hannula, R. Creamer & D. Stone (2016): Selecting cost effective and policy-relevant biological indicators for European monitoring of soil biodiversity and ecosystem function (EcoFINDERS). Ecological Indicators 69: 213–223.
- Haacker, U. (1968): Deskriptive, experimentelle und vergleichende Untersuchungen zur Autökologie rheinmainischer Diplopoden. Oecologia 1: 87–129.
- Haag, R., I. Stempelmann & J. Haider (2009): Bodenbiologische
 Untersuchungen auf Bodendauerbeobachtungsflächen in
 Nordrhein-Westfalen im Zeitraum 1995 2007. Landesamt
 für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Essen: 97 pp. + Anhang.

- Haase, H., A. Toschki, Oellers, J., Jänsch, S., Römbke, J., Hendrix, P. F. (1998): Earthworms in agroecosystems: A Salamon, J.-A., Schmelz, R. & B. Scholz-Starke (2018): Bodenökologische Untersuchung von Kiefern- und Buchenwäldern sowie Sandäckern in Sachsen 2014-2018. – Gutachten: 159 S.
- Hågvar, S. (1982): Collembola in Norwegian coniferous forests soils. I. Relations to plant communities and soil fertility. -Pedobiologia 24: 255-296.
- Hågvar, S. (1983): Collembola in Norwegian coniferous forests soils. II. Vertikal distribution. – Pedobiologia 25: 383–401.
- Hågvar, S. (1984): Effects of liming and artificial acid rain on Collembola and Protura in coniferous forests. - Pedobiologia **27**: 341–354.
- Härdtle, W., T. Heinken, J. Pallas, J. & W. Weiß (1997): Synopsis der Pflanzengesellschaften Deutschlands, Heft 2, Querco-Fagetea (H5), Sommergrüne Laubwälder, Teil 1: Quercion roboris. - In: Dierschke, H. (Hrsg.): Synopsis der Pflanzengesellschaften Deutschlands. - Göttingen: 1-51.
- Härdtle W., J. Ewald & N. Hölzel (2008): Wälder des Tieflandes und der Mittelgebirge. - Ulmer, Stuttgart: 252 pp.
- Hausen, J., B. Scholz-Starke, U. Burkhardt, S. Lesch, S. Rick, D. Russell, M. Roß-Nickoll & R. Ottermanns (2017): Edaphostat: interactive ecological analysis of soil organism occurrences and preferences from the Edaphobase data warehouse. - Database 2017: 1-6.
- Hauser, H. (1996): Untersuchungen über die großräumige und kleinräumige Verteilung von Tausendfüßern und Asseln (Diplopoda, Isopoda) in Laubwaldböden. - Diplomarbeit, Universität Göttingen, 97 pp.
- Hauser, H. & K. Voigtländer (2009): Doppelfüßer (Diplopoda) Ostdeutschlands. - DJN, Deutscher Jugendbund für Naturbeobachtung: 1–112.
- Heimann-Detlefsen, D. (1991): Auswirkungen eines unterschiedlich intensiven Pflanzenschutz- und Düngemitteleinsatzes auf die Collembolenfauna des Ackerbodens. - Disserstation, Universität Braunschweig.
- F. & H. Andreae (2011): Die zweite Bodenzustandserhebung in Sachsen - Erste Ergebnisse zur zeitlichen Veränderung des chemischen Bodenzustandes zwischen 1992/93 und 2006/08. - In: Fakultät für Forst- und Umweltwissenschaften der Universität Freiburg (Hrsg.): Bodenzustandserfassung, aktuelle Gefährdungen und Trends. - Gemeinsames Kolloquium des AK "Waldböden" der DBG und der Sektion "Wald und Wasser" im DVFFA und des vTI Eberswalde. Freiburg/Brsg. Freiburger Forstliche Forschung 88: 33-41.
- Heisler, C. (1994): Effects of soil compaction in soil mesofauna: Collembola and Gamasina - a 3-year field trial. - Pedobiologia **38**: 566-576.
- Hempel, W. (1982): Ursprüngliche und potentielle natürliche Vegetation in Sachsen - eine Analyse der Entwicklung von Landschaft und Waldvegetation. - Dissertation, TU Dresden.

- summary of current research. In: Edwards, C.A. (Hrsg.): Earthworm ecology. – CRC Press, Boca Raton: 259–269.
- Hendrix, P. F., Peterson, A. C., Beare, M. H. & D. C. Coleman (1998): Long-term effects of earthworms on microbial biomass nitrogen in coarse and fine textured soils. - Applied Soil Ecology 9: 375-380.
- Hill, M. O. (1973): Reciprocal averaging: An eigenvector method of ordination. - Journal of Ecology 61: 237-249.
- Höfer, H., J. Astrin, J. Holstein, J. Spelda, F. Meyer & N. Zarte (2015): Propylene glycol – a useful capture preservative for spiders for DNA barcoding. - Arachnologische Mitteilungen **50**: 30–36.
- Hopkin, S. (1997): Biology of the Springtails (Insecta: Collembola). - Oxford University Press, Oxford, New York, Tokyo: 330 pp.
- Hopkin, S. (2007): A key to the Collembola (Springtails) of Britain and Ireland. – FSC Publications, Shrewsbury: 245 pp.
- Hossfeld, R. (1963): Synökologischer Vergleich der Fauna von Winter- und Sommerraps-Feldern. - Zeitschrift für angewandte Entomologie 52: 209-254.
- Hüther, W. (2009): Die Springschwänze des Naturschutzgebiets Gronenborner Teiche in Leverkusen (Insecta, Collembola). - In: Jahresberichte des Naturwissenschaftlichen Vereins in Wuppertal 61: 125-144.
- Hutson, B. R. (1981): Age distribution and the annual reproductive cycle of some Collembola colonizing reclaimed land in Northumberland, England, UK. - Pedobiologia 21:
- ISO (International Organization for Standardization) (1993): Soil quality - Determination of dry matter and water content on a mass basis - Gravimetric method. ISO 11465. - Geneva, Switzerland.
- ISO (International Organization for Standardization) (1995a): Soil quality - Determination of carbonate content -Volumetric method. ISO 10693. - Geneva, Switzerland.
- ISO (International Organization for Standardization) (1995b): Soil quality - Determination of organic and total carbon after dry combustion (elementary analysis). ISO 10694. -Geneva, Switzerland.
- ISO (International Organization for Standardization) (1998): Soil quality - Determination of total nitrogen content by dry combustion. ISO 13878. - Geneva, Switzerland.
- ISO (International Organization for Standardization) (2002): Soil quality - Determination of particle size distribution in mineral soil - Method by sieving and sedimentation ISO 11277. – Geneva, Switzerland.
- ISO (International Organization for Standardization) (2005): Soil quality - Determination of pH. ISO 10390. - Geneva, Switzerland.
- ISO (International Organization for Standardization) (2006a): Soil quality - Pretreatment of samples for physico-chemical analysis. ISO 11464. - Geneva, Switzerland.

- ISO (International Organization for Standardization) (2006b): Soil quality Sampling of soil invertebrates Part 1: Handsorting and formalin extraction of earthworms. ISO 23611-1. Geneva, Switzerland.
- ISO (International Organization for Standardization) (2006c):
 Soil quality Sampling of soil invertebrates Part 2:
 Sampling and extraction of microarthropods (Collembola and Acarina). ISO 23611-2. Geneva, Switzerland.
- ISO (International Organization for Standardization) (2007): Soil quality - Sampling of soil invertebrates Part 3: Sampling and soil extraction of enchytraeids. ISO 23611-3. – Geneva, Switzerland.
- ISO (International Organization for Standardization) (2017): Soil quality Identification of ecotoxicological test species by DNA barcoding. ISO 21286. Geneva, Switzerland.
- Jänsch, S. & J. Römbke (2003): Ecological characterisation of selected enchytraeid species (Enchytraeidae, Oligochaeta)
 A literature research. Newsletter on Enchytraeidae 8: 57–68.
- Jänsch, S., M. J. B. Amorim & J. Römbke (2005): Identification of the ecological requirements of important terrestrial ecotoxicological test species. – Environmental Reviews 13: 51–83.
- Jänsch, S., L. Steffens, H. Höfer, F. Horak, M. Roß-Nickoll, D. Russell, A. Toschki & J. Römbke (2013): State of knowledge of earthworm communities in German soils as a basis for biological soil quality assessment. Soil Organisms 85: 215–232 + Electronic Supplement.
- James, S. W., D. Porco, T. Decaëns, B. Richard, R. Rougerie & C. Erséus (2010): DNA barcoding reveals cryptic diversity in *Lumbricus terrestris* L., 1758 (Clitellata): resurrection of *L. herculeus* (Savigny, 1826). PLoS ONE 5: e15629.
- Jeffrey, S., C. Gardi, A. Jones, L. Montanarella, L. Marmo,
 L. Miko, K. Ritz, G. Peres, J. Römbke & W. van der Putten
 (Hrsg.) (2010): European Atlas of Soil Biodiversity. –
 European Commission, Publications Office of the European
 Union, Luxembourg. EUR 24375 EN: 65 pp.
- Ji, Y., L. Ashton, S. M. Pedley, D. P. Edwards, Y. Tang,
 A. Nakamura, R. Kitching, P. M. Dolman, P. Woodcock, F.
 A. Edwards, T. H. Larsen, W. W. Hsu, S. Benedick, K. C.
 Hamer, D. S. Wilcove, C. Bruce, X. Wang, T. Levi, M. Lott,
 B. C. Emerson & D. W. Yu (2013): Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. –
 Ecology Letters 16: 1245–1257.
- Jordana, R. (2012): Capbryinea & Entomobryini. Synopsis of Palaearctic Collembola, Volume 7/1. Senckenberg Museum of Natural History, Görlitz: 1–390.
- Kaczmarek, M. (1975): An analysis of Collembola communities in different pine forest environments. Ekologia Polska **23**: 265–293.
- Kevan, P. G. & D. K. McE. Kevan (1970): Collembola as pollen feeders and flower visitors with observations from the high Arctic. Quaestiones Entomologicae 6: 311–326.

- Killham, K. (1994): Soil ecology. Cambridge University Press: 242 pp.
- Kime, R. D. (2000): Present knowledge of the distribution of European millipedes (Diplopoda). Fragmenta Faunistica **43** (Supplement): 281–294.
- Kime, R. D. (2004): The Belgian millipede fauna (Diplopoda).
 Bulletin de l'Institut Royal des Sciences Naturelles de Belgique Entomologie 74: 35–68.
- Kime, R. D., G. Wauthy, F. Delecour, M. Dufrene & D. Drugmand (1992): Distribution spatiale et preferences ecologiques chez les diplopodes du sol. Spatial distribution and ecological preference of soil Diplopoda species. Mémoires de la Société Royale d'Entomologie de Belgique 35: 661–670.
- King, R. A., A. L. Tibble & W. Oc. Symondson (2008): Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. – Molecular Ecology 17: 4684–4698.
- Klimm, B. (1985): Analyse des Diplopoden-Bestandes in der Feldflur von Lautenbach. Untersuchungen im Rahmen eines Projektes zum integrierten Pflanzenschutz. Diplomarbeit, Universität Tübingen: 126 pp.
- Klinger, K. (1992): Diplopods and Chilopods of Conventional and Alternative (Biodynamic) Fields in Hesse (FRG). Berichte des naturwissenschaftlich-medizinischen Vereins Innsbruck, Supplement 10: 243–250.
- Knülle, W. (1957): Die Verteilung der Acari: Oribatei im Boden. Zur Morphologie und Ökologie der Tiere **46**: 397–432.
- Koren, A. (1986): Die Chilopoden-Fauna von Kärnten und Osttirol. Teil 1. Geophilomorpha, Scolopendromorpha. Carinthia II, Sonderheft **43**: 1–87.
- Koren, A. (1992): Die Chilopodenfauna von Kärnten und Osttirol. Teil 2. Lithobiomorpha. Carinthia II **52**: 1–138.
- Kovac, L. & D. Miklisova (1977): Collembolan communities (Hexapoda, Collembola) in arable soils of East Slovakia. Pedobiologia **41**: 62–68.
- Krause, S. & B. M. Möseler (1995): Pflanzensoziologische Gliederung der Hainsimsen-Buchenwälder (Luzulo-Fagetum Meusel 1937) in der nordrhein-westfälischen Eifel. – Tüxenia 15: 53–72.
- Landesbetrieb Wald und Holz NRW (Hrsg.) (2008): Nationalparkplan. Band 1: Leitbilder und Ziele. Schleiden-Gemünd: 78 pp. + Anhang.
- Lavelle, P. & A. V. Spain (2005): Soil Ecology. Kluwer Academic Publishers, Dordrecht, the Netherlands: 654 pp.
- Lavelle, P., Bignell, D. & M. Lepage (1997): Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology **33**: 159–193.
- Lee, K. E. (1985): Earthworms: Their ecology and relationships with soils and land use. Academic Press, Sydney, Australia: 411 pp.
- Lehmitz, R. & P. Decker (2017): The nuclear 28S gene fragment D3 as species marker in oribatid mites (Acari,

- Oribatida) from German peatlands. Experimental and Applied Acarology 71(3), 259–276.
- Lehmitz, R., J. Römbke, S. Jänsch, S. Krück, A. Beylich & U. Graefe (2014): Checklist of earthworms (Oligochaeta: Lumbricidae) from Germany. Zootaxa **3866** (2): 221–245.
- Lehmitz, R., J. Römbke, U. Graefe, A. Beylich & S. Krück (2016): Rote Liste und Gesamtartenliste der Regenwürmer (Lumbricidae et Criodrilidae) Deutschlands. – Naturschutz und Biologische Vielfalt 70: 565–590.
- Lemanceau, P., P.-A. Maron, S. Mazurier, C. Mougel, B. Pivato, P. Plassart, L. Ranjard, C. Revellin, V. Tardy & D. Wipf (2015): Understanding and managing soil biodiversity: a major challenge in agroecology. – Agronomy for Sustainable Development 35: 67–81.
- Lennartz, G. (2003): Der biozönologische-soziologische Klassifikationsansatz und dessen Anwendung in der Naturschutzpraxis - dargestellt am Beispiel der Borstgrasrasen (Violion) der Eifel unter Berücksichtigung der Laufkäfer, Spinnen, Heuschrecken, Tagfalter und Schwebfliegen. – Dissertation, RWTH Aachen.
- Lennartz, G. & M. Roß-Nickoll (1999): Der biozönologischsoziologische Klassifikationsansatz zur Erfassung und Abgrenzung von Ökosystemen: Ein Weg zum Monitoring belasteter Ökosysteme? – In: Oehlmann, J. & B. Markert (Hrsg): Ökotoxokologie: Ökosystemare Ansätze und Methoden, ecomed Verlag, Landsberg: 204–212.
- Leske, M. (1785): Reise durch Sachsen. I.G. Müllersche Buchhandlung, Leipzig.
- Leyer, I. & K. Wesche (2007): Multivariate Statistik in der Ökologie Eine Einführung. Springer, Berlin: 221 pp. [doi: 10.1007/b137219].
- LfL (Bayrische Landesanstalt für Landwirtschaft) (2017): Zwei für Deutschland neue Regenwurmarten bei Kirchweidach gefunden. Pressemitteilung 05. April 2017. [https://www.lfl.bayern.de/verschiedenes/presse/pms/2017/160583/index.php].
- LfU (Bayerisches Landesamt für Umwelt) (2018): Das weißblaue Klima. [https://www.lfu.bayern.de/wasser/klima_wandel/bayern/index.htm].
- LfULG (Landesamt für Umwelt, Landwirtschaft und Geologie) (2014): Landschaftsgliederung Sachsens. Fachbeitrag zum Landschaftsprogramm. Dresden, 11 pp.
- Luff, M. L. (1975): Some Features Influencing the Efficiency of Pitfall Traps. Oecologia **19**: 345–357.
- Luxton, M. (1972): Studies on the Oribatid mites of Danish beech wood soil. I. Nutritional biology. –Pedobiologia **12**: 434–463.
- Macfadyen, A. J. (1961): Improved funnel-type extractor for soil arthropods. – Journal of Animal Ecology 30: 171–184.
- Mannsfeld, K. & H. Richter (1995): Naturräume in Sachsen. Forschungen zur deutschen Landeskunde **238**: 229 pp.
- Maraun, M., J.-A. Salamon, K. Schneider, M. Schaefer &S. Scheu (2003): Oribatid mite and collembolan diversity,

- density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbations. Soil Biology and Biochemistry **35**: 1387–1394.
- Maraun, M., H. Schatz & S. Scheu (2007): Awesome or ordinary? Global diversity patterns of oribatid mites. Ecography **30**: 209–216.
- Martens, H. (2007): Diplopoden auf extensiv bewirtschafteten Ackerflächen Untersuchungen zur Populationsökologie und zur Streuzersetzung. Dissertation, Göttingen: 130 pp.
- Martinsson, S. & C. Erséus (2014): Cryptic diversity in the well-studied terrestrial worm Cognettia sphagnetorum (Clitellata: Enchytraeidae). Pedobiologia 57: 27–35. [doi: 10.1016/i.pedobi.2013.09.006].
- Martinsson, S., E. Rota & C. Erséus (2015): Revision of Cognettia (Clitellata, Enchytraeidae): re-establishment of Chamaedrilus and description of cryptic species in the sphagnetorum complex. Systematics and Biodiversity 13: 257–277.
- Mateos, E. (2012): The European *Lepidocyrtus lanuginosus* group (Collembola: Entomobryidae), definition and description of a new species from Spain. Zootaxa **3570**: 69–81.
- Matic, Z., E. Schneider & I. Weiss (1979): Untersuchungen über die Arthropodenfauna xerothermer Standorteim südsiebenbürgischen Hügelland. VIII. Die Chilopoden eines Südhanges im Hügelland Südsiebenbürgens. – Studii si Comunicâri / Stiinte naturale, Muzeul Brukenthal 23: 263–274.
- Matuszkiewicz, W. (1962): Zur Systematik der natürlichen Kiefernwälder des mittel- und osteuropäischen Flachlandes. Mitt. Flor.-Soziol. Arbeitsgem. N. F. 9: 145–186.
- Moritz, M. (1963): Über Oribatidengemeinschaften (Acari: Oribatei) norddeutscher Laubwaldböden, unter besonderer Berücksichtigung der die Verteilung regelnden Milieubedingungen. Pedobiologia 3: 142–243.
- Mühlenberg, M. (1993): Freilandökologie. 3. Aufl., Quelle & Meyer, Heidelberg, Wiesbaden: 430 pp.
- Müller, R. & H. J. Franzke (2014): Oberharz. Streifzüge durch die Erdgeschichte. Quelle & Meyer Verlag: 144 pp.
- Mulder, C., H. J. van Wijnen, R. A. Den Hollander, A. J. Schouten, M. Rutgers & A. M. Breure (2004): Referenties voor bodemecosystemen: evaluatie van functies en ecologische diensten. RIVM report 607604006/2004. Wageningen, Bilhoven.
- Mulder, C., A. Boit, M. Bonkowski, P. C. de Ruiter, G. Mancinelli, M. G. A. van der Heijden, H. J. van Wijnen, J. A. Vonk & M. Rutgers (2011): A belowground perspective on Dutch agroecosystems: how soil organisms interact to support ecosystem services. In: Woodward, G. (Hrsg.): Advances in ecological research. Elsevier Academic Press, San Diego, California, USA: 277–357.
- Nationalpark Eifel (2015): Der Nationalpark Eifel. [http://www.nationalpark-eifel.de, Aufgerufen am 10.08.15].

Nationalparkverwaltung Eifel (2017): Permanente Stichprobeninventur im Nationalpark Eifel. Schriftenreihe zum Nationalpark Eifel, Band 7: 116 pp.

- Orgiazzi, A., M. B. Dunbar, P. Panagos, G. A. de Groot & P. Lemanceau (2015): Soil biodiversity and DNA barcodes: opportunities and challenges. Soil Biology and Biochemistry **80**: 244–250.
- Palacios-Vargas, J. G. & M. V. Vidal-Acosta (1994): Nuevas especies de Friesea (Collembola: Neanuridae) de reservas biológicas de México. Southwestern Entomologist 19: 291–299.
- Paoletti, M. (1999): The role of earthworms for assessment of sustainability and as bioindicators. Agriculture, Ecosystems and Environment **74**: 137–155.
- Peppler C. (1992): Die Borstgrasrasen (Nardetalia) Westdeutschlands. – Dissertationes Botanicae, Band 193, Cramer Verlag, Berlin, Stuttgart.
- Peppler-Lisbach, C. & J. Petersen (2001): Calluno-Ulicetea (G3) Teil 1: Nardetalia strictae Borstgrasrasen. In: Dierschke, H. (Hrsg.): Synopsis der Pflanzengesellschaften Deutschlands, Heft 8. Selbstverlag der floristischensoziologischen Arbeitsgemeinschaft E. V., Göttingen.
- Pérez-Losada, M., R. Bloch, J. W. Breinholt, M. Pfenninger & J. Domínguez (2012): Taxonomic assessment of Lumbricidae (Oligochaeta) earthworm genera using DNA barcodes. European Journal of Soil Biology **48**: 41–47.
- Peter, H. (2006): Erfassung des Arten-und Vegetationspotentials im Teilgebiet "Hausberg" des Naturschutzgebietes Nr. 451 "Kernberge und Wöllmisse bei Jena". Gutachten, Report, Friedrich-Schiller-Universität, Institut für Ökologie, Jena.
- Peter, H. (Hrsg.) (2008): Erfassung des Arten- und Biotoppotentials im Teilgebiet "Culmberg" des Naturschutzgebietes Nr. 451 "Kernberge und Wöllmisse bei Jena". Gutachten, Report, Friedrich-Schiller-Universität, Institut für Ökologie, Jena.
- Peter, M. (1997): Untersuchungen zur Ökologie der Springschwänze (Insecta: Collembola) eines Kalkbuchenwaldes: Die Bedeutung des Nahrungsangebotes. – Diplomarbeit, Universität Göttingen.
- Petersen, H. (1971): Collembolernes ernaeringsbiologi og dennes Økologiske betydning. – Entomologiske Meddelelser 39: 97–118
- Petersen, H. & M. Luxton (1982): A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos **39**: 287–388.
- Pflug, A. (2001): Determinants of soil community structure and function in European coniferous forests with particular emphasis on Collembola. Dissertation, Shaker Verlag, Universität Giessen.
- Ponge, J. (2000): Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biology and Fertility of Soils **32** (6): 508–522.

- Potapov, M. (2001): Synopses on Palaearctic Collembola. Volume 3. Isotomidae. Abhandlungen und Berichte des Naturkundemuseums Görlitz **73** (2): 1–603.
- Orgiazzi, A., M. B. Dunbar, P. Panagos, G. A. de Groot Pott, R. (1992): Die Pflanzengesellschaften Deutschlands. & P. Lemanceau (2015): Soil biodiversity and DNA Ulmer, Stuttgart: 428 pp.
 - Pulleman, M., R. Creamer, U. Hamer, J. Helder, C. Pelosi, G. Pérès & M. Rutgers (2012): Soil biodiversity, biological indicators and soil ecosystem services - an overview of European approaches. – Current Opinion in Environmental Sustainability 4: 529–538.
 - Querner, P, A. Bruckner, T. Drapela, D. Moser, J. G. Zaller & T. Frank (2013): Landscape and site effects on Collembola diversity and abundance in winter oilseed rape fields in eastern Austria. Agriculture, Ecosystems and Environment **164**: 145–154.
 - R Core Team (2016): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [https://www.R-project.org/].
 - Reip, H. S., J. Spelda, K. Voigtländer, P. Decker & E. N. Lindner (2016): Rote Liste und Gesamtartenliste der Doppelfüßer (Myriapoda: Diplopoda) Deutschlands. In: Gruttke, H., M. Binot-Hafke, S. Balzer, H. Haupt, N. Hofbauer, G. Ludwig, G. Matzke-Hajek & M. Ries (Red.): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands, Band 4: Wirbellose Tiere (Teil 2). Naturschutz und Biologische Vielfalt 70 (4): 301–324.
 - Remus, A. (1962): Das Vorkommen von Regenwürmern, Tausendfüßlern und Insekten unter Dauergrünland in gleyartigen Böden des Versuchsgutes Reugen/Eifel. – Dissertation, Universität Bonn: 181 pp.
 - Riecken, U., P. Finck, U. Raths, E. Schröder & A. Ssymank (2003): Standard-Biotoptypenliste für Deutschland, 2. Fassung. Schriftenreihe für Landschaftspflege und Naturschutz 75: 65 S. + Anhänge.
 - Römbke, J. & A. M. Breure (2005a): Status and outlook of ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety **62**: 300–308.
 - Römbke, J. & A. M. Breure (2005b): Ecological soil quality
 Classification and assessment. Ecotoxicology and Environmental Safety 62: 185–308.
 - Römbke, J., L. Beck, B. Förster, H.-C. Fründ, F. Horak, A. Ruf, K. Rosciczewski, M. Scheurig & S. Woas (1997): Boden als Lebensraum für Bodenorganismen und die bodenbiologische Standortklassifikation: eine Literaturstudie. Texte und Berichte zum Bodenschutz 4/97. Landesanstalt für Umweltschutz Baden-Württemberg, Karlsruhe: 390 pp.
 - Römbke, J., P. Dreher, L. Beck, W. Hammel, K. Hund,
 H. Knoche, W. Kördel, W. Kratz, T. Moser, S. Pieper, A. Ruf,
 J. Spelda & S. Woas (2000): Bodenbiologische Bodengüte-Klassen. – UBA-Texte 6/00: 276 pp.
 - Römbke, J., L. Beck, P. Dreher, K. Hund-Rinke, S. Jänsch, W. Kratz, S. Pieper, A. Ruf, J. Spelda & S. Woas (2002):

- Entwicklung von bodenbiologischen Bodengüteklassen für Acker- und Grünlandstandorte. UBA-Texte 20/02: 264 pp.
- Römbke, J., S. Jänsch & W. Didden (2005): The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety 62: 249–265.
- Römbke, J., R. Schmelz & S. Knaebe (2009): Field studies for the assessment of pesticides with soil mesofauna, in particular enchytraeids, mites and nematodes: Design and first results. Soil Organisms 81: 237–264.
- Römbke, J., S. Jänsch, M. Roß-Nickoll, A. Toschki, H. Höfer, F. Horak, D. Russell, U. Burkhardt & H. Schmitt (2012): Erfassung und Analyse des Bodenzustands im Hinblick auf die Umsetzung und Weiterentwicklung der Nationalen Biodiversitätsstrategie. Texte Nr. 33/2012. Umweltbundesamt, Dessau-Roßlau, 386 pp.
- Römbke, J., U. Burkhardt, H. Höfer, F. Horak, S. Jänsch, M. Roß-Nickoll, D. Russell, H. Schmitt & A. Toschki (2013): Beurteilungsansätze für die Boden-Biodiversität: Ergebnisse eines UBA-Vorhabens. Bodenschutz 3/13: 100–105.
- Römbke, J., C. Gardi, R. Creamer & L. Miko (2016): Soil biodiversity data: actual and potential use in European and national legislation. Applied Soil Ecology **97**: 125–133.
- Römbke, J., J. Bernard & F. Martin-Laurent (2018): Standard methods for the assessment of structural and functional diversity of soil organisms: a review. Integrated Environmental Assessment and Management 14: 463–479.
- Rosenberg, R. (2009): Die Hundertfüßer. Die Neue Brehm-Bücherei, Westharp Wissenschaften, Hohenwarsleben: 524 pp.
- Roß-Nickoll, M., G. Lennartz, A. Fürste, R. Mause, R. Ottermanns, S. Schäfer, M. Smolis, B. Theißen, A. Toschki & H. T. Ratte (2004): Die Arthropodenfauna von grasigen Feldrainen (off crop) und die Konsequenzen für die Bewertung der Auswirkungen von Pflanzenschutzmitteln auf den terrestrischen Bereich des Naturhaushaltes. UBA Text, Berlin: 148 pp.
- Rost, S. (1996): Die Halbtrockenrasen des Elbingeröder Kalksteingebietes (Harz) im Rahmen ihrer Kontaktgesellschaften. Tuexenia **16**: 403–432.
- RStudio Team (2016): RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL [http://www.rstudio.com/].
- Rubcova, Z. I. (1967): Über Myriapoden in verschiedenen Typen von Kiefernwäldern im westlichen Teil der Belorussischen Sowjetrepublik. – Pedobiologia 7: 42–54.
- Ruf, A., L. Beck, P. Dreher, K. Hund-Rinke, J. Römbke & J. Spelda (2003): A biological classification concept for the assessment of soil quality: "biological soil classification scheme" (BBSK). Agriculture, Ecosystems and Environment 98: 263–271.
- Ruf, A., A. Beylich, T. Blick, W. Büchs, F. Glante, S. Höss, M. Roß-Nickoll, L. Rueß, D. J. Russell, J. Römbke, H. Seitz, B. Theißen, A. Toschki, C. Weimann & W. Züghart (2013):

- Soil organisms as an essential element of a monitoring plan to identify the effects of GMO cultivation. Requirements Methodology Standardisation. BioRisk **8**: 73–87.
- Rutgers, M., C. Mulder, A. J. Schouten, J. Bloem, J. J. Bogte,
 A. M. Breure, L. Brussaard, R. G. M. De Goede, J. H. Faber,
 G. A. J. M. Jagers op Akkerhuis, H. Keidel, G. W. Korthals,
 F. W. Smeding, C. Ter Berg & N. van Eekeren (2008): Soil ecosystem profiling in the Netherlands with ten references for biological soil quality. RIVM-Report 607604009: 85 pp.
- Rutgers, M., A. J. Schouten, J. Bloem, N. Van Eekeren, R. G. M. De Goede, G. A. J. M. Jagers op Akkerhuis, A. Van der Wal, C. Mulder, L. Brussaard & A. M. Breure (2009): Biological measurements in a nationwide soil monitoring network. European Journal of Soil Science 60: 820–832.
- Rutgers, M., G. A. J. M., J. Jagers op Akkerhuis Bloem, A. J. Schouten & A. M. Breure (2010): Priority areas in the Soil Framework Directive. The significance of soil biodiversity and ecosystem services. RIVM-Report 60737002: 62 pp.
- Sahli, F. (1955): Diplopodes de Sarre. Annales Universitatis Saraviensis **4** (4): 357–366.
- Salamon, J.-A. (2001): Die Collembolengemeinschaften in Buchen- und Fichtenwäldern des Sollings: Der Einfluss von Baummischung, Nahrung und mechanischer Störung.
 Berichte des Forschungszentrums Waldökosysteme, Göttingen, Reihe A, Band 176 (Dissertation).
- Salamon, J-A. (2015): Die Collembolengemeinschaft des Nationalpark Kellerwald-Edersee II: Einfluss von mikrobiellen Bodenparametern auf die Collembolenfauna von 5 ausgewählten Habitattypen. Nationalpark Kellerwald, interner Bericht.
- Salamon, J.-A. & J. Alphei (2009): The Collembola community of a Central European forest: Influence of tree species composition. – European Journal of Soil Biology 45: 199– 206.
- Salamon, J.-A., B. Schmid, S. Scheu, J. Alphei & M. Schaefer (2004): Effects of plant diversity on Collembola in an experimental grassland ecosytem. – Oikos 106: 51–60.
- Salamon, J.-A., S. Scheu & M. Schaefer (2008): The Collembola community of pure and mixed stands of beech (*Fagus sylvatica*) and spruce (*Picea abies*) of different age. Pedobiologia **51**: 385–396.
- Salamon, J.-A., J. Wissuwa, K. Moder & T. Frank (2011): Effects of *Medicago sativa*, *Taraxacum officinale* and *Bromus sterilis* on the density and diversity of Collembola in grassy arable fallows of different age. Pedobiologia **54**: 63–70.
- Salamon, J.-A., H. Haase, S. Jänsch, J. Oellers, J. Römbke,
 R. Schmelz, B. Scholz-Starke & A. Toschki (2018):
 Bodenökologische Untersuchung verschiedener extensiver
 FFH-Grünlandtypen (Borstgrasrasen, Goldhaferwiesen,
 basenreiche Halbtrockenrasen) in Sachsen-Anhalt 2014-2018. Gutachten: 162 S.
- Satchell, J. E. (1983): Earthworm Ecology: From Darwin to Vermiculture. – Chapman & Hall, London: 495 pp.

& U. Schwertmann (1998): Lehrbuch der Bodenkunde. -Ferdinand Enke Verlag, Stuttgart: 494 pp.

- Schaefer, M. & J. Schauerman (1990): The soil fauna of beech forests: comparison between a mull and a moder soil. -Pedobiologia 34: 299-314.
- Schauermann, J. (1982): Verbesserte Extraktion der terrestrischen Bodenfauna im Vielfachgerät modifiziert nach Kempson und Macfadyen. - Mitteilungen aus dem Sonderforschungsbereich (Ökosysteme auf Kalkgestein) 1351: 47-50.
- Scheu, S. (1990): Die saprophage Makrofauna (Diplopoda, und Lumbricidae) in Lebensräumen auf Kalkgestein: Sukzession und Stoffumsatz. - Berichte des Forschungszentrums Waldökosysteme / Reihe A 57/ Universität Göttingen: 1-302.
- Scheu, S. & M. Falca (2000): The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and mesofauna-dominated community. - Oecologia 123: 285-296.
- Schleuter, M. (1984): Untersuchung der Collembolenfauna verschiedener Waldstandorte des Naturparks Kottenforst-Ville. - Dissertation, Universität Bonn.
- Schmelz, R. M. (2003): Taxonomy of Fridericia (Oligochaeta, Enchytraeidae). Revision of species with morphological biochemical methods. Abhandlungen Naturwissenschaftlichen Vereins in Hamburg (Neue Folge) 38: 415 pp.
- Schmelz, R. M. & R. Collado (2010): A Guide to European Terrestrial and Freshwater Species of Enchytraeidae (Oligochaeta). - Soil Organisms 82: 1-176.
- Schmelz, R. M. & R. Collado (2015): Checklist of taxa of SMUL Enchytraeidae (Oligochaeta): an update. - Soil Organisms 87:
- Schmelz, R. M., H. Haase, S. Jänsch, J. Oellers, J. Römbke, J.-A. Salamon, B. Scholz-Starke & A. Toschki (2018): Bodenökologische Untersuchung von Acker-Graslandstandorten im Freistaat Bayern 2015. – Gutachten:
- Schmidt, M. H., Y. Clough, W. Schulz, A. Westphalen & T. Tscharntke (2006): Capture efficiency and preservation attributes of different fluids in pitfall traps. - Journal of Arachnology 34: 159-162.
- Schmidt, P. A., W. Hempel, M. Denner, N. Döring, A. Gnüchtel, B. Walter & D. Wendel (2002): Potentielle Natürliche Vegetation Sachsens mit Karte 1: 200 000 / Hrsg. Sächsisches Landesamt für Umwelt und Geologie. - Materialien zu Naturschutz und Landschaftspflege, Dresden: 230 pp.
- Schmiedel, I., E. Bergmeier & F. Goedecke (2016): Permanente Stichprobeninventur (PSI) im Nationalpark Eifel: Auswertung der Vegetationsaufnahmen im Wald und Offenland. -Unveröffentlichter Bericht. Abt. Vegetationsanalyse und Phytodiversität, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Georg-August-Universität Göttingen: 106 pp.

- Schachtschabel, P., H.-P. Blume, G. Brümmer, K. H. Hartge Schmitt, G. & M. Roth (1999): Auswirkungen agrarischer Landnutzung auf die Tausendfüßer-Lebensgemeinschaften (Myriapoda: Chilopoda, Diplopoda). - Beiträge für Forstwirtschaft und Landschaftsökologie 33 (4): 162-166.
 - Schouten, A. J., A. M. Breure, J. Bloem, W. Didden, P. C. De Ruiter & H. Siepel (1999): Life support functions of the soil: Operationalization for the policy. – RIVM Report 607601003. National Institute of Public health and the Environment. Bilthoven: 55 pp.
 - Schriel, G. (1928): Geologische Karte von Preussen und benachbarten Ländern. Hrsg. Preussisch geologische Landesanstalt. Berlin Geologische Karte von Sachsen-Anhalt im Maßstab 1:25000, Blatt: 4330, Benneckenstein, Harz.
 - Schubart, O. (1934): Tausendfüßler oder Myriapoda. I: Diplopoda. - In: Dahl, F. (Hrsg.): Die Tierwelt Deutschlands 28: 318 pp.
 - Schuster, R. (1956): Der Anteil der Oribatiden an den Zersetzungsvorgängen im Boden. - Zeitschrift Morphologie und Ökologie der Tiere 45: 1–33.
 - Schuster, R. (1960): Über die Ökologie und Verbreitung von Bodenmilben (Oribatei) am Alpen-Ostrand, insbesondere in der Steiermark. - Mitteilungen naturwissenschaftlicher Verein Steiermark 90: 132-149.
 - Siepel, H. & C. F. van de Bund (1988): The influence of management practises on the microarthropod community of grassland. - Pedobiologia 31: 339-354.
 - Sims, R. W. & B. M. Gerard (1999): Earthworms. In: Kermack, D. M. & R. S. K. Barnes (Hrsg.): Synopses of the British Fauna (New Series) No. 31. - E. J. Brill / W. Backhuys, London, 171 pp.
 - (Sächsisches Ministerium fiir Umwelt Landwirtschaft) (2005): Klimawandel in Sachsen. Sachstand und Ausblick 2005. – Dresden: 111 pp.
 - **SMUL** (Sächsisches Ministerium für Umwelt Landwirtschaft) (2008): Naturschutzgebiete in Sachsen. -Dresden: 719 pp.
 - Spelda, J. (1991): Zur Faunistik und Systematik der Tausendfüßler (Myriapoda) Sudwestdeutschlands. – Jahreshefte Gesellschaft für Naturkunde in Württemberg 146: 211–232.
 - Spelda, J. (1993): Hundert- und Tausendfüßer aus Missen der Umgebung von Oberreichenbach, Lkr. Calw (Chilopoda, Diplopoda). - Beihefte der Veröffentlichungen für Naturschutz und Landschaftspflege in Baden-Württemberg 73: 399-402.
 - Spelda, J. (1998): Provisorische Rote Liste der in Baden-Württemberg gefährdeten Hundert- und Tausendfüßer (Myriapoda: Chilopoda, Diplopoda). - Jahrbuch Hamburgischen Wissenschaftlichen Anstalten: 1–45.
 - Spelda, J. (1999): Verbreitungsmuster und Taxonomie der Chilopoda und Diplopoda Südwestdeutschlands. Diskriminanzanalytische Verfahren zur Trennung von Arten und Unterarten am Beispiel der Gattung Rhymogona Cook, 1896 (Diplopoda: Chordeumatida: Craspedosomatidae). Teil 1. –Dissertation, Universität Ulm: 217 pp.

- Spelda, J. (2004): Rote Liste gefährdeter Hundert- und Tausendfüßer (Myriapoda: Chilopoda, Diplopoda) Bayerns.
 Schriftenreihe Bayerisches Landesamt für Umweltschutz 166: 339–342.
- Spelda, J. (2005): Improvements in the knowledge of the myriapod fauna of southern Germany between 1988 and 2005 (Myriapoda: Chilopoda, Diplopoda, Pauropoda, Symphyla).
 Peckiana 4: 101–129.
- Statistisches Landesamt des Freistaates Sachsen (2016): Sachsen in Karten. Ausgabe 2016. Kamenz, 48 pp.
- Straube, D. & A. Juen (2013): Storage and shipping of tissue samples for DNA analyses: a case study on earthworms. European Journal of Soil Biology **57**: 13–18.
- String, P., M. Weller, K.-J. Hartmann, C. Knauf, W. Kainz, A. Möbes & D. Feldhaus (1999): Bodenatlas Sachsen-Anhalt Teil II, Thematische Bodenkarten. Geologisches Landesamt Sachsen-Anhalt.
- Taberlet, P., E. Coissac, M. Hajibabaei & L. H. Rieseberg (2012): Environmental DNA. Molecular Ecology **21**: 1789–1793.
- Taylor, B. R., D. Parkinson & W. F. J. Parsons (1989): Nitrogen and lignin content as predictors of litter decay rates. A microcosm test. – Ecology 70: 97–104.
- Ter Braak, C. J. F. (1986): Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. – Ecology 67: 1167–1179.
- Thibaud, J.-M., H.-J.Schulz & M. M. da Gama Assalino (2004): Synopses on Palaearctic Collembola, Volume
 4: Hypogastruridae. Abhandlungen und Berichte des Naturkundemuseums Görlitz 75 (2): 1–287.
- Thiele, H.-U. (1956): Die Tiergesellschaften der Bodenstreu in den verschiedenen Waldtypen des Niederbergischen Landes. Zeitschrift für angewandte Entomologie **39**: 316–367.
- Thiele, H.-U. (1968): Die Diplopoden des Rheinlandes. Decheniana **120**: 343–366.
- Thomsen, P. F. & E. Willerslev (2015): Environmental DNA
 An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183: 4–18.
- Tischler, W. (1947): Über die Grundbegriffe synökologischer Forschung. Biologische Zentralbibliothek **66**: 49–56.
- Tischler, W. (1958): Synökologische Untersuchungen an der Fauna der Felder und Feldgehölze (Ein Beitrag zur Ökologie der Kulturlandschaft). Zeitschrift für Morphologie und Ökologie der Tiere 47: 54–114.
- Toschki, A. (2008): Eignung unterschiedlicher Monitoring-Methoden als Grundlage zum Risk-Assessment für Agrarsysteme - Am Beispiel einer biozönologischen Reihenuntersuchung und einer Einzelfallstudie. – Dissertaion, RWTH Aachen: 158 pp.
- Toschki, A., S. Jänsch, M. Roß-Nickoll, J. Römbke & W. Züghart (2015): Possibilities of using the German Federal States' permanent soil monitoring program for the monitoring of potential effects of genetically modified organisms (GMO). Environmental Sciences Europe 27:26.

- Toschki, A., J. Oellers, H. Haase, S. Jänsch, J. Römbke,
 J.-A. Salamon, R. Schmelz & B. Scholz-Starke (2018):
 Bodenökologische Untersuchung von Fichtenforsten, Buchenund Eichenwaldbeständen. Nationalpark Eifel 2014-2018. –
 Gutachten: 160 S.
- Trautner, J. (1992): Laufkäfer Methoden der Bestandsaufnahme und Hinweise für die Auswertung bei Naturschutz- und Eingriffsplanungen. In: Trautner, J. (Hrsg.): Arten- und Biotopschutz in der Planung: Methodische Standards zur Erfassung von Tiergruppen [BVDL-Tagung Bad Wurzach, 9.-10. November 1991]. Ökologie in Forschung und Anwendung 5: 145–162.
- Tüxen, R. & H. Ellenberg (1937): Der systematische und ökologische Gruppenwert. Ein Beitrag zur Begriffsbildung und Methodik der Pflanzensoziologie. – Mitteilungen aus der floristisch-soziologischen Arbeitsgemeinschaft in Niedersachsen 3: 171–184.
- Turbé, A., A. De Toni, P. Benito, P. Lavelle, P. Lavelle, N. Ruiz
 Camacho, W. H. Van Der Putten, E. Labouze & S. Mudgal
 (2010): Soil biodiversity: functions, threats and tools for policy makers, Bio Intelligence Service, IRD, and NIOO. –
 Report for European Commission, DG Environment: 250 pp.
- Usher, M. B. & R. G. Booth (1984): Arthropod communities in a maritime moss-turf habitat: multiple scales of pattern in the mites and Collembola. Journal of Animal Ecology 55: 427–441.
- Van Groenigen, J. W., I. M. Lubbers, H. M. J. Vos, G. G. Brown, G. B. De Deyn & K. J. van Groenigen (2014): Earthworms increase plant production: a meta-analysis. – Scientific Reports 4 (2): 6365. [doi: 10.1038/srep06365].
- Van Rhee, J. A. (1969): Development of earthworm populations in polder soils. Pedobiologia **9**: 133–140.
- Van Straalen, N. M. (1997): Community structure of soil arthropods as a bioindicator of soil health. In: Pankhurst, C.,
 B. M. Doube & V. V. S. R. Gupta (Hrsg.): Biological Indicators of Soil Health. CAB International, New York: 235–264.
- Verein Deutscher Ingenieure (VDI) (2014): Monitoring der Wirkungen von gentechnisch veränderten Organismen (GVO). Wirkungen auf Bodenorganismen. VDI 4331 Blatt 1.
- Verhoeff, K. W. (1935): Über *Scolioplanes* (Chilopoda). Zoologischer Anzeiger **111**: 11–23.
- Vietinghoff-Riesch, A. Frhr. Von (1961): Der Oberlausitzer Wald seine Geschichte und seine Struktur bis 1945. Schaper, Hannover.
- Vilkamaa, P. (1989): Records of Collembola new to Finland. Notulae Entomologicae **69**: 63–65.
- Voigtländer, K. (1983): Chilopoden aus Fallenfängen im Waldgebiet Hakel, nordöstliches Harzvorland der DDR. – Hercynia N. F., Leipzig 20 (1): 117–123.
- Voigtländer, K. (1987): Untersuchungen zur Bionomie von Enantiulus nanus (Latzel, 1884) und Allajulus occultus C.
 L. Koch, 1847 (Diplopoda, Julidae). Abhandlungen und Berichte des Naturkundemuseums Görlitz 60 (10): 1–116.

- Voigtländer, K. (1995a): Diplopoden und Chilopoden aus Fallenfängen im Naturschutzgebiet "Dubringer Moor" (Ostdeutschland/Oberlausitz). Abhandlungen und Berichte des Naturkundemuseums Görlitz 68 (8): 39–42.
- Voigtländer, K. (1995b): Diplopoden und Chilopoden in immissionsgeschädigten Kiefernforsten im Raum Bitterfeld.
 Hercynia N. F., Halle 29: 269–289.
- Voigtländer, K. (1996): Diplopoden und Chilopoden von Trockenstandorten im Hallenser Raum (Ostdeutschland). Hercynia N. F., Halle **30**: 109–126.
- Voigtländer, K. (2003): Species distribution and assemblages of centipedes (Chilopoda) in open xeric sites of Saxony-Anhalt (Germany). African Invertebrates **44** (1): 283–291.
- Voigtländer, K. (2004): Rote Liste der Doppelfüßer (Diplopoda) des Landes Sachsen-Anhalt. – Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt 39: 178–180.
- Voigtländer, K. (2005): Habitat preferences of selected Central European Centipedes. Peckiana **4**: 163–179.
- Voigtländer, K. (2009a): Ökologie. In: Rosenberg, J. (Hrsg.): Die Hundertfüßer. Neue Brehm-Buecherei, Westharp Wissenschaften, Hohenwarsleben: 385–409.
- Voigtländer, K. (2009b): Distribution of chilopods in Europe.

 In: Rosenberg, J. (Hrsg.): Die Hundertfüßer. Neue Brehm-Buecherei, Westharp Wissenschaften, Hohenwarsleben: 430–450.
- Voigtländer, K. (2011a): Die Bodenfauna (Lumbricidae, Oribatida, Oniscidea, Myriapoda, Collembola) des Baruther Schafberges und des Dubrauer Horken. – Berichte der Naturfroschenden Gesellschaft der Oberlausitz – Supplement zu Band 18: 223–234.
- Voigtländer, K. (2011b): Preferences of common Central European millipedes for different biotope types (Myriapoda, Diplopoda) in Saxony-Anhalt (Germany). Proceedings of the 15th International Congress of Myriapodology 18-22 July 2011, Brisbane, Australia 6: 61–83.
- Voigtländer, K. (2016): Tausendfüßer (Myriapoda: Diplopoda, Chilopoda). In: Frank, D. & P. Schnitter (Hrsg.): Pflanzen und Tiere in Sachsen-Anhalt. Landesamt für Umweltschutz Sachsen-Anhalt: 592–598.
- Voigtländer, K. & W. Dunger (1998): Centipedes of the nature reserve "Leutratal" near Jena (Thuringia, East Germany). In: Pizl, V. & K. Tajovsky (Hrsg.): Soil zoological problems in Central Europe. Institute of Soil Biology, Academy of Science of the Czech Republik, Ceské Budéjovice: 255–265.
- Voigtländer, K. & C. Düker (2001): Distribution and species grouping of millipedes (Myriapoda, Diplopoda) in dry biotopes in Saxony-Anhalt/Eastern Germany. European Journal of Soil Biology **37**: 325–328.
- Voigtländer, K. & H. Hauser (2005): Untersuchungen zur Bodenmakrofauna der Lausche/Zittauer Gebirge (Diplopoda, Chilopoda, Isopoda, Lumbricidae). Berichte der Naturforschenden Gesellschaft der Oberlausitz 13: 75–81.
- Voigtländer, K. & B. Balkenhol (2006): Studies on millipede assemblages (Myriapoda, Diplopoda) as influenced by habitat

- qualities of afforested mine sites. Norwegian Journal of Entomology **53**: 345–360.
- Voigtländer, K. & K. P. Zulka (2007): Diplopoden und Chilopoden des Nationalparks Hainich/Thüringen. Ergebnisse einer Sammelexkursion des Arbeitskreises deutschsprachiger Myriapodologen. – Entomologische Nachrichten und Berichte 51: 44–48.
- Voigtländer, K. & E. N. Lindner (2010): Die Myriapodenfauna (Diplopoda, Chilopoda) des Harzgebietes mit besonderer Berücksichtigung ihrer Beziehung zur Fauna Sachsen-Anhalts. Beiträge zur Myriapodenfauna des Harzes. I. Entomologische Mitteilungen Sachsen-Anhalt, Sonderheft 2010/2: 80–92.
- Voigtländer, K. & P. Decker (2014): Diplopoda and Chilopoda from a special protection area in the Huy mountain range in Saxony-Anhalt, Germany. Fragmenta Faunistica **57** (1): 27–40.
- Voigtländer, K., W. Dunger & H.-J. Schulz (1993): Untersuchungen zu Langzeitwirkungen von Industrie-Immissionen auf die Bodenfauna im Neißetal bei Görlitz. – Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 69: 115–118.
- Wagenbreth, O. & W. Steiner (1990): Geologische Streifzüge. Landschaft und Erdgeschichte zwischen Kap Arkona und Fichtelberg. – Deutscher Verlag für Grundstoffindustrie, Leipzig: 204 pp.
- Walter, R. & J. Burmeister (2017): Regenwürmer in bayrischen Ackerböden. Merkblatt, 12. pp. (Hrsg: Bayrische Landesanstalt für Landwirtschaft, LfL) [https://www.lfl. bayern.de/mam/cms07/publikationen/daten/merkblaetter/regenwuermer-ackerboeden lfl-merkblatt.pdf].
- Weigmann, G. (1973): Zur Ökologie der Collembolen und Oribatiden im Grenzbereich Land - Meer (Collembola, Insecta - Oribatei, Acari). – Zeitschrift für wissenschaftliche Zoologie 186: 295–391.
- Weigmann, G. (1984): Structure of Oribatid mite communities in the soils of urban areas. Acarology **6**: 917–923.
- Weigmann, G. (1993): Zur Bedeutung von Bodenarthropoden für die Funktion und die Kennzeichnung von Ökosystemen. – Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 8: 479–489.
- Weigmann, G. (1997): Bioindication by means of isovalent species groups. Abhandlungen und Berichte des Naturkundemuseums Görlitz **69**: 59–65.
- Weigmann, G. (2006): Hornmilben (Oribatida). Acari,Actinachaetida. Neubearbeitung der HornmilbenDeutschlands. Goecke & Evers, Keltern: 520 pp.
- Weigmann, G. & W. Kratz (1981): Die deutschen Hornmilbenarten und ihre ökologische Charakteristik. Zoologische Beiträge **27**: 459–489.
- Weigmann, G., F. Horak, K. Franke & A. Christian (2015): Verbreitung und Ökologie der Hornmilben (Oribatida) in Deutschland. – Peckiana 10: 1–171.

- Willius, N. (2010): Bodenökologische Untersuchungen zur Diversität und Artenzusammensetzung von Hornmilben (Oribatida, Acari) in Buchen- und Fichtenwäldern des Nationalparks Eifel. Diplomarbeit, RWTH Aachen.
- Wolters, V. (1985): Untersuchung zur Habitatbindung und Nahrungsbiologie der Springschwänze (Collembola) eines Laubwaldes unter besonderer Berücksichtigung ihrer Funktion in der Zersetzerkette. Dissertation, Universität Göttingen.
- Wolters, V. (1987): Die Bedeutung der Krautschicht für die Springschwänze (Insecta, Collembola) eines Buchenwaldes.
 Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 5: 40–43.
- Wolters, V. (2001): Biodiversity of soil animals and its function.

 European Journal of Soil Biology **37**: 221–227.
- Wolters, V. & K. Ekschmitt (1997): Gastropods, Isopods, Diplopods and Chilopods: Neglected Groups of the Decomposer Food Web. – In: G. Benckiser (Hrsg.): Fauna in Soil Ecosystems recycling processes, nutrient fluxes, and agricultural production. – New York, Basel, Hong Kong: 265–306.
- Work, T. T., C. M. Buddle, L. M. Korinus & J. R. Spence (2002): Pitfall trap size and capture of three taxa of litterdwelling arthropods: implications for biodiversity studies. Environmental Entomology 31: 438–448.
- Wright, J. F., D. W. Sutcliffe & M. T. Furse (Hrsg.) (2000): Assessing the biological quality of fresh waters. RIVPACS and other techniques. – Freshwater Biological Association, Ambleside, UK: 373 pp.
- Wurst, S., G. B. De Deyn & K. Orwin (2012): Soil Biodiversity and Functions. – In: Wall, D., R. D. Bardgett, V. Behan-Pelletier, J. E. Herrick, T. H. Jones, K. Ritz, J. Six, D. R. Strong & W. H. van der Putten (Hrsg.): Soil Ecology and Ecosystem Services. – Oxford University Press: 28–44.
- Wytwer, J. & H. Tracz (2003): Diplopoda communities in different forest habitats of Bialowieza Primeval Forest, Poland. African Invertebrates 44 (1): 293–311.
- Zapparoli, M. (2003): The present knowledge on the European fauna of Lithobiomorpha (Chilopoda). Bulletin of the British Myriapod and Isopod Group 19: 20–41.
- Zinger, L. & H. Philippe (2016): Coalescing molecular evolution and DNA barcoding. – Molecular Biology 25: 1908–1910.

13 Anhang13.1 Anhang Gesamtartenlisten

Tab. Anhang 1: Gesamtartenliste der Oribatiden.

Tab. Anhang 1: Gesamtartenliste der Oribatiden.	
Oribatida (Tab. Anhang 1)	
Achipteria coleoptrata (Linné, 1758)	Eupelops acromios (Hermann, 1804)
Achipteria nitens (Nicolet, 1855)	Eupelops hirtus (Berlese, 1916)
Acrogalumna longipluma (Berlese, 1904)	Eupelops occultus (C.L. Koch, 1835)
Adoristes ovatus (C.L. Koch, 1839)	Eupelops plicatus (C.L. Koch, 1835)
Amerus polonicus Kulczyński, 1902	Eupelops torulosus (C.L. Koch, 1839)
Autogneta parva Forsslund, 1947	Euzetes globulus (Nicolet, 1855)
Banksinoma lanceolata (Michael, 1885)	Fosseremus laciniatus (Berlese, 1905)
Belba bartoši Winkler, 1955	Galumna flagellata Willmann, 1925
Belba compta (Kulczyński, 1902)	Galumna lanceata Oudemans, 1900
Berniniella (Hypogeoppia) dungeri Schwalbe, 1995	Galumna obvia (Berlese, 1915)
Berniniella bicarinata (Paoli, 1908)	Gustavia microcephala (Nicolet, 1855)
Berniniella conjuncta (Strenzke, 1951)	Gymnodamaeus bicostatus (C.L. Koch, 1835)
Berniniella exempta (Mihelcic, 1959)	Hoplophthiracarus illinoisensis (Ewing, 1909)
Berniniella serratirostris (Golosova, 1970)	Heminothrus targionii (Berlese, 1885)
Berniniella sigma (Strenzke, 1951)	Hermannia gibba (C.L. Koch, 1839)
Brachychthonius berlesei Willmann, 1928	Hermanniella dolosa Grandjean, 1931
Brachychthonius impressus Moritz, 1976	Hermanniella punctulata Berlese, 1908
Camisia spinifer (C.L. Koch, 1835)	Hypochthonius luteus Oudemans, 1917
Carabodes areolatus Berlese, 1916	Hypochthonius rufulus C.L. Koch, 1835
Carabodes coriaceus C.L. Koch, 1835	Kunstidamaeus tecticola (Michael, 1888)
Carabodes femoralis (Nicolet, 1855)	Liacarus coracinus (C.L. Koch, 1841)
Carabodes labyrinthicus (Michael, 1879)	Liacarus nitens (Gervais, 1844)
Carabodes marginatus (Michael, 1884)	Liacarus oribatelloides Winkler, 1956
Carabodes ornatus Storkan, 1925	Liacarus subterraneus (C.L. Koch, 1841)
Carabodes reticulatus Berlese, 1913	Liacarus xylariae (Schrank, 1803)
Carabodes rugosior Berlese, 1916	Licneremaeus licnophorus (Michael, 1882)
Carabodes subarcticus Trägardh, 1902	Licnodamaeus pulcherrimus (Paoli, 1908)
Carabodes willmanni Bernini, 1975	Liebstadia humerata Sellnick, 1928
Cepheus cepheiformis (Nicolet, 1855)	Liebstadia longior (Berlese, 1908)
Cepheus grandis Sitnikova, 1975	Liebstadia pannonica (Willmann, 1951)
Ceratoppia bipilis (Hermann, 1804)	Liebstadia similis (Michael, 1888)
Ceratoppia quadridentata (Haller, 1882)	Limnozetes ciliatus (Schrank, 1803)
Ceratoppia sexpilosa Willmann, 1938	Liochthonius brevis (Michael, 1888)
Ceratozetes gracilis (Michael, 1884)	Liochthonius evansi (Forsslund, 1958)
Ceratozetes mediocris Berlese, 1908	Liochthonius horridus (Sellnick, 1928)
Ceratozetes minimus Sellnick, 1928	Liochthonius hystricinus (Forsslund, 1942)
Ceratozetes minutissimus Willmann, 1951	Liochthonius leptaleus Moritz, 1976

Oribatida (Tab. Anhang 1)	
Ceratozetoides maximus (Berlese, 1908)	Liochthonius simplex (Forsslund, 1942)
Chamobates borealis Trägardh, 1902	Liochthonius strenzkei Forsslund, 1963
Chamobates cuspidatus (Michael, 1884)	Lucoppia burrowsi (Michael, 1890)
Chamobates subglobulus (Oudemans, 1900)	Machuella bilineata Weigmann, 1976
Chamobates voigtsi (Oudemans, 1902)	Machuella draconis Hammer, 1961
Conchogneta dalecarlica (Forsslund, 1947)	Malaconothrus monodactylus (Michael, 1888)
Cultroribula bicultrata (Berlese, 1905)	Melanozetes mollicomus (C.L.Koch, 1839)
Cymbaeremaeus cymba (Nicolet, 1855)	Metabelba papillipes (Nicolet, 1855)
Damaeobelba minutissima (Sellnick, 1920)	Metabelba propexa (Kulczyński, 1902)
Damaeus (Adamaeus) onustus C.L. Koch, 1844	Metabelba pulverosa Strenzke, 1953
Damaeus (Paradamaeus) clavipes (Hermann, 1804)	Micreremus brevipes (Michael, 1888)
Damaeus gracilipes (Kulczyński, 1902)	Microppia minus (Paoli, 1908)
Damaeus riparius Nicolet, 1855	Microtritia minima (Berlese, 1904)
Diapterobates humeralis (Hermann, 1804)	Microzetes septentrionalis (Kunst, 1963)
Dissorhina ornata (Oudemans, 1900)	Minunthozetes pseudofusiger (Schweizer, 1922)
Dissorhina signata (Schwalbe, 1989)	Minunthozetes semirufus (C.L.Koch, 1841)
Edwardzetes edwardsi (Nicolet, 1855)	Mucronothrus nasalis (Willmann, 1929)
Eniochthonius minutissimus (Berlese, 1903)	Multioppia glabra(Mihelcic, 1955)
Eueremaeus hepaticus (C.L. Koch, 1835)	Nanhermannia dorsalis(Banks, 1896)
Eueremaeus cf. oblongus (C.L. Koch, 1835)	Nanhermannia elegantula Berlese, 1913
Eulohmannia ribagai (Berlese, 1910)	Nanhermannia nana (Nicolet, 1855)
Neobrachychthonius marginatus (Forsslund, 1942)	Rhysotritia ardua (C.L. Koch, 1841)
Neotrichoppia confinis (Paoli, 1908)	Rhysotritia duplicata (Grandjean, 1953)
Nothrus anauniensis Canestrini & Fanzago, 1876	Scheloribates (Hemileius) initialis (Berlese, 1908)
Nothrus borussicus Sellnick, 1928	Scheloribates (Topobates) holsaticus (Weigmann, 1969)
Nothrus palustris C.L. Koch, 1839	Scheloribates ascendens Weigmann & Wunderle, 1990
Nothrus silvestris Nicolet, 1855	Scheloribates laevigatus (C.L. Koch, 1835)
Odontocepheus elongatus (Michael, 1879)	Scheloribates latipes (C.L. Koch, 1844)
Ophidiotrichus tectus (Michael, 1884)	Scheloribates pallidulus (C.L.Koch, 1841)
Oppiella (Moritzoppia) keilbachi Moritz, 1969	Scutovertex sculptus Michael, 1879
Oppiella (Oppiella) acuminata (Strenzke, 1951)	Sellnickochthonius cricoides (Weis-Fogh, 1948)
Oppiella (Oppiella) falcata (Paoli, 1908)	Sellnickochthonius honestus (Moritz, 1976)
Oppiella (Oppiella) marginedentata (Strenzke, 1951)	Sellnickochthonius hungaricus (Balogh, 1943)
Oppiella (Oppiella) nova (Oudemans, 1902)	Sellnickochthonius immaculatus (Forsslund, 1942)
Oppiella (Oppiella) splendens (C.L. Koch, 1841)	Sellnickochthonius jacoti (Evans, 1952)
Oppiella (Rhinoppia) epilata Miko, 2006	Sellnickochthonius suecicus (Forsslund, 1942)
Oppiella (Rhinoppia) fallax (Paoli, 1908)	Sellnickochthonius zelawaiensis (Sellnick, 1928)
Oppiella (Rhinoppia) obsoleta (Paoli, 1908)	Spatiodamaeus verticillipes (Nicolet, 1855)
Oppiella (Rhinoppia) subpectinata (Oudemans, 1900)	Steganacarus (Atropacarus) striculus (C.L. Koch, 1835)

Oribatida (Tab. Anhang 1)	
Oppiella beskidyensis (Niemi & Skubala, 1993)	Steganacarus (Steganacarus) herculeanus Willmann, 1953
Oribatella calcarata (C.L. Koch, 1835)	Steganacarus (Steganacarus) magnus (Nicolet, 1855)
Oribatella litoralis/reticulata	Subiasella quadrimaculata (Evans, 1952)
Oribatella quadricornuta Michael, 1880	Suctobelba altvateri Moritz, 1970
Oribatula interrupta (Willmann, 1939)	Suctobelba atomaria Moritz, 1970
Oribatula longelamellata Schweizer, 1956	Suctobelba granulata van der Hammen, 1952
Oribatula tibialis (Nicolet, 1855)	Suctobelba lapidaria Moritz, 1970
Palaeacarus hystricinus Trägardh,1932	Suctobelba regia Moritz, 1970
Pantelozetes paolii (Oudemans, 1913)	Suctobelba reticulata Moritz, 1970
Parachipteria punctata (Nicolet, 1855)	Suctobelba sorrentensis Hammer, 1961
Peloptulus phaenotus (C.L. Koch, 1844)	Suctobelba trigona (Michael, 1888)
Peloribates longipilosus Csiszar & Jelava, 1962	Suctobelbella acutidens (Forsslund, 1941)
Pergalumna nervosa (Berlese, 1914)	Suctobelbella alloenasuta Moritz, 1971
Phthiracarus anonymus Grandjean, 1934	Suctobelbella arcana Moritz, 1970
Phthiracarus borealis Trägardh, 1910	Suctobelbella diffissa Moritz, 1974
Phthiracarus boresetosus Jacot, 1930	Suctobelbella duplex (Strenzke, 1950)
Phthiracarus bryobius Jacot, 1930	Suctobelbella falcata (Forsslund, 1941)
Phthiracarus compressus Jacot, 1930	Suctobelbella forsslundi (Strenzke, 1950)
Phthiracarus crinitus (C.L. Koch, 1841)	Suctobelbella hamata Moritz, 1970
Phthiracarus ferrugineus (C.L. Koch, 1841)	Suctobelbella nasalis (Forsslund, 1941)
Phthiracarus globosus (C.L. Koch, 1841)	Suctobelbella palustris (Forsslund, 1953)
Phthiracarus laevigatus (C.L. Koch, 1844)	Suctobelbella perforata (Strenzke, 1950)
Phthiracarus longulus (C.L. Koch, 1841)	Suctobelbella prominens (Moritz, 1966)
Phthiracarus montanus Pérez-Iñigo, 1969	Suctobelbella sarekensis (Forsslund, 1941)
Pilogalumna crassiclava (Berlese, 1914)	Suctobelbella serratirostrum Jacot, 1937
Pilogalumna tenuiclava (Berlese, 1908)	Suctobelbella similis (Forsslund, 1941)
Platynothrus peltifer (C.L. Koch, 1839)	Suctobelbella subcornigera (Forsslund, 1941)
Poecilochthonius spiciger (Berlese, 1910)	Suctobelbella subtrigona (Oudemans, 1900)
Porobelba spinosa (Sellnick, 1920)	Tectocepheus minor Berlese, 1903
Protoribates capucinus Berlese, 1908	Tectocepheus group velatus (Michael, 1880)
Pseudachipteria magna (Sellnick, 1928)	Trhypochthonius tectorum (Berlese, 1896)
Punctoribates hexagonus Berlese, 1908	Trichoribates incisellus (Kramer, 1897)
Punctoribates punctum (C.L. Koch, 1839)	Trichoribates novus (Sellnick, 1928)
Quadroppia hammerae Minguez, Ruiz & Subias, 1985	Trichoribates trimaculatus (C.L. Koch, 1835)
Quadroppia longisetosa Minguez, Ruiz & Subias, 1985	Tritegeus bisulcatus Grandjean, 1953
Quadroppia maritalis Lions, 1982	Xenillus tegeocranus (Hermann, 1804)
0 1 1 1070	

Zetorchestes falzonii Coggi, 1898

Zygoribatula exilis (Nicolet, 1855)

Zygoribatula excavata (Berlese, 1916)

Quadroppia monstruosa Hammer, 1979 (sensu Minguez, Ruiz & Subias 1985)

Ramusella insculpta (Paoli, 1908)

Quadroppia quadricarinata (Michael, 1885)

Tab. Anhang 2: Gesamtartenliste der Collembolen.

Collembola (Tab. Anhang 2)	
	Lucida and Australia de 1972
Allacma fusca (Linne, 1758)	Lepidocyrtus violaceus Lubbock, 1873
Anurophorus laricis Nicolet, 1842	Lipothrix lubbocki (Tullberg, 1872)
Arrhopalites caecus (Tullberg, 1871)	Megalothorax minimus Willem, 1900
Arrhopalites cochlearifer Gisin, 1947	Mesaphorura macrochaeta Rusek, 1976
Arrhopalites pseudoappendices Rusek, 1967	Metaphorura affinis (Börner, 1903)
Arrhopalites pygmaeus (Wankel, 1860)	Micranurida forsslundi Gisin, 1949
Bourletiella radula Gisin, 1946	Micranurida granulata Agrell, 1943
Bourletiella viridescens Stach, 1929	Micranurida pygmaea (Börner, 1901)
Brachystomella parvula (Schäffer, 1896)	Neanura muscorum (Templeton, 1835)
Ceratophysella armata (Nicolet, 18419	Neelides minutus (Folsom, 1901)
Ceratophysella denticulata (Bagnall, 1941)	Onychiurus jubilarius Gisin, 1957
Choreutinula inermis (Tullberg, 1871)	Orchesella bifasciata Bourlet, 1839
Cryptopygus thermophilus (Axelson, 1900)	Orchesella cincta Linne, 1758)
Deharvengiurus denisi (Stach, 1934)	Orchesella flavescens (Bourlet, 1839)
Desoria tigrina Nicolet, 1842	Orchesella frontimaculata Gisin, 1946
Desoria violacea Tullberg 1876	Orchesella villosa Geoffroy, 1762
Deuterosminthurus bicinctus (Koch, 1840)	Paratullbergia callipygos Börner, 1902
Deuterosminthurus pallipes (Bourlet, 1843)	Parisotoma notabilis Schäffer, 1896
Dicyrtoma fusca (Lucas, 1842)	Pogonognathellus flavescens (Tullberg, 1971)
Dicyrtomina minuta (O. Fabricius, 1783)	Proisotoma minuta (Tullberg, 1871)
Dicyrtomina ornata (Nicolet, 1842)	Protaphorura armata (Tullberg, 1869)
Entomobrya corticalis (Nicolet, 1841)	Protaphorura eichhorni (Gisin, 1954)
Entomobrya lanuginosa (Nicolet, 1841)	Protaphorura fimata Gisin, 1952
Entomobrya marginata (Tullberg, 1871)	Protaphorura humata (Gisin, 1952)
Entomobrya multifasciata (Tullberg, 1871)	Protaphorura procampata (Gisin, 1956)
Entomobrya nivalis (Linne, 1758)	Protaphorura pseudovanderdrifti (Gisin 1957)
Entomobrya quinquelineata Börner, 1901	Protaphorura quadriocellata Gisin, 1947
Entomobrya schoetti Stach, 1922	Protaphorura subuliginata Gisin, 1956
Folsomia candida (Willem, 1902)	Pseudachorutella asigillata (Börner, 1901)
Folsomia dovrensis Fjellberg, 1976	Pseudachorutes dubius Krausbauer, 1898
Folsomia manolachei Bagnall, 1939	Pseudachorutes parvulus Börner, 1901
Folsomia quadrioculata (Tullberg, 1871)	Pseudisotoma monochaeta (Kos, 1942)
Folsomia spinosa Kseneman, 1936	Pseudosinella alba (Packard, 1873)
Friesea mirabilis (Tullberg, 1871)	Pseudosinella immaculata (Lie-Pettersen, 1896)
Heteromurus nitidus (Templeton, 1835)	Pseudosinella petterseni Börner, 1901
Hypogastrura assimilis (Krausbauer, 1898)	Schoettella ununguiculata (Tullberg, 1869)
Hypogastrura burkilli (Bagnall, 1940)	Sminthurinus aureus (Lubbock, 1862)
Hypogastrura sahlbergi (Reuter, 1895)	Sminthurinus niger (Lubbock, 1867)
Isotoma viridis group	Sminthurus viridis (Linne, 1758)
Isotomiella minor (Schaeffer, 1896)	Sphaeridia pumilis (Krausbauer, 1898)

Collembola (Tab. Anhang 2)	
Isotomodes productus (Axelson, 1906)	Stenaphorura denisi (Bagnall, 1935)
Isotomurus graminis Fjellberg, 2007	Stenaphorura quadrispina (Börner, 19019
Isotomurus palustris (Templeton, 1834)	Supraphorura furcifera (Börner, 1901)
Lathriopyga monoculata (Denis, 1931)	Tetracanthella wahlgreni Linnaniemi, 1911
Lepidocyrtus cyaneus Tullberg, 1871	Tomocerus vulgaris (Tullber, 1871)
Lepidocyrtus lanuginosus (Gmelin, 1788)	Willemia anophthalma (Börner, 1901)
Lepidocyrtus lignorum Fabricius, 1781	Willemia denisi Stach, 1949
Lepidocyrtus paradoxus Uzel, 1890	Xenyllodes armatus Axelson, 1903

Tab. Anhang 3: Gesamtartenliste der Diplopoden.

Diplopoda (Tab. Anhang 3)	
Allaiulus nitidus Verhoeff, 1891	Megaphyllum projectum Verhoeff, 1894
Blaniulus guttulatus (Bosc, 1972)	Megaphyllum unilineatum (C. L. Koch, 1838)
Brachydesmus superus Latzel, 1844	Melogona gallica (Latzel, 1884)
Brachyiulus pusillus (Bosc, 1972)	Melogona voigti (Verhoeff, 1899)
Choneiulus palmatus (Nemec, 1895)	Mycogona germanica (Verhoeff, 1892)
Chordeuma sylvestre C. L. Koch, 1847	Ommatoiulus sabulosus (Linnaeus, 1758)
Craspedosoma rawlinsii Leach, 1815	Ophyiulus pilosus (Newport, 1843)
Cylindroiulus britannicus (Verhoeff, 1891)	Polydesmus angustus Latzel, 1884
Cylindroiulus caeruleocinctus (Wood, 1864)	Polydesmus complanatus (Linnaeus, 1761)
Cylindroiulus punctatus (Leach, 1815)	Polydesmus denticulatus C. L. Koch, 1847
Enantiulus nanus (Latzel, 1884)	Polydesmus inconstans Latzel, 1884
Glomeris hexasticha Brandt, 1833	Polyzonium germanicum Brandt, 1837
Glomeris intermedia (Latzel, 1884)	Propolydesmus testaceus (C. L. Koch, 1847)
Glomeris marginata (Villers, 1789)	Proteroiulus fuscus (Am Stein, 1857)
Julus scandinavius Latzel, 1884	Strongylosoma stigmatosum (Eichwald, 1830)
Leptoiulus proximus (Nemec, 1896)	Tachypodoiulus niger (Leach, 1815)
Leptoiulus simplex subsp. glacialis (Verhoeff, 1908)	Unciger foetidus (C. L. Koch, 1838)

Tab. Anhang 4: Gesamtartenliste der Chilopoden.

Chilopoda (Tab. Anhang 4)	
Geophilus alpinus Meinert, 1870	Lithobius forficatus (Linnaeus, 1758)
Geophilus electricus (Linnaeus, 1758)	Lithobius macilentus L. Koch, 1862
Geophilus flavus (De Geer, 1778)	Lithobius microps Meinert, 1868
Geophilus ribauti Brölemann, 1908	Lithobius mutabilis L. Koch, 1862
Lamyctes emarginatus (Newport, 1844)	Lithobius muticus C. L. Koch, 1847
Lithobius aeruginosus L. Koch, 1862	Lithobius nodulipes Latzel, 1880
Lithobius agilis (C. L. Koch, 1847)	Lithobius pelidnus Haase, 1880
Lithobius austriacus (Verhoeff, 1937)	Lithobius tricuspis Meinert, 1872
Lithobius calcaratus C. L. Koch, 1844	Schendyla nemorensis (C. L. Koch, 1836)
Lithobius crassipes L. Koch, 1862	Stenotaenia linearis (Koch, 1835)

Chilopoda (Tab. Anhang 4)	
Lithobius curtipes C. L. Koch, 1847	Strigamia acuminata (Leach, 1815)
Lithobius dentatus C .L. Koch, 1844	Strigamia crassipes (C. L. Koch, 1835)
Lithobius erythrocephalus C. L. Koch, 1847	Strigamia transsilvanica (Verhoeff, 1928)

Tab. Anhang 5: Gesamtartenliste der Lumbriciden.

Lumbricidae (Tab. Anhang 5)	
Allolobophora chlorotica (Savigny, 1826)	Dendrodrilus rubidus (Savigny, 1826)
Aporrectodea caliginosa (Savigny, 1826)	Lumbricus castaneus (Savigny, 1826)
Aporrectodea longa (Ude, 1885)	Lumbricus rubellus Hoffmeister, 1843
Aporrectodea rosea (Savigny, 1826)	Lumbricus terrestris Linnaeus, 1758
Bimastos parvus (Eisen, 1874)	Octolasion cyaneum (Savigny, 1826)
Dendrobaena attemsi (Michaelsen, 1902)	Octolasion tyrtaeum (Savigny, 1826)
Dendrobaena octaedra (Savigny, 1826)	

 Tab. Anhang 6: Gesamtartenliste der Enchytraeiden.

Enchytraeidae (Tab. Anhang 6)	
Achaeta aberrans Nielsen & Christensen, 1961	Fridericia bulboides Nielsen & Christensen, 1959
Achaeta abulba Graefe, 1989	Fridericia christeri Rota & Healy, 1999
Achaeta affinis Nielsen & Christensen, 1959	Fridericia connata Bretscher, 1902
Achaeta bibulba Graefe, 1989	Fridericia cylindrica Springett, 1971
Achaeta bifollicula Chaluspký, 1992	Fridericia deformis Möller, 1971
Achaeta bohemica (Vejdovský, 1879)	Fridericia dura (Eisen, 1879)
Achaeta camerani (Cognetti, 1899)	Fridericia galba (Hoffmeister, 1843)
Achaeta danica Nielsen & Christensen, 1959	Fridericia glandulosa Southern, 1907
Achaeta eiseni Vejdovský, 1878	Fridericia granosa Schmelz, 2003
Achaeta parva Nielsen & Christensen, 1961	Fridericia hegemon (Vejdovský, 1878)
Achaeta unibulba Graefe, Christensen & Dózsa-Farkas, 2005	Fridericia isseli Rota, 1994
Achaeta sp. (BUUS) (unidentified, probably new species)	Fridericia lenta Schmelz, 2003
Achaeta sp. (DZWI) (unidentified, probably new species)	Fridericia maculatiformis Dózsa-Farkas, 1972
Achaeta sp. (HEAL) (unidentified, probably new species)	Fridericia minor Friend, 1913
Achaeta sp. (MINI) (unidentified, probably new species)	Fridericia monochaeta Rota, 1995
Achaeta sp. (NW23) (unidentified, probably new species)	Fridericia nemoralis Nurminen, 1970
Achaeta sp. (PAFU) (unidentified, probably new species)	Fridericia nix Rota, 1995
Bryodrilus ehlersi Ude, 1892	Fridericia paroniana Issel, 1904
Bryodrilus librus (Nielsen & Christensen, 1959)	Fridericia perrieri (Vejdovský, 1878)
Buchholzia appendiculata (Buchholz, 1862)	Fridericia ratzeli s.s. (Eisen, 1872)
Buchholzia fallax Michaelsen, 1887	Fridericia schmelzi Cech & Dózsa-Farkas, 2005
Buchholzia sp. (PAPP) (unidentified, probably new species)	Fridericia semisetosa Dózsa-Farkas, 1970
Buchholzia sp. (PFAL) (unidentified, probably new species)	Fridericia singula Nielsen & Christensen, 1961
Cernosvitoviella sp.	Fridericia striata (Levinsen, 1884)
Cognettia chalupskyi (Martinsson, Rota & Erséus, 2015)	Fridericia sylvatica Healy, 1979

Enchytraeidae (Tab. Anhang 6)

Cognettia chlorophila (Friend, 1913)

Cognettia cognettii (Issel, 1905)

Cognettia sphagnetorum s.s. (Vejdovský, 1878)

Cognettia varisetosa (Martinsson, Rota & Erséus, 2015)

Enchytraeus buchholzi (Vejdovský, 1879)

Enchytraeus bulbosus Nielsen & Christensen, 1963

Enchytraeus cf. luxuriosus Schmelz & Collado, 1999

Enchytraeus christenseni Dózsa-Farkas, 1992

Enchytraeus dichaetus Schmelz & Collado, 2010

Enchytraeus lacteus Nielsen & Christensen, 1961

Enchytraeus norvegicus Abrahamsen, 1969

Enchytraeus sp. (FGRA) (unidentified, probably new species)

Enchytraeus sp. (GRAN) (unidentified, probably new species)

Enchytronia baloghi Dózsa-Farkas, 1988

Enchytronia parva Nielsen & Christensen, 1959

Enchytronia pygmaea Graefe & Schmelz, 2017

Enchytronia sp. (MINO) (unidentified, probably new species)

Enchytronia sp. (OMNI) (unidentified, probably new species)

Enchytronia sp. (PUNC) (unidentified, probably new species)

 ${\it Enchytronia}~{\rm sp.}~({\rm TENU})~({\rm unidentified, probably ~new~species})$

Enchytronia sp. 2VII (unidentified, probably new species)

Enchytronia sp. ID2VIII (unidentified, probably new species)

Enchytronia sp. (id)3XI (unidentified, probably new species)

Fridericia benti Schmelz, 2002

Fridericia bisetosa (Levinsen, 1884)

Fridericia brunensis Schlaghamerský, 2007

Fridericia tubulosa Dózsa-Farkas, 1972

Fridericia ulrikae Rota & Healy, 1999

Fridericia waldenstroemi Rota & Healy, 1999

Fridericia sp. (ALAT) (unidentified, probably new species)

Fridericia sp. (INVE) (unidentified, probably new species)

Fridericia sp. (MACF) (unidentified, probably new species)

Fridericia sp. (NGLI) (unidentified, probably new species)

Fridericia sp. (PERT) (unidentified, probably new species)

Fridericia sp. (PULR) (unidentified, probably new species)

Fridericia sp. (UNID) (unidentified, probably new species)

Hemifridericia parva Nielsen & Christensen, 1959

Henlea perpusilla Friend, 1911

Henlea ventriculosa (d'Udekem, 1854)

Marionina clavata Nielsen & Christensen, 1961

Marionina communis Nielsen & Christensen, 1959

Marionina deminuta Rota, 2012

Marionina mendax Rota, 2012

Marionina sambugarae Schmelz, 2015

Marionina vesiculata Nielsen & Christensen, 1959

Mesenchytraeus armatus (Levinsen, 1884)

Mesenchytraeus flavus (Levinsen, 1884)

Mesenchytraeus glandulosus (Levinsen, 1884)

Mesenchytraeus pelicensis Issel, 1905

Oconnorella cambrensis (O'Connor, 1963)

Oconnorella tubifera (Nielsen & Christensen, 1959)

Stercutus niveus Michaelsen, 1888

13.2 Anhang NP Eifel

Tab. Anhang 7: Rohdaten Oribatida, Biotoptyp Fichtenforst; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida, Biotoptyp	EB_NW1	1		EB_NW1	2		EB_NW13			
Fichtenforst (Tab. Anhang 7)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	
Achipteria coleoptrata	4		62	34	68	1576	3		47	
Acrotritia ardua					1	16				
Acrotritia duplicata	17	15	494	78	36	1759	43	19	946	
Adoristes ovatus	7	5	181	15	30	698	18	20	589	
Autogneta parva		1	16	5	7	186		6	93	
Banksinoma lanceolata							1		16	
Berniniella conjuncta	1		15	15	5	311	10	13	353	
Berniniella serratirostris		1	16							
Berniniella sigma				11		171	87		1290	
Brachychthoniidae	24	74	1521	16	9	390	34	25	891	
Brachychthonius berlesei	1		16							
Camisia spinifer				2		32				
Carabodes femoralis				1		16	1	6	109	
Carabodes labyrinthicus	1	2	48	9	2	173		1	16	
Carabodes marginatus				1		15				
Carabodes ornatus	1		16		1	16	2	2	62	
Carabodes rugosior		3	48							
Cepheus grandis	2		31	1		15	1		16	
Ceratoppia bipilis		5	78	4	14	280				
Ceratoppia sexpilosa		3	47							
Chamobates borealis	31	33	997	46	100	2267	70	70	2146	
Chamobates cuspidatus				3		47				
Damaeobelba minutissima	5	4	142	5	6	170	10	3	202	
Damaeus (A.) onustus				1		16				
Dissorhina ornata	14	47	946	165	166	5090	184	98	4304	
Edwardzetes edwardsi				2	4	95	7	13	309	
Eniochthonius minutissimus	1	6	108	1		16				
Eupelops plicatus	1	1	32							
Eupelops torulosus					3	48				
Euzetes globulus							1		16	
Galumna lanceata					5	79				
Hermannia gibba	195	128	4994	164	78	3718	174	93	4090	
Hypochthonius rufulus	39	131	2625	8	10	277	14	16	463	
Liacarus coracinus	1		16		1	16	1		15	
Liebstadia longior					1	16				
Liochthonius brevis	9		140	9		140	21		310	
Liochthonius evansi	2		32							
Liochthonius hystricinus				2		31				
Liochthonius leptaleus				2		31	1		15	
Melanozetes mollicomus	16	12	430		6	93				

Oribatida, Biotoptyp	EB_NW1	1		EB_NW1	2		EB_NW13			
Fichtenforst (Tab. Anhang 7)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	
Micreremus brevipes		'					1		15	
Microppia minus		1	16	8		124	10	14	367	
Nanhermannia dorsalis	246	212	7078	45	9	837		4	62	
Nanhermannia elegantula	29		450	2	2	63	4	3	105	
Nanhermannia nana	1		15	1		16	4	2	93	
Nothrus silvestris	77	34	1695	14		205	18	9	409	
Ophidiotrichus tectus							6		93	
Oppiella (O.) falcata	418	272	10667	1278	626	29356	669	330	15271	
Oppiella (O.) nova	303	608	14057	341	328	10189	757	446	18350	
Oppiella (R.) obsoleta	2		29							
Oppiella (R.) subpectinata	89	41	1992	369	339	10870	126	107	3587	
Oribatella calcarata					1	16				
Oribatida indet	480	9	7596	84	13	1510	82	5	1290	
Oribatula tibialis	11	11	343		11	171	2	22	374	
Parachipteria punctata	69	66	2059							
Phthiracarus longulus	9	15	375	7	15	344	2	8	156	
Platynothrus peltifer	21	73	1452	81	64	2254	6	3	141	
Porobelba spinosa	6	38	685	2	2	62	4	3	107	
Pseudachipteria magna					4	63				
Quadroppia monstruosa	2	1	45	64	57	1851	273	138	6233	
Quadroppia quadricarinata	4	2	90	23	8	481	9		137	
Ramusella insculpta							1		16	
Scheloribates (H.) initialis	26	57	1289	80	96	2719	15	28	661	
Sellnickochthonius cricoides	1		16				2		29	
Sellnickochthonius honestus	2		32	2		31	5		73	
Sellnickochthonius jacoti							1		16	
Sellnickochthonius zelawaiensis	21		326				18		267	
Steganacarus (A.) striculus					1	16				
Suctobelba trigona	1		16				9		133	
Suctobelbella acutidens	1		16	9		140	23		345	
Suctobelbella alpina	1		16							
Suctobelbella arcana	3		47	9		140	7		109	
Suctobelbella diffissa							17		248	
Suctobelbella duplex	7		110				25		374	
Suctobelbella falcata	2		32				5		73	
Suctobelbella nasalis				5		78	38		584	
Suctobelbella perforata				2		31	8		119	
Suctobelbella sarekensis	6		93	15		233	59		885	
Suctobelbella serratirostrum	2		31	7		109	24		357	
Suctobelbella similis	7		109	4		62	15		222	
Suctobelbella subcornigera	41		637	68		1056	126		1874	
Suctobelbella subtrigona	4		62	2		31	4		62	
Tectocepheus minor	1		15							

Oribatida, Biotoptyp	EB_NW11			EB_NW12			EB_NW13		
Fichtenforst (Tab. Anhang 7)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Tectocepheus group velatus	162	292	7030	14	34	747	23	126	2299
Tritegeus bisulcatus							1		16
Individuenzahl	2427	2203	71572	3136	2163	81609	3082	1633	71850
Individuenzahl $\sum F+H$	4630			5299			4715		
Artenzahl	51	31	57	49	36	60	55	28	58
Artenzahl Fichte gesamt:	83	Individuer	nzahl Fichte	gesamt:					14644

Tab. Anhang 8: Rohdaten Oribatida, Biotoptyp Buchenwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida, Biotoptyp	EB_NW2	1		EB_NW2	2		EB_NW2	3	
Buchenwald (Tab. Anhang 8)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Achipteria coleoptrata	13	23	555	9	16	385	8	18	405
Acrogalumna longipluma	1		15						
Acrotritia duplicata	1		16	13	14	416	1	12	204
Adoristes ovatus		2	32	1	3	64	1	6	111
Banksinoma lanceolata	4	10	218						
Berniniella bicarinata	1		15	11	3	211	8	5	198
Berniniella conjuncta	6	6	186	8	6	215	49	49	1506
Berniniella sigma	13		195	22	4	402	6	4	154
Brachychthoniidae	3		44	55	44	1530	6	9	235
Brachychthonius berlesei				11		170			
Brachychthonius impressus				2		31			
Carabodes areolatus	1	1	32						
Carabodes femoralis		2	32		6	93	2		32
Carabodes rugosior	1	1	31				2		31
Ceratoppia bipilis	1		15						
Ceratozetes gracilis	55	120	2699	1		15	8	3	171
Chamobates borealis					2	32	3		47
Chamobates cuspidatus		2	32				4	14	282
Chamobates subglobulus								2	32
Conchogneta dalecarlica	51	25	1177	1	2	48			
Cultroribula bicultrata					1	16	6	4	153
Damaeobelba minutissima				3	2	79	3	5	127
Damaeus (P.) clavipes		2	32						
Damaeus riparius	3		48				3	2	79
Dissorhina ornata	37	70	1655	60	103	2513	7	2	136
Eniochthonius minutissimus	39	35	1136	20	30	776	53	83	2111
Eulohmannia ribagai	2		31						
Eupelops plicatus	11	11	345	4	11	236			
Euzetes globulus				1		16			
Galumna lanceata							1		16
Hermannia gibba		1	16		21	326		2	32

Oribatida, Biotoptyp	EB NW2	1		EB NW22	2		EB_NW23		
Buchenwald (Tab. Anhang 8)	- Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Hypochthonius rufulus	18	19	576	3	17	315	31	16	713
Liacarus xylariae	1		15	1		15	2		31
Liebstadia longior							1		16
Liochthonius brevis							7		102
Liochthonius horridus	1		15	26		381	1		15
Liochthonius leptaleus				2		31	4		58
Liochthonius simplex				1		15			
Microppia minus	5		75	14		205	2		31
Minunthozetes pseudofusiger							1		15
Nanhermannia elegantula	1	1	31						
Nanhermannia nana				2	1	47			
Nothrus silvestris	10	17	416	23	40	972	36	29	1006
Ophidiotrichus tectus	1		16	14	14	433	64	23	1305
Oppiella (O.) falcata	224	191	6368	310	50	5366	357	146	7585
Oppiella (O.) nova	96	118	3275	321	261	8979	410	607	15525
Oppiella (O.) splendens								2	32
Oppiella (R.) obsoleta	23	14	571	19	6	380	52	17	1060
Oppiella (R.) subpectinata	76	63	2141	124	57	2737	322	289	9319
Oribatida indet	72	6	1186	60	4	967	77	4	1192
Oribatula tibialis	1		15	2	2	63	3	1	60
Palaeacarus hystricinus							1		15
Pantelozetes paolii	18	29	729						
Parachipteria punctata	1		16	4		63			
Phthiracarus anonymus	6	9	235	3	11	217	11	8	293
Phthiracarus borealis	2	1	48						
Phthiracarus ferrugineus	6	6	187	2	5	108	1		15
Phthiracarus laevigatus	4	6	157	4	12	249	3	1	62
Phthiracarus longulus		1	16				2		30
Phthiracarus montanus		1	16	1		16			
Pilogalumna tenuiclava	1	4	78						
Platynothrus peltifer	9	40	758	14	32	711	28	62	1396
Poecilochthonius spiciger				1		16	1		15
Porobelba spinosa							2		32
Quadroppia hammerae								1	16
Quadroppia maritalis	1	1	32	4		58	2		29
Quadroppia monstruosa	5	4	140	3	12	235	12	7	290
Quadroppia quadricarinata		2	32	1		15	1	2	47
Scheloribates (H.) initialis		_			1	16	8	10	276
Sellnickochthonius honestus				21	-	319		- 0	-, -
Sellnickochthonius immaculatus				-1		317	1		15
Sellnickochthonius suecicus				1		15	1		13
				1					20
Sellnickochthonius zelawaiensis				1		16	2		29
Steganacarus (S.) herculeanus				1		16			

Oribatida, Biotoptyp	EB_NW2	1		EB_NW2	2		EB_NW2	3	
Buchenwald (Tab. Anhang 8)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Steganacarus (S.) magnus	16	7	359	23	27	767	19	35	834
Suctobelba altvateri	2		31						
Suctobelba reticulata	1		16						
Suctobelba sorrentensis	6		91						
Suctobelba trigona	1		16						
Suctobelbella acutidens	1		16	3		47	4		60
Suctobelbella arcana				1		15	3		44
Suctobelbella duplex				4		63	19		280
Suctobelbella falcata				1		15	1		15
Suctobelbella forsslundi	4		60						
Suctobelbella hamata	2		31						
Suctobelbella nasalis	11		169	13		199	2		29
Suctobelbella perforata	4		61	1		16	7		104
Suctobelbella prominens	1		15						
Suctobelbella sarekensis	16		239	39		581	11	1	176
Suctobelbella serratirostrum	8		118	13		199	8		118
Suctobelbella similis	1		16	3		47	5		73
Suctobelbella subcornigera	37		552	74		1131	66		968
Suctobelbella subtrigona							3		44
Tectocepheus minor	3	7	157	1	35	559	1	6	110
Tectocepheus group velatus	4	1	78	1		16	3	1	63
Trichoribates trimaculatus							1		15
Tritegeus bisulcatus	2		31		1	16			
Individuenzahl	945	859	27757	1382	856	34221	1769	1488	49620
Individuenzahl ∑ F+H	1804			2238			3257		
Artenzahl	57	36	65	56	33	62	61	35	65
Artenzahl Buche gesamt:	95	Individue	nzahl Buche	gesamt:					7299

Tab. Anhang 9: Rohdaten Oribatida, Biotoptyp Eichenwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida, Biotoptyp	EB_NW3	1		EB_NW3	EB_NW32			EB_NW33		
Eichenwald (Tab. Anhang 9)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	
Achipteria coleoptrata				2	12	218				
Acrotritia duplicata		1	16	24	26	781	9	27	562	
Adoristes ovatus		1	16	15	28	670				
Amerus polonicus	5		78							
Berniniella bicarinata				1	10	171				
Berniniella conjuncta	6	2	126	4	21	391	28	11	604	
Berniniella exempta				3	2	75				
Berniniella sigma	23	3	403				3		47	
Brachychthoniidae	7	2	142	9	7	251	31	12	670	

Oribatida, Biotoptyp	EB NW3	1		EB NW3	2		EB_NW33			
Eichenwald (Tab. Anhang 9)	Frühjahr	Herbst	MW/m ²	- Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	
Brachychthonius impressus	3		46	1		15				
Carabodes areolatus				10	80	1399	1	1	32	
Carabodes coriaceus					1	16				
Carabodes femoralis		2	31							
Carabodes labyrinthicus	1		16	6	13	296	4	2	94	
Carabodes marginatus				50	19	1074	2	8	156	
Carabodes ornatus								1	16	
Carabodes reticulatus					1	16				
Carabodes rugosior				2	2	64				
Carabodes willmanni							77	81	2434	
Cepheus grandis				1		16				
Ceratoppia bipilis				2		31				
Ceratozetes gracilis	23	6	449			01				
Ceratozetes minimus		v	,	13	4	265	3		45	
Ceratozetes minutissimus						203	1		15	
Conchogneta dalecarlica	11	3	218						10	
Cultroribula bicultrata	9	3	133	3	7	157				
Damaeus (A.) onustus	9	1	156		,	137				
Damaeus riparius	4	7	175							
Dissorhina ornata	77	35	1715	14	42	865	3	1	63	
Dissorhina signata	' '	33	1713	11	12	005		5	78	
Edwardzetes edwardsi				1		16		3	70	
Eniochthonius minutissimus				1		10	74	243	4909	
Eulohmannia ribagai	1		16	1		15	/ -	243	7707	
Eupelops plicatus	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	3	76	2		31	2		31	
Eupelops torulosus	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	2	63	2	1	48	1		15	
Euzetes globulus	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	2	16	2	1	16			13	
Galumna lanceata	1		10		1	10	1		16	
Gymnodamaeus bicostatus	13	1	215				1		10	
Hermannia gibba	18	28	717	1	10	171	55	57	1725	
Hypochthonius rufulus	10	20	/1/	1	10	1/1	1	31	15	
Liacarus coracinus	14	6	308	5	18	356	5	1	94	
Liacarus nitens	5	O	78		10	330		1) -1	
Liacarus subterraneus		3	47		1	16				
Licneremaeus licnophorus		3	4/	1	1	16	23		357	
Liebstadia humerata			15	1		16	1		16	
Liebstadia similis	1 19	10	448	1	2	32	1		10	
Liochthonius brevis	3	10	448 44		∠	34	5		77	
Liochthonius evansi]		77				3		47	
	₁		16				ł			
Liochthonius leptaleus	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$		16				1	20	16 525	
Machuella draconis	3		47				6	28	525	
Malaconothrus monodactylus	1		16	10		156	65	5	78 1520	
Melanozetes mollicomus			20	10	2	156	65	36	1539	
Metabelba papillipes	2		30		2	32				

Oribatida, Biotoptyp	EB NW3	1		EB NW3	2		EB_NW33		
Eichenwald (Tab. Anhang 9)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	- Frühjahr	Herbst	MW/m ²
Microppia minus	840	28	13120	147	9	2411	370	256	9618
Microtritia minima				242	1	3777	2	5	109
Minunthozetes pseudofusiger				199	16	3339			
Nanhermannia nana							78	35	1747
Neobrachychthonius marginatus							4		62
Neotrichoppia confinis				4		63	5		78
Nothrus silvestris	4	2	93		3	48	15	19	529
Odontocepheus elongatus				4		63	1	4	77
Ophidiotrichus tectus	20	19	607	5	27	498	14	41	856
Oppiella (M.) keilbachi	2		30	6		93			
Oppiella (O.) acuminata		1	16						
Oppiella (O.) falcata	163	25	2901	108	209	4919	4	8	186
Oppiella (O.) nova	219	164	5878	816	1299	32497	404	954	21012
Oppiella (O.) splendens	2		32	75	9	1304	322	65	6006
Oppiella (R.) obsoleta	34	17	786	39	64	1596	2	2	63
Oppiella (R.) subpectinata	73	14	1331	6	53	916	2	2	60
Oribatella quadricornuta								3	47
Oribatida indet	78	6	1256	43	7	776	306	33	5178
Oribatula longelamellata				6	5	168			
Oribatula tibialis	12	37	759	43	68	1723	12	5	261
Pantelozetes paolii	1		16	1		16			
Parachipteria punctata				1		16			
Phthiracarus anonymus	3	2	78	1		16	1		16
Phthiracarus borealis								1	16
Phthiracarus bryobius								1	16
Phthiracarus compressus				2		31			
Phthiracarus crinitus								1	16
Phthiracarus laevigatus	8	11	294	24	32	865	2	2	64
Phthiracarus longulus				3	2	80			
Platynothrus peltifer		6	95		6	93			
Porobelba spinosa	4	4	125	16	21	575	11	1	177
Pseudachipteria magna				6	76	1277	10		155
Quadroppia longisetosa	9	1	154						
Quadroppia monstruosa	32	7	605	111	102	3252	125	60	2835
Quadroppia quadricarinata	12		179	20	6	398	6		93
Ramusella insculpta	171	15	2831	146	19	2480	156	8	2538
Scheloribates pallidulus				1	1	31			
Sellnickochthonius cricoides				1		15			
Sellnickochthonius jacoti	2		29				1		15
Sellnickochthonius zelawaiensis	1		15				1		15
Steganacarus (S.) magnus	27	18	690	20	29	757	5	2	109
Subiasella quadrimaculata	1		16				7		102
Suctobelba altvateri	1		15						

Oribatida, Biotoptyp	EB_NW3	1		EB_NW3	2		EB_NW3	3	
Eichenwald (Tab. Anhang 9)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2
Suctobelba granulata	1		16						
Suctobelba lapidaria	2		31						
Suctobelba regia				11		171	1		15
Suctobelba sorrentensis	1		15				10		148
Suctobelba trigona				17		264	9		140
Suctobelbella acutidens	1		15	10		156	29		444
Suctobelbella arcana	1		16	1		16	3		44
Suctobelbella duplex	4		59				21		310
Suctobelbella falcata							5		77
Suctobelbella nasalis	2		31				1		15
Suctobelbella sarekensis	12		179	8		121	26	2	419
Suctobelbella serratirostrum	3		44	1		15	3		45
Suctobelbella subcornigera	26		384	22		337	71	1	1079
Suctobelbella subtrigona	4		60	1		16	2		31
Tectocepheus minor	10	50	934	3	17	309	46	93	2152
Tectocepheus group velatus	19	27	708	92	196	4471	165	199	5596
Xenillus tegeocranus	3	10	203	1	4	79	3	8	174
Zygoribatula exilis							1		15
Individuenzahl	2072	580	40518	2447	2591	77740	2667	2330	77036
Individuenzahl ∑ F+H	2652			5038			4997		
Artenzahl	63	37	69	64	47	72	65	41	72
Artenzahl Eiche gesamt:	112	Individue	nzahl Eiche	e gesamt:					12687

Tab. Anhang 10: Rohdaten Collembola, Biotoptyp Fichtenforst; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola, Biotoptyp	EB_NW1	1		EB_NW12	2		EB_NW1	3	
Fichtenforst (Tab. Anhang 10)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Allacma fusca							24	1	377
Brachystomella parvula					2	31			
Ceratophysella denticulata							1		15
Desoria violacea	101	26	1944	27	14	634	187	40	3453
Dicyrtomina minuta		1	16	1		16	11		165
Dicyrtomina ornata	1		16				4		61
Entomobrya nivalis	1	5	92	1		16	1		15
Folsomia quadrioculata	925	1482	37059	1223	898	32422	916	899	27668
Frisea mirabilis	92	120	3274	43	68	1711	116	274	5993
Isotoma viridis group	4	6	152	3	21	373	15	5	311
Isotomiella minor	109	167	4247	319	155	7275	235	125	5422
Lepidocyrtus cyaneus				1		15			
Lepidocyrtus lanuginosus		35	544	1		16		15	233
Lepidocyrtus lignorum	175	106	4340	138	168	4739	391	115	7784
Lipothrix lubbocki	2		31	4		59	28		426

Collembola, Biotoptyp	EB_NW11			EB_NW12	2		EB_NW1	3	
Fichtenforst (Tab. Anhang 10)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2
Megalothorax minimus	2	14	247	21	15	558	14	8	338
Mesaphorura macrochaeta	65	160	3454	32	19	793	1	8	139
Micranurida forsslundi				1		16	13		196
Neanura muscorum	1	6	109	2	7	139		9	140
Orchesella flavescens		2	31		1	16			
Paratullbergia callipygos	1	5	92		1	16		11	171
Parisotoma notabilis	132	76	3186	178	186	5640	234	130	5544
Pogonognathellus flavescens	6	16	342	2	27	451	9	13	340
Protaphorura armata	31	28	901	28	109	2127	11		168
Protaphorura eichhorni				8		124	3	109	1738
Protaphorura quadriocellata	17	35	801	15	155	2629	31	96	1950
Pseudachorutes parvulus					1	15			
Pseudosinella alba				4		62	2		29
Sminthurinus aureus	12	2	217	40	30	1064	80	2	1264
Sphaeridia pumilis	6		93	14	5	290	3	6	140
Supraphorura furcifera				4	66	1084			
Willemia denisi	4		62		1	16			
Xenyllodes armatus							1		15
Collembola juvenil	96	19	1756	281	93	5621	148	89	3811
Individuenzahl	1783	2311	63006	2391	2042	67968	2479	1955	67906
Individuenzahl ∑ F+H	4094			4433			4434		
Artenzahl	19	18	22	23	20	28	23	17	26
Artenzahl Fichte gesamt:	32	Individuer	nzahl Fichte	te gesamt:					12961

Tab. Anhang 11: Rohdaten Collembola, Biotoptyp Buchenwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola, Biotoptyp	EB_NW21	Ĺ		EB_NW2	2		EB_NW2	3	
Buchenwald (Tab. Anhang 11)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Allacma fusca				1		15	3	1	62
Anurophorus laricis		1	16						
Arrhopalites caecus		1	16		2	31			
Arrhopalites cochlearifer							2	1	45
Arrhopalites pseudoappendices								1	16
Arrhopalites pygmaeus		3	47						
Ceratophysella denticulata	2		31	1		16	4		58
Desoria violacea	1	5	93	6	15	321	3	1	60
Dicyrtomina minuta		2	31		1	16	1	3	61
Dicyrtomina ornata	1	2	47					1	16
Entomobrya nivalis					2	31		1	16
Folsomia quadrioculata	485	702	18294	589	439	15766	671	1205	28998
Folsomia spinosa	35	31	1056						
Frisea mirabilis	40	231	4192	30	78	1671	2		29

Collembola, Biotoptyp	EB_NW2	1		EB_NW2	2		EB_NW23	3	
Buchenwald (Tab. Anhang 11)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Hypogastrura burkilli							2		29
Isotoma viridis group					3	47			
Isotomiella minor	139	192	5070	159	195	5448	106	237	5291
Lepidocyrtus lanuginosus	7	19	398	26	8	504	8	39	729
Lepidocyrtus lignorum	105	109	3271	133	82	3310	250	238	7457
Lipothrix lubbocki	2	2	60				12		179
Megalothorax minimus	2	16	278		28	435	9	9	274
Mesaphorura macrochaeta	6	8	218	1	9	154	5	18	354
Neanura muscorum					2	31		5	78
Neelides minutus		4	62				1		15
Paratullbergia callipygos	8	18	399	7	9	249	2	32	528
Parisotoma notabilis	221	157	5748	205	261	7174	126	171	4547
Pogonognathellus flavescens	1	1	31		4	62	1		15
Protaphorura armata	54	228	4363	35	47	1261	20	20	610
Protaphorura eichhorni	4	137	2190	8	94	1582	26	139	2552
Protaphorura quadriocellata	48	129	2720	11	31	644	15	225	3726
Pseudosinella alba	36		550	5	11	246	14	2	243
Schoetella ununguiculata							1	1	31
Sminthurinus aureus		2	31	15		228	7	4	168
Sphaeridia pumilis		6	93		4	62		5	78
Supraphorura furcifera	35	85	1847	3	30	513	20	68	1368
Willemia anophthalma					6	93			
Willemia denisi				5		73			
Xenyllodes armatus	14		216	65		1007			
Collembola juvenil	27	21	734	28	62	1381	73	24	1478
Individuenzahl	1273	2112	52102	1333	1423	42371	1384	2451	59111
Individuenzahl ∑ F+H	3385	-		2756			3835		
Artenzahl	21	25	28	19	22	27	25	24	30
Artenzahl Buche gesamt:	37	Individue	nzahl Buche	gesamt:				9976	

Tab. Anhang 12: Rohdaten Collembola, Biotoptyp Eichenwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola, Biotoptyp	EB_NW31			EB_NW32			EB_NW3	EB_NW33		
Eichenwald (Tab. Anhang 12)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	
Allacma fusca	9		135							
Anurophorus laricis				1		16		28	435	
Arrhopalites caecus					1	16				
Arrhopalites cochlearifer	2	2	62	1		16				
Arrhopalites pseudoappendices		1	16							
Arrhopalites pygmaeus	1		16							
Brachystomella parvula		3	47	8	16	373	1		16	

Collembola, Biotoptyp	EB_NW3	1		EB_NW3	2		EB_NW33			
Eichenwald (Tab. Anhang 12)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	
Ceratophysella armata					6	93		10	155	
Ceratophysella denticulata	6		88							
Desoria violacea	4	4	124	95	88	2839	62	34	1487	
Dicyrtomina minuta					1	16				
Entomobrya nivalis					4	62				
Folsomia quadrioculata	504	534	15918	1273	1403	41135	964	921	29050	
Folsomia spinosa		1	16	14	30	684				
Frisea mirabilis	4	61	1007	26	3	448	24	43	1030	
Isotoma viridis group							9	5	213	
Isotomiella minor	56	83	2148	45	117	2512	42	160	3128	
Isotomurus palustris					3	44				
Lepidocyrtus lanuginosus	6	15	324	16	87	1586	3	15	277	
Lepidocyrtus lignorum	39	42	1241	20	46	1024	57	104	2490	
Lipothrix lubbocki	45		690				71		1103	
Megalothorax minimus	2		31							
Mesaphorura macrochaeta	21	21	653	2		29	14	2	249	
Micranurida forsslundi	2		29	1		16				
Neanura muscorum				1	3	61	3	9	187	
Orchesella cincta							1		16	
Paratullbergia callipygos	10	16	399	2	4	92	6		92	
Parisotoma notabilis	101	55	2377	127	104	3515	100	67	2584	
Pogonognathellus flavescens								2	31	
Protaphorura armata	11	29	614	101	285	5954	35	160	3031	
Protaphorura eichhorni	12	40	798		49	762		20	311	
Protaphorura quadriocellata	1	18	295	35	162	3041	5	43	746	
Pseudisotoma monochaeta								5	78	
Pseudosinella alba	8	4	187	20	11	470	22	12	522	
Schoetella ununguiculata	4	2	93	7	112	1850				
Sminthurinus aureus	58	11	1050	49	12	935	18	10	427	
Sminthurinus niger		1	16							
Sphaeridia pumilis	6	13	294		2	31				
Supraphorura furcifera	13	14	419	2	10	187	1	14	233	
Tomocerus vulgaris							1		16	
Willemia anophthalma							1		16	
Willemia denisi	4	1	74				1		16	
Xenyllodes armatus	2		31				3		46	
Collembola juvenil	42	28	1068	85	87	2731	112	72	2804	
Individuenzahl	973	999	30260	1931	2646	70538	1556	1736	50789	
Individuenzahl ∑ F+H	1972			4577			3292			
Artenzahl	26	23	30	21	24	28	22	19	27	
Artenzahl Eiche gesamt:	42	Individue	nzahl Eiche	gesamt:					9841	

Tab. Anhang 13: Rohdaten Diplopoda, Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrs- und Herbstprobenahme, Bodenfallen und Bodenkernstecher).

Diplopoda , Summe (Tab. Anhang 13)						
	EB_NW1	.1	EB_NW1	2	EB_NW1	3
Fichte	Falle	Stecher	Falle	Stecher	Falle	Stecher
Chordeumatidae		1				
Craspedosoma rawlinsii Leach, 1815			4			
Glomeris intermedia (Latzel, 1884)			164		105	
Julidae	2		54		5	
Julus scandinavius Latzel, 1884			2			
Leptoiulus simplex subsp. glacialis (Verhoeff, 1908)	5		4		5	
Melogona gallica (Latzel, 1884)	1		2	1	1	
Mycogona germanica (Verhoeff, 1892)	5		2		5	
Polydesmidae			2			
Polydesmus angustus Latzel, 1884	1		3		2	
Polydesmus denticulatus C. L. Koch, 1847			2			
Individuenzahl Fichte	14	1	239	1	123	0
Artenzahl Fichte	4	0	8	1	5	0
n 1	EB_NW2	21	EB_NW2	22	EB_NW2	3
Buche	Falle	Stecher	Falle	Stecher	Falle	Stecher
Allaiulus nitidus Verhoeff, 1891	20		8	3		
Chordeuma sylvestre C. L. Koch, 1847	2	1	2		3	
Craspedosoma rawlinsii Leach, 1815	3				4	
Cylindroiulus punctatus (Leach, 1815)					1	
Glomeris intermedia (Latzel, 1884)	9		4		8	
Glomeris spec. Latreille, 1803	1		1		4	
Glomeris marginata (Villers, 1789)			1		37	
Julidae	4	2		1	1	3
Julus scandinavius Latzel, 1884	1					
Leptoiulus simplex subsp. glacialis (Verhoeff, 1908)	5		1		1	
Melogona gallica (Latzel, 1884)			4		1	
Mycogona germanica (Verhoeff, 1892)			2		1	
Polydesmidae			1		1	1
Polydesmus angustus Latzel, 1884					19	
Polydesmus denticulatus C. L. Koch, 1847	2		7		9	
Individuenzahl Buche	47	3	31	4	90	4
Artenzahl Buche	7	1	8	1	10	0
Fishs	EB_NW3	31	EB_NW3	32	EB_NW3	3
Eiche	Falle	Stecher	Falle	Stecher	Falle	Stecher
Allaiulus nitidus Verhoeff, 1891	6	3				
Craspedosoma rawlinsii Leach, 1815	1					
Cylindroiulus caeruleocinctus (Wood, 1864)					1	
Cylindroiulus punctatus (Leach, 1815)	2		8	1	5	
Glomeris intermedia (Latzel, 1884)	11		1		1	
Glomeris marginata (Villers, 1789)	27		16		9	

Diplopoda, Summe (Tab. Anhang 13)						
Julidae	20		36	1	4	
Julus scandinavius Latzel, 1884	2				1	
Polydesmidae		2				
Polydesmus angustus Latzel, 1884			2		1	
Proteroiulus fuscus (Am Stein, 1857)			1	1		
Tachypodoiulus niger (Leach, 1815)	13		17		10	
Individuenzahl Eiche	82	5	81	3	32	0
Artenzahl Eiche	7	1	6	2	7	0

Tab. Anhang 14: Rohdaten Chilopoda, Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrs- und Herbstprobenahme, Bodenfallen und Bodenkernstecher).

Chilopoda, Summe (Tab. Anhang 14)						
Fichte	EB_NW11		EB_NW12		EB_NW13	
richte	Falle	Stecher	Falle	Stecher	Falle	Stecher
Geophilus ribauti Brölemann, 1908		8		2		
Lithobius forficatus (Linnaeus, 1758)	1					
Lithobius macilentus L. Koch, 1862	1				2	
Lithobius microps Meinert, 1868	1	1	2	4		
Lithobius spec.		2	1	1	1	2
Lithobius tricuspis Meinert, 1872				1	1	
Strigamia acuminata (Leach, 1815)		1		2	1	2
Individuenzahl Fichte	3	12	3	10	5	4
Artenzahl Fichte	3	3	1	4	3	1
	EB_NW21		EB_NW22		EB_NW23	
Buche	Falle	Stecher	Falle	Stecher	Falle	Stecher
Geophilus alpinus Meinert, 1870						1
Geophilus ribauti Brölemann, 1908	1	3		6		2
Geophilus spec.				1		
Lithobius aeruginosus L. Koch, 1862	1					
Lithobius crassipes L. Koch, 1862		1				1
Lithobius curtipes C. L. Koch, 1847				6		1
Lithobius dentatus C .L. Koch, 1844					1	
Lithobius macilentus L. Koch, 1862	2	1	1	1		2
Lithobius spec.		4		4	1	13
Schendyla nemorensis (C. L. Koch, 1836)						2
Strigamia acuminata (Leach, 1815)	1	5	2			3
Strigamia crassipes (C. L. Koch, 1835)	1					
Individuenzahl Buche	6	14	3	18	2	25
Artenzahl Buche	5	4	2	3	1	7
Eiche	EB_NW31		EB_NW32		EB_NW33	
	Falle	Stecher	Falle	Stecher	Falle	Stecher
Geophilus spec.				2		
Lithobius aeruginosus L. Koch, 1862	1					

Chilopoda, Summe (Tab. Anhang 14)						
Eiche	EB_NW31		EB_NW32		EB_NW33	
Liche	Falle	Stecher	Falle	Stecher	Falle	Stecher
Lithobius dentatus C .L. Koch, 1844	1	•	1			
Lithobius microps Meinert, 1868	1	1		1	1	3
Lithobius spec.		1			1	1
Lithobius tricuspis Meinert, 1872	1					
Schendyla nemorensis (C. L. Koch, 1836)		23		14	1	40
Strigamia crassipes (C. L. Koch, 1835)		1				
Individuenzahl Eiche	4	26	1	17	3	44
Artenzahl Eiche	4	3	1	2	2	2

 $\textbf{Tab.Anhang 15, 16, 17}: Rohdaten \ Lumbricidae, \ Biotoptypen \ Fichtenforst, \ Buchenwald, \ Eichenwald; \ Anzahl \ der \ Individuen \ der \ Frühjahrsund \ der \ Herbstprobenahme; \ AB = mittlere \ Abundanz \ [Ind./m^2], \ BM = mittlere \ Biomasse \ (Frischgewicht) \ [g/m^2].$

Lumbricidae, Biotoptyp	EB_NW1	1			EB_NW12				EB_NW13			
Fichtenforst (Tab. Anhang 15)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato						1	0,4	0,1				
Dendrobaena attemsi	2		0,8	0,1					1		0,4	0,1
Dendrobaena octaedra		2	0,8	0,1	2	5	2,8	0,2		3	1,2	0,1
Dendrobaena sp.		1	0,4	0,02	8	10	7,2	0,5	10	7	6,8	0,4
Dendrodrilus rubidus						2	0,8	0,2		1	0,4	0,1
Lumbricus castaneus					2		0,8	0,5				
Lumbricus rubellus	1	2	1,2	1,0	5	3	3,2	2,6		1	0,4	0,3
Lumbricus sp.	2	1	1,2	0,3	13	5	7,2	1,3	3	23	10,4	4,3
Undetermined					4	1	2,0	0,4		3	1,2	0,3
Individuenzahl	5	6			34	27			14	38		
Individuenzahl ∑ F+H	11				61				52			
Abundanz/Biomasse			4,4	1,5			24,4	5,8			20,8	5,6
Artenzahl	2	2	3		3	4	5		3	3	4	
Artenzahl Fichte gesamt:			6		Individuenzah	ıl Fichte g	gesam	t:			124	

Lumbricidae, Biotoptyp	EB_NW2	.1			EB_NW22				EB_NW2	23		
Buchenwald (Tab. Anhang 16)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Dendrobaena attemsi	34		13,6	0,8						4	1,6	0,3
Dendrobaena octaedra		1	0,4	0,1								
Dendrobaena sp.	88	257	138,0	5,7	1	1	0,8	0,1	2	2	1,6	0,1
Dendrodrilus rubidus						2	0,8	0,3		1	0,4	0,05
Lumbricus rubellus		1	0,4	0,4		2	0,8	0,8	4	18	8,8	8,3
Lumbricus sp.		1	0,4	0,01					3	5	3,2	1,3
Undetermined	3	12	6,0	0,2	1		0,4	0,02	3	6	3,6	1,4
Individuenzahl	125	272			2	5			12	36		
Individuenzahl ∑ F+H	397				7				48			
Abundanz/Biomasse			158,8	7,2			2,8	1,2			19,2	11,4
Artenzahl	1	2	3		1	3	3		2	3	3	
Artenzahl Buche gesamt:			0		Individuenzah	l Buche g	gesam	t:			452	

Lumbricidae, Biotoptyp	EB_NW2	.1			EB_NW22				EB_NW2	23		
Eichenwald (Tab. Anhang 17)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato	5		2,0	0,4								
Aporrectodea caliginosa	3		1,2	0,3								
Dendrobaena sp.	3		1,2	0,0								
Lumbricus castaneus						7	2,8	1,3				
Lumbricus rubellus	8	23	12,4	8,7	2	11	5,2	3,8	1	2	1,2	1,2
Lumbricus sp.	79	30	43,6	11,2	10	2	4,8	0,8	1		0,4	0,02
Undetermined	13	3	6,4	0,8		2	0,8	0,3	1		0,4	0,1
Individuenzahl	111	56			12	22			3	2		
Individuenzahl ∑ F+H	167				34				5			
Abundanz/Biomasse			66,8	21,4			13,6	6,2			2,0	1,3
Artenzahl	3	1	3		1	2	2		1	1	1	
Artenzahl Eiche gesamt:			4		Individuenzah	l Eiche g	esamt				206	

Tab. Anhang 18: Rohdaten Enchytraeidae, Biotoptyp Fichtenforst; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae, Biotoptyp	EB_NW1	1		EB_NW1	2		EB_NW1	3	
Fichtenforst (Tab. Anhang 18)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Achaeta affinis	70	229	6070	415	261	13723	381	481	17499
Achaeta bibulba								4	81
Achaeta bifollicula	17	9	528		11	223	12	5	345
Achaeta camerani	142	131	5542	42	65	2172	66	148	4344
Achaeta sp. (PAFU)	7		142						
Buchholzia appendiculata				81		1644			
Cognettia chlorophila	1433	1150	52436	941	1463	48802	1947	1355	67032
Cognettia cognettii	116	6	2477	421	133	11246	4	22	528
Enchytraeus buchholzi				58	20	1583	90		1827
Enchytraeus norvegicus				17		345			
Enchytronia parva				20	196	4385			
Fridericia striata				4	8	244	3		61
Marionina clavata	501	474	19793	279	560	17032	450	842	26228
Mesenchytraeus armatus							3		61
Mesenchytraeus flavus	4		81	1	11	244	2	11	264
Mesenchytraeus pelicensis	18	11	589	13	6	386	6	12	365
Oconnorella cambrensis	197	115	6334	295	491	15956	349	102	9155
Oconnorella tubifera				8	9	345			
Individuenzahl	2505	2125	93991	2595	3234	118331	3313	2982	127791
Individuenzahl ∑ F+H	4630			5829			6295		
Artenzahl	10	8	10	14	13	15	12	10	13
Artenzahl Fichte gesamt:			0	Individue	nzahl Fichte	e gesamt:	•		16754

Tab. Anhang 19: Rohdaten Enchytraeidae, Biotoptyp Buchenwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae, Biotoptyp	EB_NW21			EB_NW22			EB_NW23		
Buchenwald (Tab. Anhang 19)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Achaeta abulba				4		81			
Achaeta affinis	36	3	832	211	237	9095	76	48	2517
Achaeta camerani	94	61	3972	112	297	8303	122	159	5704
Achaeta sp.							1		20
Achaeta sp. (BUUS)	6	2	189						
Achaeta sp. (NW23)								9	183
Bryodrilus ehlersi					3	61			
Buchholzia appendiculata	92	15	2375	80	16	1949		1	20
Cognettia chlorophila	200	66	6293	1740	1004	55704	2114	791	58973
Cognettia cognettii	58	29	2159	472	278	15225	148	66	4344
Cognettia sphagnetorum s.s.	8		162	127		2578	1		20
Enchytraeus buchholzi	13	17	839	119	41	3248		6	122
Enchytraeus norvegicus	60	3	1320	14		284	62	15	1563
Enchytraeus sp. (GRAN)	60	20	1895	31	61	1868	5		102
Enchytronia parva	186	43	5231	14	6	406	18	32	1015
Enchytronia pygmaea	2		41				1	4	102
Enchytronia sp. (TENU)	3	3	162	11	3	284	11	40	1035
Enchytronia sp. 2VII								3	61
Fridericia benti	13	7	501	11		223			
Fridericia striata		5	169	6	6	244	3	10	264
Hemifridericia parva	1		20						
Marionina clavata	24		487	138	66	4141	80	62	2883
Marionina deminuta		1	34						
Mesenchytraeus armatus	20	28	1353	43	5	974	50	39	1807
Mesenchytraeus flavus					12	244		6	122
Mesenchytraeus glandulosus	47	11	1326	33	1	690	8	6	284
Mesenchytraeus pelicensis				109	30	2822	77	32	2213
Oconnorella cambrensis	30	1	643	545	329	17743	224	243	9480
Oconnorella tubifera	14	5	453	4	3	142	5	2	142
Stercutus niveus		1	34	5		102			
Individuenzahl	967	321	30491	3829	2398	126410	3006	1574	92976
Individuenzahl ∑ F+H	1288			6227			4580		
Artenzahl	20	19	23	21	18	23	17	20	22
Artenzahl Buche gesamt:	n		0	Individue	nzahl Buch	e gesamt:			12095

Tab. Anhang 20: Rohdaten Enchytraeidae, Biotoptyp Eichenwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae, Biotoptyp	EB_NW31		EB_NW32			EB_NW33			
Eichenwald (Tab. Anhang 20)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Achaeta aberrans							12	3	305
Achaeta affinis	22	199	4486	123	321	9013	39	91	2639
Achaeta bibulba				183	56	4852	2	5	142
Achaeta camerani					3	61	2	2	81
Achaeta sp. (BUUS)	1		20						
Cognettia chlorophila	845	257	22371	454	372	16768	1297	798	42529
Enchytraeus norvegicus	210	1	4283				107	8	2335
Enchytraeus sp. (GRAN)	1		20		28	568			
Enchytronia parva	583	1165	35485	73	895	19651	40	115	3147
Enchytronia sp. (TENU)	60	35	1929		4	81	139		2822
Fridericia bisetosa	2	3	102	3		61			
Fridericia dura	21	3	487	1	2	61			
Fridericia monochaeta				61	19	1624	15		305
Fridericia striata	1	1	41	1	1	41			
Marionina clavata	78		1583	645	217	17499	1193	1713	58993
Mesenchytraeus glandulosus	13	2	305						
Mesenchytraeus pelicensis	7		142		3	61	62	13	1523
Oconnorella cambrensis	630	307	19021		1	20			
Oconnorella tubifera	542	415	19427		55	1117	5	8	264
Individuenzahl	3016	2388	109703	1544	1977	71478	2913	2756	115083
Individuenzahl ∑ F+H	5404			3521			5669		
Artenzahl	15	11	15	9	14	15	12	10	12
Artenzahl Eiche gesamt:			0	Individue	nzahl Eiche	gesamt:			14594

13.3 Anhang Sachsen

Tab. Anhang 21: Rohdaten Oribatida, Biotoptyp Sand-Kiefernwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida,	EB_SN11			EB_SN12			EB_SN13		
Biotoptyp Sand-Kiefernwald (Tab. Anhang 21)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m²	Frühjahr	Herbst	MW/ m²
Acrogalumna longipluma					1	16			
Acrotritia ardua	1	2	47				5	20	389
Acrotritia duplicata	3	11	218	17	65	1274	10	62	1119
Adoristes ovatus	3	20	357	1	26	420	6	73	1228
Berniniella bicarinata							3		47
Brachychthoniidae	62	9	1103	15	19	528	18	14	497
Camisia spinifer	1		16						
Carabodes coriaceus							6	1	109
Carabodes subarcticus	1		16	6	3	140	4	16	311
Cepheus cepheiformis	1		16	17	7	373			
Ceratoppia quadridentata				1	2	47	1	6	109
Ceratozetes minimus	10	6	249	47	65	1740	73	37	1709
Ceratozetes minutissimus				1		16	41		637
Ceratozetoides maximus							8	14	342
Chamobates borealis	71	100	2657	13	2	233			
Chamobates voigtsi	2		31						
Conchogneta dalecarlica				1		16	1		16
Dissorhina ornata							18	60	1212
Dissorhina signata	920	331	19441	151		2347	36	1	575
Eniochthonius minutissimus	1		16	1		16		119	1849
Eupelops hirtus	1		16						
Eupelops occultus	1		16						
Eupelops plicatus							1	1	31
Eupelops torulosus	13	18	482	4	16	311	5	19	373
Fosseremus laciniatus							2		31
Galumna lanceata	2		31	6	10	249			
Licnodamaeus pulcherrimus	3		47	3	27	466			
Liochthonius brevis	1		16	2		31	1		16
Micreremus brevipes	3	1	62	4		62	1		16
Microppia minus	93	53	2269	12	4	249	52	49	1570
Microtritia minima	157	139	4600	29	22	793	14	4	280
Nothrus palustris				1		16			
Nothrus silvestris					2	31	14	11	389
Oppiella (M.) keilbachi	25		389	69	23	1430	4		62
Oppiella (O.) acuminata	61	279	5284	175	510	10645	360	53	6418
Oppiella (O.) falcata	2		31	2		31	2	1	47
Oppiella (O.) marginedentata			-		1	16			•
Oppiella (O.) nova	604	232	12991	354	532	13768	530	226	11748
Oppiella (R.) obsoleta	-			1		16	1	-	16

Oribatida,	EB_SN11			EB_SN12			EB_SN13		
Biotoptyp Sand-Kiefernwald (Tab. Anhang 21)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m²	Frühjahr	Herbst	MW/ m²
Oppiella acuminata/keilbachi	148		2300	487	"	7568			
Oribatida indet	18	8	404	100	6	1647	21	15	559
Oribatula interrupta				1		16			
Oribatula tibialis	32	45	1197	22	10	497	28	10	591
Pergalumna nervosa	21	35	870	3	6	140	58	66	1927
Phthiracarus borealis							1	1	31
Phthiracarus boresetosus							1		16
Phthiracarus laevigatus							3	6	140
Phthiracarus longulus					2	31	1	8	140
Pilogalumna tenuiclava				1	1	31	2	25	420
Platynothrus peltifer							8	17	389
Porobelba spinosa	12	5	264	45	40	1321	49	4	824
Punctoribates hexagonus		1	16						
Punctoribates punctum							1		16
Quadroppia monstruosa							2		31
Quadroppia quadricarinata	12	9	326		1	16	4	2	93
Scheloribates latipes	13	28	637						
Sellnickochthonius suecicus	1		16	1		16			
Steganacarus (A.) striculus	1		16	1		16			
Suctobelba trigona							1		16
Suctobelbella acutidens	16		249	1		16	30		466
Suctobelbella arcana	4		62	2		31	8		124
Suctobelbella duplex	1		16	2		31	2		31
Suctobelbella falcata	8		124				21		326
Suctobelbella nasalis							1		16
Suctobelbella sarekensis	1		16	10		155	26		404
Suctobelbella serratirostrum				3		47			
Suctobelbella similis							1		16
Suctobelbella subcornigera	22		342	29		451	32		497
Suctobelbella subtrigona				1		16	1		16
Tectocepheus minor	3		47	2		31			
Tectocepheus group velatus	17	152	2626	31	153	2859	29	27	870
Trhypochthonius tectorum	3		47	13	22	544	8	8	249
Trichoribates trimaculatus							1		16
Individuenzahl	2375	1484	59969	1688	1578	50754	1557	976	39363
Individuenzahl ∑ F+H	3859			3266			2533		
Artenzahl	40	19	41	41	26	46	51	30	52
Artenzahl Kiefer gesamt:			70		Individue	nzahl Kiefei	gesamt:		9658

Tab. Anhang 22: Rohdaten Oribatida, Biotoptyp basenreicher Buchenwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida, Biotoptyp	EB SN22			EB SN23			EB SN24		
basenreicher Buchenwald (Tab. Anhang 22)	- Frühjahr	Herbst	MW/m ²	- Frühjahr	Herbst	MW/m ²	_	Herbst	MW/m ²
Achipteria coleoptrata	12	31	668	14	14	435	17	47	995
Acrogalumna longipluma				6		93	1	1	31
Acrotritia ardua	1		16						
Acrotritia duplicata	1		16	2		31	4	12	249
Amerus polonicus				1		16	1		16
Banksinoma lanceolata							1		16
Belba bartosi	30	12	653		1	16	23	13	559
Berniniella (H.) dungeri	16		249						
Berniniella bicarinata	523	10	8283	22		342	48	87	2098
Berniniella conjuncta	36	30	1026	3		47	17	10	420
Brachychthoniidae	7	17	373	1		16	22	10	497
Carabodes areolatus							2	1	47
Carabodes ornatus	4	1	78						
Carabodes rugosior							1	1	31
Carabodes subarcticus	1		16						
Cepheus cepheiformis		1	16						
Ceratoppia bipilis	1		16				1		16
Ceratozetes gracilis	51	43	1461	19	27	715	14	17	482
Ceratozetes minimus				1		16			
Chamobates borealis				1	4	78			
Chamobates subglobulus							12	54	1026
Chamobates voigtsi	6	1	109	87	66	2378	120	64	2859
Conchogneta dalecarlica				126	157	4398			
Cultroribula bicultrata				1		16		7	109
Cymbaeremaeus cymba		1	16						
Damaeus (A.) onustus				2		31	5	1	93
Damaeus (P.) clavipes							1		16
Damaeus riparius	3	5	124	3	6	140	33	14	730
Dissorhina ornata	106	112	3388		2	31	194	162	5532
Dissorhina signata							1		16
Eniochthonius minutissimus	170	83	3932	5	11	249	6	4	155
Eremaeus hepaticus					3	47	1	9	155
Eulohmannia ribagai				3		47			
Eupelops acromios				1		16			
Eupelops hirtus							1	2	47
Eupelops plicatus	8		124				31	17	746
Euzetes globulus				9	13	342	1		16
Fosseremus laciniatus	51	8	917						
Galumna lanceata	12	16	435	2	1	47	4	12	249
Gustavia microcephala					2	31			
Heminothrus targionii	48	39	1352	14	30	684			
Hermannia gibba		2	31						

Oribatida, Biotoptyp	EB SN22			EB SN23			EB SN24		
basenreicher Buchenwald (Tab. Anhang 22)	- Frühjahr	Herbst	MW/m ²	- Frühjahr	Herbst	MW/m ²	- Frühjahr	Herbst	MW/m ²
Hermanniella dolosa					1	16			
Hermanniella punctulata	70	86	2424	43	26	1072	14	9	357
Hypochthonius luteus	25	9	528	1	3	62		1	16
Hypochthonius rufulus				14	19	513			
Kunstidamaeus tecticola							1	1	31
Liacarus coracinus							1		16
Liebstadia similis	86	84	2642				39	17	870
Liochthonius strenzkei							1		16
Machuella bilineata	1		16						
Metabelba propexa	7	19	404	8	4	186	35	36	1103
Microppia minus	186	68	3947				37	1	591
Microtritia minima	1		16						
Microzetes septentrionalis		1	16				25		389
Minunthozetes semirufus	1		16	7	3	155			
Multioppia glabra	21		326	8	1	140	55	9	995
Nanhermannia nana					1	16			
Nothrus borussicus					9	140			
Nothrus palustris	1	1	31	7	2	140			
Nothrus silvestris	1		16					1	16
Oppiella (M.) keilbachi				1		16	4		62
Oppiella (O.) acuminata	2	4	93						
Oppiella (O.) falcata	65	43	1678	51	31	1274	248	90	5253
Oppiella (O.) marginedentata	63	90	2378				165	66	3590
Oppiella (O.) nova	21	95	1803	4	1	78	419	44	7195
Oppiella (R.) obsoleta	3		47		3	47	38	53	1414
Oppiella (R.) subpectinata	59	50	1694	4	3	109	2		31
Oppiella beskidyensis							20		311
Oppiella epilata	589	260	13193	9	23	497	24	15	606
Oribatella calcarata				1	1	31	6	9	233
Oribatida indet	186	70	3978	17	29	715	55	20	1166
Oribatula tibialis							4	9	202
Pantelozetes paolii	51	119	2642	1	14	233	3	10	202
Pergalumna nervosa	6	8	218						
Phthiracarus anonymus								1	16
Phthiracarus borealis				2	6	124	2	1	47
Phthiracarus bryobius				3		47			
Phthiracarus compressus	1		16	4	8	186		1	16
Phthiracarus crinitus					2	31		1	16
Phthiracarus globosus	10	12	342	4	4	124		5	78
Phthiracarus laevigatus	1	2	47	1	1	31	1		16
Phthiracarus longulus	1	2	47	2	2	62		2	31
Platynothrus peltifer	1	4	78	1		16	15	14	451
Porobelba spinosa							1		16

Oribatida, Biotoptyp	EB_SN22			EB_SN23			EB_SN24		
basenreicher Buchenwald (Tab. Anhang 22)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Protoribates capucinus				1	17	280			
Punctoribates hexagonus		1	16						
Quadroppia monstruosa	139	86	3497	2	1	47	76	83	2471
Scheloribates (H.) initialis	3	17	311		1	16		1	16
Scheloribates ascendens	1		16	1		16			
Scheloribates laevigatus							1	1	31
Scheloribates latipes								3	47
Sellnickochthonius hungaricus	1		16						
Spatiodamaeus verticillipes							4	2	93
Steganacarus (A.) striculus	169	47	3357	29	56	1321	13	20	513
Steganacarus (S.) magnus	1		16	8	6	218	15	13	435
Suctobelba atomaria	2		31				1		16
Suctobelba granulata	3		47	5		78			
Suctobelba sorrentensis				1		16			
Suctobelbella alloenasuta	1		16						
Suctobelbella arcana	1		16				1		16
Suctobelbella diffissa	1		16	1		16			
Suctobelbella forsslundi	20		311	4		62			
Suctobelbella nasalis				2		31			
Suctobelbella perforata				2		31			
Suctobelbella sarekensis	5		78	6		93	8		124
Suctobelbella subcornigera	21		326	4		62	11		171
Suctobelbella subtrigona							1		16
Tectocepheus minor	44	51	1476	9	47	870			
Tectocepheus group velatus	53	129	2828		18	280	19	33	808
Xenillus tegeocranus		1	16	1		16			
Zetorchestes falzonii	108	111	3403	20	18	591	1	4	78
Zygoribatula exilis							1		16
Individuenzahl	3119	1882	77716	612	698	20357	1929	1121	47397
Individuenzahl ∑ F+H	5001			1310			3050		
Artenzahl	61	43	67	57	45	68	62	52	72
Artenzahl Laubwald gesamt:			111	Individuer	nzahl Laubv	vald gesamt	:		9361

Tab. Anhang 23: Rohdaten Oribatida, Biotoptyp Sandacker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida,	EB_SN31			EB_SN32			EB_SN34			
Biotoptyp Sandacker (Tab. Anhang 23)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	
Brachychthoniidae				3	1	62		37	575	
Carabodes subarcticus				13		202				
Chamobates borealis								1	16	
Chamobates voigtsi					1	16				
Conchogneta dalecarlica		1	16					1	16	

Oribatida,	EB_SN31			EB_SN32			EB_SN34		
Biotoptyp Sandacker (Tab. Anhang 23)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2
Dissorhina ornata					2	31		2	31
Dissorhina signata				1		16			
Eniochthonius minutissimus		1	16						
Eupelops torulosus				4		62			
Galumna lanceata				2		31			
Microppia minus				3		47			
Microtritia minima				1		16			
Oppiella (M.) keilbachi				1		16			
Oppiella (O.) acuminata				3		47			
Oppiella (O.) falcata	1	1	31	2		31		1	16
Oppiella (O.) nova		2	31	2	2	62		33	513
Oppiella epilata					2	31			
Oribatida indet				1	2	47		4	62
Oribatula tibialis		1	16	3	1	62			
Punctoribates hexagonus				5	25	466			
Punctoribates punctum	1		16	1	13	218			
Quadroppia monstruosa				1		16			
Ramusella insculpta				2	8	155			
Steganacarus (A.) striculus		1	16	1		16			
Steganacarus (S.) magnus		2	31						
Tectocepheus group velatus				31	64	1476	63	162	3497
Individuenzahl	2	9	171	80	121	3124	63	241	4724
Individuenzahl ∑ F+H	11			201			304		
Artenzahl	2	7	8	17	9	20	1	6	6
Artenzahl Sandacker gesamt:			24	Individuer	nzahl Sanda	cker gesam	t:		516

Tab. Anhang 24: Oribatiden-Arten der Biotoptypen Sand-Kiefernwald, baseneicher Buchenwald und Sandacker, deren Indikatorwert für einen der Biotoptypen bei über 0,8 liegt (Irrtumswahrscheinlichkeit (pvalue) <= 0,1) sowie die entsprechenden relativen Abundanzen und Frequenzen. Angabe des Biotoptyps nach Riecken et al. (2003).

Oribatiden (Tab. Anhang 24)	indicator_value	pvalue	rel_abundance	rel_frequency
44.02.03.02	Sand-Kiefernwald			
Adoristes ovatus	1,00	0,03	1,00	1,00
Liochthonius brevis	1,00	0,03	1,00	1,00
Micreremus brevipes	1,00	0,03	1,00	1,00
Quadroppia quadricarinata	1,00	0,03	1,00	1,00
Suctobelbella acutidens	1,00	0,03	1,00	1,00
Suctobelbella duplex	1,00	0,03	1,00	1,00
Trhypochthonius tectorum	1,00	0,03	1,00	1,00
Dissorhina signata	1,00	0,02	1,00	1,00
Ceratozetes minimus	1,00	0,02	1,00	1,00
Porobelba spinosa	0,99	0,02	0,99	1,00
Microtritia minima	0,99	0,02	0,99	1,00
Oppiella acuminata	0,99	0,01	0,99	1,00

Oribatiden (Tab. Anhang 24)	indicator value	pvalue	rel abundance	rel frequency
Oppiella keilbachi	0,95	0,01	0,95	1,00
Pergalumna nervosa	0,93	0,04	0,93	1,00
Eupelops torulosus	0,93	0,02	0,93	1,00
Rhysotritia duplicata	0,90	0,02	0,90	1,00
Oribatula tibialis	0,88	0,01	0,88	1,00
Suctobelbella arcana	0,87	0,01	0,87	1,00
43.07.05.02	basenreicher Laub	wald mittlerer Feuc	hte	
Achipteria coleoptrata	1,00	0,02	1,00	1,00
Belba bartosi	1,00	0,02	1,00	1,00
Berniniella conjuncta	1,00	0,02	1,00	1,00
Ceratozetes gracilis	1,00	0,02	1,00	1,00
Damaeus riparius	1,00	0,02	1,00	1,00
Hermanniella punctulata	1,00	0,02	1,00	1,00
Hypochthonius luteus	1,00	0,02	1,00	1,00
Metabelba propexa	1,00	0,02	1,00	1,00
Multioppia glabra	1,00	0,02	1,00	1,00
Oppiella subpectinata	1,00	0,02	1,00	1,00
Pantelozetes paolii	1,00	0,02	1,00	1,00
Phthiracarus compressus	1,00	0,02	1,00	1,00
Phthiracarus globosus	1,00	0,02	1,00	1,00
Scheloribates initialis	1,00	0,02	1,00	1,00
Zetorchestes falzonii	1,00	0,02	1,00	1,00
Oppiella epilata	1,00	0,02	1,00	1,00
Berniniella bicarinata	1,00	0,01	1,00	1,00
Quadroppia monstruosa	0,99	0,01	0,99	1,00
Chamobates voigtsi	0,99	0,01	0,99	1,00
Steganacarus striculus	0,98	0,01	0,98	1,00
Oppiella obsoleta	0,98	0,01	0,98	1,00
Oppiella falcata	0,97	0,01	0,97	1,00
Steganacarus magnus	0,94	0,06	0,94	1,00
Dissorhina ornata	0,87	0,08	0,87	1,00
33.03.03	Intensiv bewirtscha	afteter Sand-Acker		
Punctoribates punctum	0,96	0,08	0,96	1,00

Tab. Anhang 25: Rohdaten Collembola, Biotoptyp Sand-Kiefernwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola, Biotoptyp Sand-Kiefernwald	EB_SN11			EB_SN12			EB_SN13		
(Tab. Anhang 25)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Arrhopalites pseudoappendices		1	16						
Brachystomella parvula	3		47		2	31		2	31
Ceratophysella denticulata	2	9	171				181	99	4352
Choreutinula inermis				26	2	435	10	7	264
Cryptopygus thermophilus								1	16
Deharvengiurus denisi							1		16
Desoria violacea				8		124	5		78

Collembola, Biotoptyp	EB SN11			EB SN12			EB SN13		
Sand-Kiefernwald (Tab. Anhang 25)	- Frühjahr	Herbst	MW/m ²	- Frühjahr	Herbst	MW/m ²	_	Herbst	MW/m ²
Dicyrtoma fusca				3	1	62	1	17	280
Entomobrya corticalis							1		16
Entomobrya lanuginosa		1	16					1	16
Entomobrya marginata	2		31						
Entomobrya multifasciata				1		16			
Entomobrya quinquelineata				1		16			
Entomobrya schoetti	6		93						
Folsomia manolachei							1	1	31
Folsomia quadrioculata				1		16	46	1	731
Friesea mirabilis	10	13	358	15		233	27	61	1368
Isotoma viridis group		4	62						
Isotomiella minor	15	26	637	15	51	1026	57	124	2813
Isotomurus palustris				1		16			
Lathriopyga monoculata					2	31			
Lepidocyrtus cyaneus								1	16
Lepidocyrtus lanuginosus		22	342				1		16
Lepidocyrtus lignorum	231	52	4119	318	17	5207	157	107	4103
Megalothorax minimus		2	31	2	4	93		5	78
Mesaphorura macrochaeta	1		16	2		31	4	5	140
Micranurida pygmaea				1		16			
Neanura muscorum	1	2	47	3	1	62	7	3	155
Orchesella bifasciata	6	26	497						
Orchesella flavescens		4	62		1	16		2	31
Parisotoma notabilis	388	125	7973	630	170	12434	264	449	11082
Pogonognathellus flavescens		8	124	2		31			
Protaphorura armata	2		31				77	46	1912
Protaphorura							10		155
pseudovanderdrifti Pseudosinella alba	1		16		1	16		2	31
Schoettella ununguiculata	14	2	249	2	1	47	15	11	404
Sminthurinus aureus	1	-	16	-	8	124	1	11	16
Sphaeridia pumilis	7	38	700	19	8	420	27	41	1057
Tetracanthella wahlgreni	,	50	,00	1	11	187	2,		1037
Willemia anophthalma	6	3	140	11	11	171			
Collembola juvenil	45	44	1414	32	22	841	22	41	978
Individuenzahl	741	382	17208	1094	302	21702	915	1027	30186
Individuenzahl ∑ F+H	1123		-	1396			1942		
Artenzahl	17	16	23	20	15	25	20	21	27
	39	ı	zahl Kiefer						4461
Artenzahl Kiefernforst gesamt:	39	individuen	zani Kiefer	morst gesar	nt:				4401

Tab. Anhang 26: Rohdaten Collembola, Biotoptyp basenreicher Buchenwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola,	EB_SN22			EB_SN23			EB_SN24		
basenreicher Buchenwald (Tab. Anhang 26)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Allacma fusca	2		31				6		93
Arrhopalites caecus	1		16	1	3	62			
Arrhopalites cochlearifer					3	47			
Arrhopalites pseudoappendices	2		31	1	9	155	5	3	124
Arrhopalites pygmaeus					1	16			
Brachystomella parvula		3	47					3	47
Ceratophysella denticulata	6	1	109						
Cryptopygus thermophilus					1	16			
Deharvengiurus denisi				80	71	2347		25	389
Desoria violacea					3	47			
Deuterosminthurus bicinctus							1		16
Deuterosminthurus pallipes					2	31			
Entomobrya lanuginosa		3	47		1	16			
Entomobrya multifasciata								2	31
Entomobrya nivalis								1	16
Entomobrya quinquelineata	1		16						
Folsomia manolachei	200	127	5082	345	330	10491	193	237	6683
Folsomia quadrioculata	284	10	4569	585	183	11937	381	224	9403
Friesea mirabilis		3	47				4	3	109
Heteromurus nitidus		2	31		5	78			
Hypogastrura assimilis				1		16			
Isotoma viridis group		6	93		2	31			
Isotomiella minor	63	12	1166	58	37	1476	231	62	4554
Isotomurus palustris				5		78			
Lathriopyga monoculata								5	78
Lepidocyrtus cyaneus	1	10	171						
Lepidocyrtus lanuginosus				15	2	264		4	62
Lepidocyrtus lignorum	40	51	1414	120	20	2176	153	80	3622
Lepidocyrtus violaceus								1	16
Lipothrix lubbocki	5		78				22	1	358
Megalothorax minimus	13	7	311	9	7	249			
Mesaphorura macrochaeta	9		140	1		16	1		16
Micranurida granulata							2		31
Neanura muscorum	1	2	47	1	1	31	3	1	62
Onychiurus jubilarius							3		47
Orchesella flavescens		2	31						
Paratullbergia callipygos		2	31	8	1	140	1	1	31
Parisotoma notabilis	81	44	1943	107	73	2798	599	207	12527
Pogonognathellus flavescens				4		62			
Proisotoma minuta								1	16
Protaphorura armata	1	3	62	15	17	497		66	1026

Collembola,	EB_SN22			EB_SN23			EB_SN24		
basenreicher Buchenwald (Tab. Anhang 26)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Protaphorura humata				1		16			
Protaphorura pseudovanderdrifti							147		2285
Protaphorura quadriocellata								11	171
Protaphorura subuliginata				7		109			
Pseudachorutella asigillata								1	16
Pseudosinella alba	34	29	979	41	6	731	15	46	948
Sminthurinus aureus	4		62	3		47			
Sphaeridia pumilis		11	171		1	16		25	389
Supraphorura furcifera				3		47	1	1	31
Willemia anophthalma								1	16
Collembola juvenil	34	30	1340	62	33	1477	215	39	4664
Individuenzahl	770	351	17768	1391	718	32783	1971	1017	47161
Individuenzahl ∑ F+H	1121			2109			2988		
Artenzahl	17	18	25	22	22	30	18	25	31
Artenzahl Laubwaldmischwald gesamt:	50	Individuer	ızahl Laubv	valdmischw	ald gesamt:				6218

Tab. Anhang 27: Rohdaten Collembola, Biotoptyp Sandacker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola, basenreicher Sandacker	EB_SN31			EB_SN32			EB_SN34		
(Tab. Anhang 27)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2
Bourletiella viridescens	10		155						
Brachystomella parvula				330	17	5393	78	7	1321
Choreutinula inermis				2	1	47			
Cryptopygus thermophilus		19	295	220	52	4228	33	179	3295
Deharvengiurus denisi					4	62			
Desoria violacea					10	155			
Entomobrya marginata							1		16
Entomobrya schoetti		1	16						
Folsomia candida				13		202	3		47
Folsomia dovrensis								1	16
Folsomia manolachei				45	37	1275		5	78
Folsomia quadrioculata				1		16	1	10	171
Friesea mirabilis		6	93					1	16
Hypogastrura assimilis					1	16			
Hypogastrura sahlbergi					1	16			
Isotoma viridis group				99	85	2860	17	17	529
Isotomiella minor		5	78	30	5	544	2	6	124
Isotomurus graminis				5	3	124			
Isotomurus palustris				644	73	11144	1		16
Lathriopyga monoculata					1	16			
Lepidocyrtus cyaneus					17	264	5	31	560
Lepidocyrtus lignorum	1		16	46	12	901	1		16

Collembola,	EB_SN31			EB_SN32			EB_SN34		
basenreicher Sandacker (Tab. Anhang 27)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Lepidocyrtus paradoxus					3	47			
Lepidocyrtus violaceus	1		16		9	140		10	155
Megalothorax minimus		1	16						
Mesaphorura macrochaeta	1	19	311					7	109
Micranurida granulata									
Parisotoma notabilis	1	12	202	186	113	4647	39	113	2362
Protaphorura armata				9	22	482	1	15	249
Sminthurinus aureus	1	16	264	25	7	497	4	3	109
Sminthurus viridis				3		47			
Sphaeridia pumilis				2	11	202	10	25	544
Stenaphorura denisi				1	8	140	1		16
Stenaphorura quadrispina					2	31			
Collembola juvenil	11	8	297	16	28	638	14	66	1243
Individuenzahl	26	87	1759	1677	522	34134	211	496	10992
Individuenzahl ∑ F+H	113			2199			707		
Artenzahl	6	8	11	16	22	25	14	14	19
Artenzahl Sandacker gesamt:	33	Individue	nzahl Sanda	cker gesam	t:				3019

Tab. Anhang 28: Rohdaten Diplopoda, Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrs- und Herbstprobenahme, Bodenfallen (BF) und Bodenkernstecher (BK)).

Diplopoda,	EB_	SN11	EB_	SN12	EB_	SN13	EB_	SN22	EB_	SN23	EB_	SN24	EB_	SN31	EB_	SN32	EB_	SN34
Summe (Tab. Anhang 28)	BF	BK																
Craspedosoma rawlinsii																	2	
Enantiulus nanus							20	4	4									
Glomeris hexasticha							1		1		5							
Julidae					1	1	8	1	3	2	1							
Julus scandinavius			1				1		2		2						1	
Leptoiulus proximus					1		1				8							
Megaphyllum projectum							15		12		3							
Ommatoiulus sabulosus					2				25									
Polydesmidae										1								
Polydesmus complanatus									6									
Polydesmus inconstans															1			
Polyzonium germanicum					6													
Strongylosoma stigmatosum									28									
Unciger foetidus							4		10		1							į.
Individuenzahl	0	0	1	0	10	1	50	5	91	3	20	0	0	0	1	0	3	0
Individuenzahl Artniveau	0	0	1	0	9	0	42	4	88	0	19	0	0	0	1	0	3	0
Artenzahl	0	0	1	0	3	0	6	1	8	0	5	0	0	0	1	0	2	0

Tab. Anhang 29: Rohdaten Chilopoda, Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrs- und Herbstprobenahme, Bodenfallen (BF) und Bodenkernstecher (BK)).

Chilopoda,	EB_	SN11	EB_	SN12	EB_	SN13	EB_	SN22	EB_	SN23	EB_	SN24	EB_	SN31	EB_	SN32	EB_	SN34
Summe (Tab. Anhang 29)	BF	BK																
Geophilus alpinus												2						
Geophilus electricus									1			4						
Geophilus flavus								1		3		8						
Lamyctes emarginatus													3		1		10	
Lithobius agilis											1							
Lithobius austriacus			1							1		4						
Lithobius calcaratus	1	1			1													
Lithobius erythrocephalus	1																	
Lithobius forficatus					1		2				2							
Lithobius microps		1	2	13		9	2	1					1					
Lithobius mutabilis							28	1	34	2	9	1						
Lithobius muticus		1																
Lithobius pelidnus	1																	
Lithobius		2		21		13	1	7	1	12	2	6	5		2			2
Schendyla nemorensis	1	5	1	3		8	1	31		8	1	6						
Strigamia acuminata										2								
Strigamia crassipes							1											
Individuenzahl	4	10	4	37	2	30	35	41	36	28	15	31	9	0	3	0	10	2
Individuenzahl Artniveau	4	8	4	16	2	17	34	34	35	16	13	25	4	0	1	0	10	0
Artenzahl	4	4	3	2	2	2	5	4	2	5	4	6	2	0	1	0	1	0

Tab. Anhang 30: Rohdaten Lumbricidae, Biotoptyp Nadelwald trocken (Sand/Kiefer); Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen für Abundanz und Biomasse [g] pro Quadratmeter. AB = mittlere Abundanz [Ind./m²], BM = mittlere Biomasse (Frischgewicht) [g/m²].

Lumbricidae, Biotoptyp Nadelwald trocken	EB_SN1	11			EB_SN	12			EB_SN	13		
(Tab. Anhang 30)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato									3	1	1,6	0,6
Aporrectodea caliginosa									2		0,8	0,6
Dendrobaena attemsi	3		1,2	0,2	6		2,4	0,3	1	1	0,8	0,1
Dendrobaena octaedra		9	3,6	0,3					2	3	2,0	0,3
Dendrobaena sp.	8		3,2	0,1	1	5	2,4	0,1	1		0,4	0,01
Dendrodrilus rubidus	1	1	0,8	0,1								
Lumbricus rubellus										1	0,4	0,2
Undetermined		3	1,2	0,1	1		0,4	0,02		1	0,4	0,1
Individuenzahl	12	13			8	5			9	7		
Individuenzahl ∑ F+H	25				13				16			
Abundanz/Biomasse			10,0	0,8			5,2	0,4			6,4	1,9
Artenzahl	2	2	3		1	1	1		3	4	4	
Artenzahl Kiefer gesamt:			5		Individu	ıenzahl I	Kiefer ge	samt:			54	

Tab. Anhang 31: Rohdaten Lumbricidae, Biotoptyp Laubwald mittl. Feuchte (basenreich); Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen für Abundanz und Biomasse [g] pro Quadratmeter. AB = mittlere Abundanz [Ind./m²], BM = mittlere Biomasse (Frischgewicht) [g/m²].

Lumbricidae,	EB_SN	22			EB_SN	23			EB_SN	124		
Biotoptyp Laubwald (Tab. Anhang 31)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjah	r Herbst	AB	BM
Aporrectodea sp. sensu lato	97	25	48,8	5,7	81	25	42,4	8,7				
Aporrectodea caliginosa	19	2	8,4	7,9	49	17	26,4	19,7	2		0,8	2,5
Aporrectodea rosea	104	24	51,2	6,8	27	17	17,6	2,5				
Bimastos parvus	1		0,4	0,1								
Dendrobaena attemsi	2		0,8	0,1	8		3,2	0,5				
Dendrobaena sp.	1		0,4	0,02		2	0,8	0,1				
Lumbricus rubellus					6	5	4,4	2,8		2	0,8	0,8
Lumbricus terrestris	2	1	1,2	5,0	7		2,8	7,8		1	0,4	1,3
Lumbricus sp.	42	5	18,8	8,8	38	17	22,0	6,1				
Octolasion tyrtaeum	14	3	6,8	6,5								
Octolasion sp.	35	5	16,0	7,4								
Undetermined	35	9	17,6	4,3	39	8	18,8	3,6		1	0,4	0,6
Individuenzahl	352	74			255	91			2	4		
Individuenzahl ∑ F+H	426				346				6			
Abundanz/Biomasse			170,4	52,6			138,4	51,8			2,4	5,2
Artenzahl	6	4	6		5	4	5		1	2	3	
Artenzahl Laubwald gesamt:			7		Individu	ıenzahl l	Laubwal	d gesamt	:		778	

Tab. Anhang 32: Rohdaten Lumbricidae, Biotoptyp Sandacker; Anzahl der Individuen der Frühjahrsund der Herbstprobenahme sowie der Mittelwert beider Probenahmen für Abundanz und Biomasse [g] pro Quadratmeter. AB = mittlere Abundanz [Ind./m²], BM = mittlere Biomasse (Frischgewicht) [g/m²].

Lumbricidae,	EB_SN	31			EB_SN	32			EB_SN34			
Biotoptyp Sandacker (Tab. Anhang 32)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato	1	2	1,2	0,3	2	47	19,6	4,5	6	14	8,0	1,4
Aporrectodea caliginosa	6	2	3,2	2,5	11	35	18,4	20,9	8	13	8,4	6,6
Aporrectodea longa						2	0,8	1,7				
Aporrectodea rosea						9	3,6	0,7				
Lumbricus castaneus						11	4,4	1,0				
Lumbricus terrestris						2	0,8	1,4				
Lumbricus sp.						5	2,0	0,2				
Octolasion cyaneum						6	2,4	0,4				
Octolasion tyrtaeum						1	0,4	0,6				
Undetermined		2	0,8	0,1	3	27	12,0	3,4	2	1	1,2	0,2
Individuenzahl	7	6			16	145			16	28		
Individuenzahl ∑ F+H	13		,		161		,		44			
Abundanz/Biomasse			5,2	2,9			64,4	34,8			17,6	8,2
Artenzahl	1	1	1		1	7	7		1	1	1	
Artenzahl Sandacker gesamt:			7		Individ	uenzahl	Sandacke	er gesam	t:		218	

Tab. Anhang 33: Rohdaten Enchytraeidae, Biotoptyp Sand-Kiefernwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae, Biotoptyp	EB_SN11			EB_SN12			EB_SN13		
Sand-Kiefernwald (Tab. Anhang 33)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Achaeta affinis	160	193	7166	627	411	21072	25	132	3187
Achaeta camerani	2	1	61	2		41	1	3	81
Achaeta sp.					16	325			
Cognettia chlorophila	436	495	18900	426	1018	29314	422	1380	36581
Enchytraeus norvegicus		1	20	100	3	2091	1		20
Enchytronia parva	24	9	670	4	10	284	114	301	8425
Enchytronia sp. (TENU)	3		61	2	1	61	10	7	345
Fridericia brunensis	1	1	41	61	115	3573	17	17	690
Marionina clavata							145	79	4547
Mesenchytraeus pelicensis	25	70	1929	57	41	1989			
Oconnorella cambrensis	424	891	26695	331	328	13378	435	231	13520
Individuenzahl	1075	1661	55542	1610	1943	72127	1170	2150	67397
Individuenzahl ∑ F+H	2736			3553			3320		
Artenzahl	8	8	9	9	8	9	9	8	9
Artenzahl Kiefer gesamt:			0	Individue	nzahl Kiefe	r gesamt:			9609

Tab. Anhang 34: Rohdaten Enchytraeidae, Biotoptyp basischer Buchenwald; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae, Biotoptyp	EB_SN22			EB_SN23			EB_SN24		
basischer Buchenwald (Tab. Anhang 34)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Achaeta affinis				1621	490	42854	899	2319	70913
Achaeta sp. (DZWI)	10	10	406						
Buchholzia appendiculata	56	39	1929	14	26	812	51	61	2591
Cognettia chlorophila							33	45	1789
Enchytraeus buchholzi	30	2	650	139	67	4182	2	17	398
Enchytraeus norvegicus				489	13	10191			
Enchytraeus sp. (GRAN)	7	2	183	162	3	3350		20	406
Enchytronia baloghi	3		61						
Enchytronia parva	2	3	102	58	91	3025	5	51	1168
Enchytronia sp. (TENU)					1	20	3	12	323
Enchytronia sp. ID2VIII	4		81						
Fridericia benti				16	13	589		12	244
Fridericia bisetosa	88	85	3512		27	548		23	467
Fridericia bulboides							1		27
Fridericia connata	1		20	9	41	1015			
Fridericia dura	2		41	2		41		1	20
Fridericia isseli	1		20						
Fridericia nemoralis					28	568		5	102
Fridericia paroniana	204	139	6963		6	122	2		53
Fridericia sp. (ALAT)	16	20	731						
Fridericia sylvatica	21	19	812	212	88	6090	15	31	1027
Fridericia waldenstroemi	34	24	1177						
Oconnorella cambrensis				184	3	3796	9		239

Enchytraeidae, Biotoptyp basischer Buchenwald	EB_SN22			EB_SN23			EB_SN24		
(Tab. Anhang 34)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Oconnorella tubifera	22		447	255	61	6415			
Stercutus niveus	2	17	386	8	147	3147		2	41
Individuenzahl	503	360	17519	3169	1105	86764	1020	2599	79806
Individuenzahl ∑ F+H	863			4274			3619		
Artenzahl	17	11	17	13	16	17	10	13	16
Artenzahl Laubwald gesamt: 0			0	Individuenzahl Laubwald gesamt:					8756

Tab. Anhang 35: Rohdaten Enchytraeidae, Biotoptyp Sandacker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae,	EB_SN31			EB_SN32			EB_SN34		
Biotoptyp Sandacker (Tab. Anhang 35)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Achaeta affinis							1		27
Buchholzia appendiculata				137	120	5217			
Enchytraeus buchholzi	63	30	1888	135	67	4101	79	3	2156
Enchytraeus bulbosus				20	5	508			
Enchytraeus dichaetus				16	2	365			
Enchytraeus lacteus					13	264			
Enchytraeus norvegicus							383	7	10297
Enchytraeus sp. (GRAN)	21	45	1340	48	50	1989		4	81
Enchytronia baloghi	4	1	102						
Enchytronia parva	15	126	2862						
Enchytronia sp. (MINO)		4	81				2	2	94
Enchytronia sp. (OMNI)					1	20			
Enchytronia pygmaea	1	11	244						
Enchytronia sp. (TENU)		16	325						
Fridericia bisetosa		1	20						
Fridericia bulboides		5	102	216	38	5156	118	36	3860
Fridericia christeri	6	3	183	240	63	6151			
Fridericia cylindrica							1		27
Fridericia granosa								4	81
Fridericia nemoralis					2	41			
Fridericia paroniana				36	7	873			
Fridericia ratzeli s.s.				2		41			
Fridericia schmelzi				30	29	1198			
Fridericia sp. (PERT)				32	7	792			
Henlea perpusilla	2	28	609	135	259	7998			
Henlea ventriculosa		1	20	37	33	1421		3	61
Marionina communis				282	103	7816			
Marionina mendax					18	365			
Individuenzahl	112	271	7775	1366	817	44316	584	59	16682
Individuenzahl ∑ F+H	383			2183			643		
Artenzahl	7	12	12	14	17	18	6	7	9
Artenzahl Sandacker gesamt	:		0	Individue	nzahl Sanda	cker gesam	t:		3209

13.4 Anhang Bayern

Tab. Anhang 36: Rohdaten Oribatida, Biotoptyp Intensivgrünland; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida,	EB_BY11			EB_BY12			EB_BY13			
Biotoptyp Intensivgrünland (Tab. Anhang 36)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	
Achipteria coleoptrata							2		31	
Adoristes ovatus				1		16				
Brachychthoniidae					2	31	1		16	
Ceratozetes mediocris	2	20	342							
Dissorhina ornata							1		16	
Eniochthonius minutissimus							2		31	
Eupelops occultus							2	7	140	
Eupelops plicatus							3		47	
Eupelops torulosus								3	47	
Galumna flagellata								1	16	
Hoplophthiracarus illinoisensis								1	16	
Hermanniella punctulata							1		16	
Hypochthonius luteus							1		16	
Limnozetes ciliatus		1	16							
Microppia minus	1		16	2	28	466				
Microtritia minima				1		16				
Nanhermannia nana		2	31		1	16				
Oppiella (O.) falcata							1		16	
Oppiella (O.) nova	32	44	1181	30	392	6558	23	12	544	
Oribatida indet	1	1	31		3	47				
Pantelozetes paolii	2		31							
Platynothrus peltifer							1		16	
Porobelba spinosa							1		16	
Punctoribates hexagonus					1	16				
Punctoribates punctum		1	16							
Scheloribates holsaticus	52	68	1865							
Scheloribates laevigatus	2	5	109		3	47				
Suctobelbella sarekensis					1	16	1		16	
Suctobelbella subcornigera					2	31				
Tectocepheus group velatus	3		47	1		16	7	52	917	
Zygoribatula excavata		1	16		4	62				
Individuenzahl	95	143	3699	35	437	7335	47	76	1911	
Individuenzahl ∑ F+H	238			472			123			
Artenzahl	7	8	11	5	8	11	13	6	16	
Artenzahl Intensivgrünland gesamt: 29			29	Individuenzahl Intensivgrünland gesamt:					833	

Tab. Anhang 37: Rohdaten Oribatida, Biotoptyp Löss-Acker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida,	EB_BY21			EB_BY22			EB_BY23		
Biotoptyp Löss-Acker (Tab. Anhang 37)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Achipteria coleoptrata					1	16			
Ceratozetes minimus								2	31
Chamobates voigtsi				1		16			
Conchogneta dalecarlica							1		16
Dissorhina ornata							3		47
Limnozetes ciliatus					1	16			
Lucoppia burrowsi		4	62						
Microppia minus				2		31			
Oppiella (O.) falcata								1	16
Oppiella (O.) nova	2	4	93				3	11	218
Oppiella (R.) obsoleta								1	16
Oribatida indet	4	1	78				3		47
Protoribates capucinus	1		16						
Punctoribates punctum		1	16						
Ramusella insculpta	8	12	311						
Suctobelbella falcata	1		16						
Suctobelbella subcornigera	2		31						
Tectocepheus group velatus	11	27	591	4	33	575	24	48	1119
Zetorchestes falzonii							1		16
Zygoribatula excavata	27	276	4709		1	16		4	62
Individuenzahl	56	325	5921	7	36	668	35	67	1585
Individuenzahl ∑ F+H	381			43			102		
Artenzahl	7	6	9	3	4	6	5	6	9
artenzahl Lössacker gesamt:		19	Individuenzahl Lössacker gesamt:					526	

Tab. Anhang 38: Rohdaten Oribatida, Biotoptyp Kalk-Acker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida,	EB_BY31			EB_BY32			EB_BY33		
Biotoptyp Kalk-Acker (Tab. Anhang 38)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Achipteria coleoptrata		2	31						
Dissorhina ornata								1	16
Eueremaeus cf. oblongus					1	16			
Lucoppia burrowsi	19	30	761						
Micreremus brevipes							1		16
Microppia minus	1		16						
Microtritia minima								1	16
Mucronothrus nasalis					1	16			
Oppiella (O.) nova	4	6	155		1	16	1	19	311
Oribatida indet		1	16		1	16		1	16
Punctoribates punctum	51	25	1181						
Ramusella insculpta	2		31						

Oribatida,	EB_BY31			EB_BY32			EB_BY33		
Biotoptyp Kalk-Acker (Tab. Anhang 38)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2
Scheloribates laevigatus	31	77	1678				11		171
Scheloribates latipes							6	36	653
Sellnickochthonius immaculatus		1	16						
Tectocepheus group velatus	20	34	839	10	236	3823	21	28	761
Zygoribatula excavata		16	249						
Individuenzahl	128	192	4973	10	240	3885	40	86	1958
Individuenzahl ∑ F+H	320			250			126		
Artenzahl	7	8	10	1	4	4	5	5	7
Artenzahl Kalkacker gesam	::	,	16	Individuer	zahl Kalka	cker gesamt	:	'	696

Tab. Anhang 39: Rohdaten Collembola, Biotoptyp Intensivgrünland; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola,	EB_BY11			EB_BY12			EB_BY13		
Biotoptyp Intensivgrünland (Tab. Anhang 39)	Frühjahr	Herbst	MW/m2	Frühjahr	Herbst	MW/m2	Frühjahr	Herbst	MW/m2
Arrhopalites caecus					11	171			
Bourletiella radula							1		16
Bourletiella viridescens				1		16			
Ceratophysella denticulata	31		482						
Cryptopygus thermophilus	83	443	8175				3	46	762
Entomobrya lanuginosa					1	16			
Folsomia candida	8		124				19		295
Folsomia manolachei				75	84	2471	120	68	2922
Folsomia quadrioculata				51	43	1461	334	147	7476
Folsomia spinosa								16	249
Friesea mirabilis	54		839	22	1	358	5	1	93
Heteromurus nitidus	2	60	964						
Isotoma viridis group	299	251	8548		5	78	26	27	824
Isotomiella minor	24	19	668	32		497	22	6	435
Isotomodes productus	10	2	187				8		124
Isotomurus graminis	3		47	2		31			
Lepidocyrtus cyaneus	173	630	12481		188	2922	1	243	3792
Lepidocyrtus lanuginosus	2	452	7056	2	13	233		28	435
Lepidocyrtus lignorum		91	1414					14	218
Lepidocyrtus violaceus		71	1104						
Mesaphorura macrochaeta	2		31		1	16	1		16
Parisotoma notabilis	234	177	6388		14	218	74	100	2704
Protaphorura armata	116	70	2891		3	47	84	104	2922
Pseudosinella alba					1	16			
Sminthurinus aureus	2	54	870	44	91	2098	20	31	793
Sphaeridia pumilis	8		124	72	52	1927	23	5	435
Stenaphorura quadrispina							35		544
Collembola juvenil	17	7	592	3	3	109	6	11	219

Collembola, Biotoptyp Intensivgrünland	EB_BY11			EB_BY12			EB_BY13		
(Tab. Anhang 39)	Frühjahr	Herbst	MW/m2	Frühjahr	Herbst	MW/m2	Frühjahr	Herbst	MW/m2
Individuenzahl	1068	2327	52985	304	511	12685	782	847	25274
Individuenzahl ∑ F+H	3395			815	'		1629		
Artenzahl	15	11	17	9	13	16	15	13	18
Artenzahl Intensivgrünland	Individuenzahl Intensivgrünland gesamt:						5839		

Tab. Anhang 40: Rohdaten Collembola, Biotoptyp Löss-Acker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola,	EB_BY21			EB_BY22			EB_BY23		
Biotoptyp Löss-Acker (Tab. Anhang 40)	Frühjahr	Herbst	MW/m2	Frühjahr	Herbst	MW/m2	Frühjahr	Herbst	MW/m2
Bourletiella viridescens	1		16	1		16			
Cryptopygus thermophilus	12	34	715		4	62			
Desoria violacea					3	47			
Entomobrya lanuginosa		3	47						
Entomobrya marginata		1	16						
Folsomia candida	1		16					1	16
Folsomia manolachei					16	249	7	53	933
Folsomia quadrioculata	77	5	1274	2	8	155	46	172	3388
Folsomia spinosa				3		47			
Heteromurus nitidus					1	16		5	78
Isotoma viridis group	46	2	746	17	21	591	47	16	979
Isotomiella minor		2	31	30		466	13	31	684
Isotomurus graminis				6		93	1		16
Lepidocyrtus cyaneus		47	731	7	49	871		128	1989
Lepidocyrtus lanuginosus	101	51	2362	10	75	1321			
Lepidocyrtus lignorum	1	15	249		26	404		33	513
Lepidocyrtus violaceus		2	31						
Megalothorax minimus				7		109			
Orchesella villosa		1	16		3	47			
Parisotoma notabilis	87	5	1430		9	140	82	135	3373
Protaphorura armata	1	1	31	9	3	187	11	68	1228
Pseudosinella alba	2	1	47	12	4	249		20	311
Sminthurinus aureus	8	3	171	20	23	668	14	14	435
Sphaeridia pumilis				2		31	5		78
Willemia anophthalma				2		31			
Collembola juvenil	44	11	872	24	20	685	2	21	388
Individuenzahl	381	184	8801	152	265	6485	228	697	14409
Individuenzahl ∑ F+H	565			417			925		
Artenzahl	10	14	16	13	13	20	8	11	13
Artenzahl Löss-Acker gesai	nt:		24	Individuer	nzahl Löss-A	Acker gesam	ıt:		1907

Tab. Anhang 41: Rohdaten Collembola, Biotoptyp Kalk-Acker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola,	EB_BY31			EB_BY32			EB_BY33		
Biotoptyp Kalk-Acker; (Tab. Anhang 41)	Frühjahr	Herbst	MW/m2	Frühjahr	Herbst	MW/m2	Frühjahr	Herbst	MW/m2
Brachystomella parvula							22	6	435
Ceratophysella denticulata	2		31						
Cryptopygus thermophilus		1	16		1	16			
Desoria violacea								14	218
Entomobrya lanuginosa		10	155						
Folsomia manolachei	12	11	357	145	52	3062	245	127	5782
Folsomia quadrioculata	92	7	1539	11	5	249	40	20	933
Heteromurus nitidus		4	62					6	93
Isotoma viridis group	13	9	342	143	50	3000	177	11	2922
Isotomiella minor	8	4	187	2	4	93	22	14	560
Isotomurus graminis				7		109	9		140
Isotomurus palustris		5	78						
Lepidocyrtus cyaneus		24	373	36	130	2580	50	20	1088
Lepidocyrtus lanuginosus	23	62	1321	118	92	3264	37	19	870
Lepidocyrtus lignorum		47	713		31	482		9	140
Lepidocyrtus paradoxus				11		171			
Lepidocyrtus violaceus								1	16
Onychiurus jubilarius								1	16
Orchesella villosa				2	1	47	5	1	93
Parisotoma notabilis	48	10	901	293	28	4989	112	54	2580
Protaphorura armata	67	13	1244	25	17	653	27	23	777
Protaphorura humata								1	16
Pseudosinella alba	1	2	47	9	11	311	5	13	280
Sminthurinus aureus	7	2	140	6	13	295	21	2	358
Sphaeridia pumilis		1	16				4		62
Stenaphorura denisi	2		31						
Collembola juvenil	7	9	264	1		16	3	12	233
Individuenzahl	282	221	7817	809	435	19337	779	354	17612
Individuenzahl ∑ F+H	503			1244			1133		
Artenzahl	10	15	17	12	12	14	13	17	19
Artenzahl Kalk-Acker gesa	ımt:		25		Individue	nzahl Kalk- <i>i</i>	Acker gesam	nt:	2880

 $\textbf{Tab. Anhang 42} : Rohdaten \ Diplopoda, Anzahl \ der \ Individuen \ in \ den \ Bodenfallen \ (BF) \ und \ -stechern \ (BK).$

Diplopoda , Summe	EB_	BY11	EB_	BY12	EB_	BY13	EB_	BY21	EB_	BY22	EB_	BY23	EB_	BY31	EB _.	BY32	EB_	_BY33
(Tab. Anhang 42)	BF	BK	BF	BK	BF	BK												
Allaiulus nitidus													3					
Blaniulus guttulatus							1									3	5	5
Brachydesmus superus							6											
Brachyiulus pusillus							11		1									
Choneiulus palmatus			1								1							

Diplopoda,	ЕВ	BY11	EB :	BY12	EB	BY13	EB I	BY21	ЕВ	BY22	EB 1	BY23	EB 1	BY31	EB I	BY32	EB 1	BY33
Summe (Tab. Anhang 42)	BF	BK	BF	BK	BF	BK	BF	ВК	BF	BK	BF	BK	BF	BK	BF	BK	BF	ВК
Cylindroiulus caeruleocinctus	18						12				1		9		68		37	
Enantiulus nanus			1															
Glomeris hexasticha	1																	
Julidae	1													2				
Julus scandinavius			1															
Leptoiulus proximus													1					
Megaphyllum unilineatum													2					
Melogona voigti									9		1							
Ophyiulus pilosus					1						1							
Polydesmidae																		1
Polydesmus complanatus	1																	
Polydesmus denticulatus	2						5		8		2				1		3	
Polydesmus inconstans	1				1													
Propolydesmus testaceus							1						1				104	
Tachypodoiulus niger															1			
Unciger foetidus									3		4		17		25	1	22	
Individuenzahl	24	0	3	0	2	0	36	0	21	0	10	0	33	2	95	4	171	6
Individuenzahl Artniveau	23	0	3	0	2	0	36	0	21	0	10	0	33	0	95	4	171	5
Artenzahl	5	0	3	0	2	0	6	0	4	0	6	0	6	0	4	2	5	1

Tab. Anhang 43: Rohdaten Chilopoda, Anzahl der Individuen in den Bodenfallen (BF) und -stechern (BK).

Chilopoda,	EB_	BY11	EB_	BY12	EB_	BY13	EB_	BY21	EB_	BY22	EB_	BY23	EB_	BY31	EB_	BY32	EB_	BY33
Summe (Tab. Anhang 43)	BF	BK																
Geophilus electricus															4	1	1	
Geophilus flavus		1					1									1		1
Geophilus ribauti														2				
Lamyctes emarginatus	32	1	69	4	25	2			1	1	6							
Lithobius forficatus															1			
Lithobius microps	1	3																
Lithobius mutabilis					1													
Lithobius		5		3										1				1
Stenotaenia linearis													1					
Strigamia transsilvanica							1											
Individuenzahl	33	10	69	7	26	2	2	0	1	1	6	0	1	3	5	2	1	2
Individuenzahl Artniveau	33	5	69	4	26	2	2	0	1	1	6	0	1	2	5	2	1	1
Artenzahl	2	3	1	1	2	1	2	0	1	1	1	0	1	1	2	2	1	1

Tab. Anhang 44: Rohdaten Lumbricidae, Biotoptyp Intensivgrünland; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen für Abundanz und Biomasse [g] pro Quadratmeter. AB = mittlere Abundanz [Ind./m²], BM = mittlere Biomasse (Frischgewicht) [g/m²].

Lumbricidae, Biotoptyp	EB_BY	11			EB_BY	12			EB_BY	13		
Intensivgrünland (Tab. Anhang 44)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato	211	217	171,2	26,7	276	285	224,4	29,9	175	108	113,2	19,6
Allolobophora chlorotica		13	5,2	0,8	6		2,4	0,6	3		1,2	0,3
Aporrectodea caliginosa	31	77	43,2	26,7	30	36	26,4	9,9	34	29	25,2	10,6
Aporrectodea rosea	24	42	26,4	4,8	78	128	82,4	13,0	22	31	21,2	4,4
Dendrobaena attemsi					1		0,4	0,2				
Dendrobaena sp.					4		1,6	0,6				
Lumbricus castaneus	23	1	9,6	3,1	5		2,0	0,5				
Lumbricus rubellus	33	15	19,2	8,2								
Lumbricus terrestris	21	13	13,6	37,0	14	22	14,4	35,6	24	27	20,4	54,1
Lumbricus sp.	95	54	59,6	26,2	68	60	51,2	26,0	74	50	49,6	29,3
Octolasion cyaneum	10	1	4,4	6,4								
Octolasion tyrtaeum					6		2,4	1,0				
Octolasion sp.	9		3,6	0,9	6	10	6,4	3,7		1	0,4	0,3
Undetermined	41	14	22,0	4,8	105	45	60,0	7,1	56	31	34,8	5,4
Individuenzahl	498	447			599	586			388	277		
Individuenzahl ∑ F+H	945				1185				665			
Abundanz/Biomasse		_	378,0	145,6			474,0	128,1			266,0	124,0
Artenzahl	6	7	7		7	4	7		4	4	5	
Artenzahl Intensivgrünlar	ıd gesamt	:	9		Individ	uenzahl I	ntensivg	rünland g	gesamt:		2795	

Tab. Anhang 45: Rohdaten Lumbricidae, Biotoptyp Löss-Acker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen für Abundanz und Biomasse [g] pro Quadratmeter. AB = mittlere Abundanz [Ind./m²], BM = mittlere Biomasse (Frischgewicht) [g/m²].

Lumbricidae,	EB_BY	21			EB_BY	22			EB_BY	23		
Biotoptyp Löss-Acker (Tab. Anhang 45)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato	11	3	5,6	0,5	30	31	24,4	5,6	84	60	57,6	8,4
Allolobophora chlorotica	2	18	8,0	2,5		17	6,8	2,3	2		0,8	0,2
Aporrectodea caliginosa					24	49	29,2	16,2	2	32	13,6	11,2
Aporrectodea longa										1	0,4	0,4
Aporrectodea rosea					8	3	4,4	0,6		7	2,8	0,7
Lumbricus rubellus					2		0,8	1,0				
Lumbricus terrestris					5	9	5,6	27,0	9	4	5,2	17,7
Lumbricus sp.		2	0,8	0,3	2	22	9,6	7,6	6	40	18,4	3,0
Octolasion sp.									3		1,2	0,3
Undetermined					15	16	12,4	4,6	19	13	12,8	1,7
Individuenzahl	13	23			86	147			125	157		
Individuenzahl ∑ F+H	36				233				282			
Abundanz/Biomasse			14,4	3,3			93,2	64,9			112,8	43,6
Artenzahl	1	2	2		4	4	5		4	4	6	
Artenzahl Lössacker gesam	nt:		7		Individ	ıenzahl I	Lössacke	r gesamt:			551	

Tab. Anhang 46: Rohdaten Lumbricidae, Biotoptyp Kalk-Acker; Anzahl der Individuen der Frühjahrs- undder Herbstprobenahme sowie der Mittelwert beider Probenahmen für Abundanz und Biomasse [g] pro Quadratmeter. AB = mittlere Abundanz [Ind./m²], BM = mittlere Biomasse (Frischgewicht) [g/m²].

Lumbricidae,	EB_BY	31			EB_BY	32			EB_BY	33		
Biotoptyp Kalk-Acke (Tab. Anhang 46)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato	2		0,8	0,5	71	13	33,6	6,1	76	60	54,4	16,3
Aporrectodea caliginosa					30	2	12,8	10,0	24	42	26,4	22,9
Aporrectodea rosea					1	1	0,8	0,2	7	4	4,4	0,8
Lumbricus rubellus									1		0,4	0,3
Lumbricus terrestris		1	0,4	0,6	9		3,6	12,6	2	3	2,0	7,0
Lumbricus sp.					4	1	2,0	2,4	2	4	2,4	0,8
Octolasion tyrtaeum	2		0,8	1,1								
Undetermined	1	1	0,8	0,4	10		4,0	1,0	22		8,8	2,2
Individuenzahl	5	2			125	17			134	113		
Individuenzahl ∑ F+H	7				142				247			
Abundanz/Biomasse			2,8	2,6			56,8	32,3			98,8	50,3
Artenzahl	2	1	3		3	3	3		4	3	4	
Artenzahl Kalkacker gesam	t:		5		Individu	ienzahl I	Kalkacke	r gesamt	:		396	

Tab. Anhang 47: Rohdaten Enchytraeidae, Biotoptyp Intensivgrünland; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae,	EB_BY11			EB_BY12			EB_BY13		
Biotoptyp Intensivgrünland (Tab. Anhang 47)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Achaeta sp.					1	20			
Buchholzia appendiculata	1		20	10	4	284	87	116	4121
Buchholzia fallax								1	20
Enchytr. gen. sp. 1				1		20			
Enchytraeus buchholzi	177	221	8080	160	68	4628	46	1070	22655
Enchytraeus bulbosus	17		345	9		183			
Enchytraeus cf. luxuriosus		1	20					2	41
Enchytraeus christenseni				82	15	1969	36	31	1360
Enchytraeus dichaetus	4	2	122					1	20
Enchytraeus lacteus				13	18	629	26		528
Enchytraeus sp. (FGRA)		1	20						
Enchytraeus sp. (GRAN)		11	223		8	162		3	61
Enchytronia (id)3XI				8		162			
Enchytronia parva				10	12	447		47	954
Enchytronia sp. (OMNI)					6	122			
Fridericia benti							8		162
Fridericia bisetosa	35	26	1238				23	27	1015
Fridericia bulboides	14	10	487	53	35	1786	34	35	1401
Fridericia christeri	332	132	9419	43	31	1502		47	954
Fridericia connata							2	9	223
Fridericia dura		4	81				4		81
Fridericia galba	94	35	2619	82	121	4121	183	194	7653

Enchytraeidae,	EB_BY11			EB_BY12			EB_BY13		
Biotoptyp Intensivgrünland (Tab. Anhang 47)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2
Fridericia hegemon		3	61						
Fridericia minor							102	35	2781
Fridericia nemoralis	15	3	365						
Fridericia paroniana	44	15	1198	30	58	1786	38	82	2436
Fridericia perrieri	9	10	386						
Fridericia ratzeli s.s.	1		20		4	81	9		183
Fridericia schmelzi	13	2	305	24	26	1015	46	72	2395
Fridericia sp. (PERT)	4		81	23	38	1238			
Fridericia tubulosa				3		61			
Henlea perpusilla	19	4	467	44	288	6740	49	106	3147
Henlea ventriculosa		2	41	72	137	4243	22	1	467
Marionina communis	103	13	2355	24	23	954	122	167	5867
Marionina deminuta				1		20			
Marionina mendax	1	1	41						
Marionina sambugarae				5		102			
Marionina vesiculata				2		41			
Individuenzahl	883	496	27994	699	893	32318	837	2046	58526
Individuenzahl ∑ F+H	1379			1592			2883		
Artenzahl	17	19	23	21	18	25	17	19	23
Artenzahl Intensivgrünland	gesamt:		38	Individuer	zahl Intens	ivgrünland g	gesamt:		5854

Tab. Anhang 48: Rohdaten Enchytraeidae, Biotoptyp Löss-Acker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae,	EB_BY21			EB_BY22			EB_BY23		
Biotoptyp Löss-Acker (Tab. Anhang 48)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Buchholzia appendiculata							1		20
Buchholzia sp. (PAPP)					10	203			
Enchytraeus buchholzi	12	1	264	17	722	15002	26	148	3532
Enchytraeus bulbosus	9	3	244		325	6598	9	65	1502
Enchytraeus lacteus					5	102	1	4	102
Enchytraeus sp. (FGRA)					40	812			
Enchytraeus sp. (GRAN)				19		386	15	191	4182
Enchytronia sp. (MINO)					2	41	2		41
Fridericia bulboides								11	223
Fridericia christeri	16	11	548	13	74	1766	23	40	1279
Fridericia deformis							1		20
Fridericia galba	7		142	201	170	7531	104	269	7572
Fridericia glandulosa					3	61	2		41
Fridericia isseli					47	954	21		426
Fridericia paroniana							1		20
Fridericia semisetosa					6	122	3		61
Fridericia sp. (INVE)	1	1	41		5	102	10		203
Fridericia sp. (MACF)				1	1	41			

Enchytraeidae,	EB_BY21			EB_BY22			EB_BY23		
Biotoptyp Löss-Acker (Tab. Anhang 48)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2
Fridericia sp. (PULR)			'		8	162	2		41
Fridericia sp. (UNID)				8		162		14	284
Fridericia sylvatica					1	20			
Fridericia ulrikae				16		325		83	1685
Marionina mendax				1	15	325	2	55	1157
Individuenzahl	45	16	1238	276	1434	34714	223	880	22391
Individuenzahl ∑ F+H	61			1710			1103		
Artenzahl	5	4	5	8	16	19	16	10	19
Artenzahl Lössacker gesam	nt:		0	Individuenz	ahl Lössa	cker gesamt:			2874

Tab. Anhang 49: Rohdaten Enchytraeidae, Biotoptyp Kalk-Acker; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola,	EB_BY31			EB_BY32			EB_BY33		
Biotoptyp Löss-Acker (Tab. Anhang 40)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²
Achaeta sp.							1	1	41
Buchholzia appendiculata								1	20
Buchholzia sp. (PFAL)		1	20						
Cernosvitoviella sp.							1		20
Enchytraeus buchholzi	29	11	812	26		528	50	70	2436
Enchytraeus bulbosus	143	19	3289	21		426	35	8	873
Enchytraeus lacteus								1	20
Enchytraeus sp. (GRAN)	1		20				29		589
Enchytronia sp. (MINO)	40	29	1401				61	20	1644
Fridericia bisetosa								1	20
Fridericia christeri	15	23	771	9	7	325	46	13	1198
Fridericia connata							5	2	142
Fridericia galba	77	69	2964	9		183	98	8	2152
Fridericia isseli	3		61				11	3	284
Fridericia paroniana	2	1	61						
Fridericia schmelzi							8		162
Fridericia semisetosa								2	41
Fridericia singula		1	20						
Fridericia sp. (INVE)	7		142				1		20
Fridericia sp. (MACF)	1	2	61	5	1	122	1		20
Fridericia sp. (NGLI)	1		20						
Fridericia sylvatica							8	3	223
Fridericia ulrikae		3	61						
Marionina deminuta		1	20						
Marionina mendax	6	1	142	5		102	17		345
Individuenzahl	325	161	9866	75	8	1685	372	133	10252
Individuenzahl ∑ F+H	486			83			505		
Artenzahl	12	12	16	6	2	6	15	13	19
Artenzahl Kalkacker gesan	nt:		25	Individuen	zahl Kalkac	ker gesamt:			1074

13.5 Anhang Sachsen-Anhalt

Tab. Anhang 50: Rohdaten Oribatida, Biotoptyp Borstgrasrasen; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida,	EB_ST11			EB_ST12			EB_ST13		
Biotoptyp Borstgrasrasen (Tab. Anhang 40)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2
Achipteria coleoptrata	71	100	2657	77	127	3170	6		93
Achipteria nitens					1	16			
Acrotritia duplicata					1	16			
Banksinoma lanceolata				1		16			
Berniniella bicarinata	6	7	202	76	46	1896	7	56	979
Berniniella exempta				2		31			
Brachychthoniidae	15	4	295	4	16	311	7	21	435
Ceratoppia quadridentata				2	4	93			
Ceratozetes gracilis				16	8	373	27	80	1663
Ceratozetes mediocris				22	73	1476	116	261	5859
Chamobates cuspidatus				3	16	295	21	41	963
Cultroribula bicultrata				1	3	62			
Damaeus (A.) onustus				1		16			
Diapterobates humeralis		1	16		1	16			
Dissorhina ornata	4	5	140	161	69	3574	1	6	109
Eniochthonius minutissimus				50		777			
Eupelops occultus	2		31	1	6	109	1	14	233
Euzetes globulus				4	1	78	1	7	124
Galumna lanceata				5	2	109			
Galumna obvia	33	33	1026	37	37	1150	19	30	761
Hypochthonius rufulus				19	9	435			
Liacarus coracinus		8	124				6	35	637
Liacarus oribatelloides				1		16			
Liebstadia similis	13	21	528	118	57	2720	5	21	404
Limnozetes ciliatus							1	1	31
Metabelba pulverosa		1	16	26	9	544	2	8	155
Microppia minus				9	143	2362	39	337	5843
Minunthozetes semirufus	12	25	575		1	16	2	5	109
Nanhermannia nana	31	34	1010	32	46	1212	139	242	5921
Nothrus silvestris		2	31	17	28	699	22	23	699
Ophidiotrichus tectus								1	16
Oppiella (O.) falcata		1	16		1	16			
Oppiella (O.) nova	12	4	249	51	193	3792	30	22	808
Oppiella (O.) splendens				13	13	404	19	2	326
Oppiella (R.) obsoleta				5		78			
Oppiella acuminata/keilbachi				29		451			
Oribatida indet	21	15	559	31	17	746	6	37	668
Oribatula tibialis		1	16	4		62			
Peloptulus phaenotus	6		93		3	47	1		16
Pergalumna nervosa				34	40	1150	12	63	1166

Oribatida,	EB_ST11			EB_ST12			EB_ST13		
Biotoptyp Borstgrasrasen (Tab. Anhang 40)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2
Phthiracarus globosus				1		16			
Platynothrus peltifer				20	12	497			
Porobelba spinosa		1	16	23	19	653	2		31
Punctoribates punctum				1	14	233		2	31
Quadroppia hammerae				1		16			
Quadroppia monstruosa				1		16			
Quadroppia quadricarinata	1		16	34	34	1057			
Ramusella insculpta				50	19	1072	71	59	2020
Scheloribates (H.) initialis				26	11	575	4	2	93
Scheloribates laevigatus	6	8	218	53	77	2020	138	178	4911
Scheloribates latipes	2	1	47	51	51	1585	14	66	1243
Steganacarus (A.) striculus	1		16		2	31			
Suctobelba granulata				1		16			
Suctobelba regia				1		16			
Suctobelba trigona				8		124			
Suctobelbella acutidens	2		31	26		404			
Suctobelbella arcana				9		140			
Suctobelbella diffissa				4		62			
Suctobelbella duplex				4		62			
Suctobelbella falcata				2		31			
Suctobelbella hamata				4		62			
Suctobelbella palustris				1		16			
Suctobelbella perforata				2		31	7		109
Suctobelbella sarekensis				58		901	5		78
Suctobelbella similis				1		16	1		16
Suctobelbella subcornigera				67		1041	3		47
Suctobelbella subtrigona				16		249			
Tectocepheus group velatus	110	128	3699	6	21	420	42	79	1880
Trichoribates incisellus				3	1	62		9	140
Trichoribates novus				14	30	684	4	8	186
Xenillus tegeocranus				1		16			
Zygoribatula excavata		1	16						
Zygoribatula exilis		1	16						
Individuenzahl	348	402	11655	1341	1262	40451	781	1716	38803
Individuenzahl ∑ F+H	750			2603			2497		
Artenzahl	16	20	25	59	39	66	32	28	35
Artenzahl Borstgrasrasen gesa	tenzahl Borstgrasrasen gesamt: 71			Individue	nzahl Borst	grasrasen g	esamt:		5850

Tab. Anhang 51: Rohdaten Oribatida, Biotoptyp Goldhaferwiese; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida,	EB_ST21		_	EB_ST22			EB_ST23		
Biotoptyp Goldhaferwiese (Tab. Anhang 51)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2
Achipteria coleoptrata	30	96	1958	27	49	1181	31	86	1818
Achipteria nitens		1	16	5	1	93	1	28	451
Banksinoma lanceolata				20	20	622			
Belba compta	10	7	264						
Berniniella bicarinata	32	47	1228	37	30	1041	213	57	4196
Berniniella conjuncta				1		16			
Berniniella serratirostris								73	1134
Brachychthoniidae	1	8	140	10	1	171	1		16
Ceratozetes gracilis	39	21	932	12	10	342	9	13	342
Ceratozetes mediocris	23	25	746	7	2	140			
Damaeus gracilipes				1		16			
Damaeus riparius				2		31		1	16
Diapterobates humeralis	1		16						
Dissorhina ornata	21	13	528		1	16	1		16
Eniochthonius minutissimus	1		16						
Eupelops occultus	6	2	124	20	7	420	2	2	62
Euzetes globulus		5	78	8	16	373	2	41	668
Galumna lanceata	10	11	326					2	31
Galumna obvia	17	51	1057	26	1	420	3	9	186
Gustavia microcephala				1	2	47	5	2	109
Hypochthonius rufulus	5		78	28	42	1088			
Liebstadia similis	99	76	2720	91	52	2222	62	85	2284
Metabelba pulverosa	3	8	171	2	1	47	1		16
Minunthozetes semirufus	51	47	1523	191	55	3823	27	16	668
Nanhermannia nana	1		16	29	35	995	3	1	62
Nothrus palustris	1		16						
Nothrus silvestris	1		16				1		16
Oppiella (O.) acuminata	3		47						
Oppiella (O.) nova	6	133	2160	6		93	3		47
Oppiella (R.) obsoleta	3	6	140	4		62	1	1	31
Oppiella fallax		1	16						
Oribatella quadricornuta				1		16			
Oribatida indet	24	35	917	7	10	264	2	14	249
Pantelozetes paolii	2		31	25	17	653	7	5	186
Pergalumna nervosa	1	2	47	7		109			
Phthiracarus borealis				5		78			
Phthiracarus compressus	2	7	140	1	11	186		1	16
Phthiracarus ferrugineus				12	13	389			
Platynothrus peltifer	54	115	2626	5	16	326	10	13	357
Punctoribates punctum	5		78	10		155	3		47
Quadroppia quadricarinata	6	8	218						ļ
Ramusella insculpta	30	2	497				37	1	591

Oribatida,	EB_ST21			EB_ST22			EB_ST23		
Biotoptyp Goldhaferwiese (Tab. Anhang 51)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2
Scheloribates (H.) initialis	3	20	357	7	6	202	4	9	202
Scheloribates laevigatus	75	109	2859	65	41	1647	86	66	2362
Scheloribates latipes	2	20	342	4	2	93	6	9	233
Steganacarus (A.) striculus	6	4	155	20	11	482	2	4	93
Suctobelba altvateri				2		31			
Suctobelba atomaria	1		16						
Suctobelbella acutidens	4		62						
Suctobelbella arcana	1		16				1		16
Suctobelbella hamata	2		31						
Suctobelbella perforata	6		93	4		62			
Suctobelbella sarekensis	16		249	14		218	5		78
Suctobelbella similis				2		31			
Suctobelbella subcornigera	14		218	5		78	6		93
Suctobelbella subtrigona				1		16			
Tectocepheus group velatus	7	5	186	1	1	31	8	5	202
Trichoribates novus		4	62	3	4	109	3	3	93
Individuenzahl	625	889	23528	729	457	18430	546	547	16985
Individuenzahl ∑ F+H	1514			1186			1093		
Artenzahl	40	28	44	40	26	41	29	25	33
Artenzahl Goldhaferwiese gesamt: 56			56	Individue	nzahl Goldl	naferwiese g	gesamt:		3793

Tab. Anhang 52: Rohdaten Oribatida, Biotoptyp Halbtrockenrasen; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Oribatida, Biotoptyp Halbtrockenrasen	EB_ST31			EB_ST32			EB_ST33		
(Tab. Anhang 52)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Achipteria coleoptrata	1	8	140	53	67	1865	9	11	311
Achipteria nitens	3	9	186	12	27	606	2	10	186
Acrotritia ardua	8	6	218	10	7	264	12	5	264
Berniniella bicarinata	39	45	1305	12	27	606	13	6	295
Berniniella conjuncta							1		16
Brachychthoniidae	8	16	373	5	2	109	15	37	808
Chamobates borealis							1	1	31
Dissorhina ornata	2		31		1	16			
Eniochthonius minutissimus				11	73	1305	3	5	124
Eupelops occultus	17	29	715	21	46	1041	35	41	1181
Fosseremus laciniatus	1	1	31	1		16	4	4	124
Galumna lanceata		1	16						
Galumna obvia								2	31
Hypochthonius luteus					3	47			
Hypochthonius rufulus								1	16
Liacarus coracinus	2	4	93					6	93
Liebstadia pannonica	41	85	1958						
Liebstadia similis	13	76	1383	1	1	31	32	39	1103

Oribatida, Biotoptyp Halbtrockenrasen	EB_ST31			EB_ST32			EB_ST33		
(Tab. Anhang 52)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Metabelba pulverosa	2	8	155					1	16
Microppia minus	39	13	808	13	10	357	6	6	186
Nanhermannia dorsalis								2	31
Nanhermannia nana	1		16						
Nothrus anauniensis				2	2	62			
Nothrus borussicus				1	4	78			
Oppiella (O.) nova	38	35	1134	15	39	839	12	12	373
Oppiella (R.) obsoleta	11	8	295	2	2	62	1		16
Oribatella cf. reticulata				2		31			
Oribatida indet	2	16	280		8	124	6	2	124
Peloptulus phaenotus	10	10	311	1	14	233	15	78	1445
Peloribates longipilosus	2	22	373						
Phthiracarus longulus				1		16			
Pilogalumna crassiclava	7	36	668				30	69	1538
Protoribates capucinus				13	1	218			
Punctoribates punctum	119	152	4211	112	216	5097	24	21	699
Quadroppia monstruosa				8	4	186			
Quadroppia quadricarinata	3		47	1		16			
Ramusella insculpta	3	1	62	10	1	171	2		31
Scheloribates (H.) initialis		11	171						
Scheloribates laevigatus	120	122	3761	18	44	963	3	9	186
Scheloribates latipes	4	31	544	6	5	171			
Scutovertex sculptus	3		47	5	33	591	2	17	295
Steganacarus (A.) striculus	2	3	78	8	4	186	2	4	93
Suctobelbella acutidens	1		16						
Suctobelbella prominens							1		16
Suctobelbella sarekensis	8		124	7	1	124	2		31
Suctobelbella subcornigera				12		186	2		31
Suctobelbella subtrigona	2		31						
Tectocepheus minor					13	202			
Tectocepheus group velatus	266	219	7537	41	86	1974	185	168	5486
Trichoribates incisellus	2	22	373	5	5	155	1	11	186
Trichoribates novus	3	2	78	1		16		5	78
Xenillus tegeocranus				2	3	78	2	2	62
Individuenzahl	783	991	27568	412	749	18042	423	575	15509
Individuenzahl ∑ F+H	1774			1161	,		998		
Artenzahl	31	26	33	30	28	34	26	26	32
Artenzahl Halbtrockenrasen gesamt:			50	Individuer	ızahl Halbtı	rockenrasen	gesamt:		3933

Tab. Anhang 53: Rohdaten Collembola, Biotoptyp Borstgrasrasen; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola, Biotoptyp Borstgrasrasen	EB_ST11			EB_ST12			EB_ST13		
(Tab. Anhang 53)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²
Arrhopalites pseudoappendices				1		16			
Brachystomella parvula	31	89	1865	4	19	358		26	404
Choreutinula inermis	1	2	47	'	1)	330		20	101
Desoria violacea	6	2	93						
Dicyrtomina minuta	ľ		,,,	8		124			
Entomobrya lanuginosa		3	47		2	31	6	15	326
Folsomia manolachei	680	318	15511	130	167	4616	420	482	14019
Folsomia quadrioculata	370	203	8906	26	23	762	216	618	12962
Folsomia spinosa	370	203	0700	20	1	16	210	010	12702
Friesea mirabilis	26	46	1119	13	9	342	20	5	389
Heteromurus nitidus	20	1	16	13	3	47	20	3	309
Isotoma viridis group	295	114	6357	18	47	1010	69	145	3326
Isotomiella minor	90	19	1694	80	61	2191	60	143	933
Lepidocyrtus cyaneus	124	127	3901	8	67	1166	22	99	1881
Lepidocyrtus lanuginosus	124	127	3901	6	07	93	22	99	1001
	36	87	1912	94	161	3963	4	132	2114
Lepidocyrtus lignorum	6	48		94	38		4	96	1492
Lepidocyrtus violaceus	0	48	839			591		90	1492
Megalothorax minimus		2	31		2	31	6		93
Mesaphorura macrochaeta		2			3	47	6		93
Metaphorura affinis		10	155	1	(16		4	(2)
Neanura muscorum	572	450	15004	152	6	93	404	4	62
Parisotoma notabilis	572	450	15884	153	179	5160	404	345	11641
Pogonognathellus flavescens		50	1415	6	1	109	22	160	2140
Protaphorura armata	33	58	1415	44	186	3575	33	169	3140
Protaphorura humata							1		16
Protaphorura subuliginata						47	8		124
Pseudachorutes dubius			1.0	3		47			
Pseudosinella immaculata	1		16						
Pseudosinella petterseni		2	31						
Schoettella ununguiculata	2	5	1206			1.100	1.0	40	000
Sminthurinus aureus	47	37	1306	30	66	1492	12	40	808
Sminthurinus niger					1	16			
Sminthurus viridis							1		16
Sphaeridia pumilis	30	33	979	9	54	979	1	39	622
Supraphorura furcifera		10	155	2	43	699	1	16	264
Willemia anophthalma		4	62						
Collembola juvenil	272	7	4446	27	44	1103	79	18	1664
Individuenzahl	2622	1675	66787	663	1183	28693	1363	2249	56296
Individuenzahl ∑ F+H	4297			1846			3612		
Artenzahl	16	21	22	18	21	26	16	14	19
Artenzahl Borstgrasrasen gesamt:	35	Individuer	dividuenzahl Borstgrasrasen gesamt:						9755

Tab. Anhang 54: Rohdaten Collembola, Biotoptyp Goldhaferwiese; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola,	EB ST21			EB ST22			EB ST23		
Biotoptyp Goldhaferwiese (Tab. Anhang 54)	- Frühjahr	Herbst	MW/m ²	- Frühjahr	Herbst	MW/m ²	- Frühjahr	Herbst	MW/m ²
Brachystomella parvula	7	5	187	5	29	528	, ,		
Desoria tigrina				1		16			
Desoria violacea	1		16	24		373			
Dicyrtomina minuta	1	1	31	33		513	2		31
Entomobrya lanuginosa				4	2	93	4		62
Folsomia manolachei	128	14	2207	348	120	7274	60		933
Folsomia quadrioculata	291	520	12605	448	364	12620	323	216	8377
Folsomia spinosa	5	8	202					1	16
Friesea mirabilis	32	3	528	15	3	280	20	3	358
Heteromurus nitidus		4	62						
Isotoma viridis group	113	63	2735	228	120	5409	258	81	5269
Isotomiella minor	89	43	2052	25	9	529	13	2	233
Isotomurus graminis					4	62			
Lepidocyrtus cyaneus	3	4	109		4	62			
Lepidocyrtus lignorum	27	56	1290	33	64	1508	48	30	1212
Lepidocyrtus violaceus		6	93						
Megalothorax minimus	8	12	311	2	26	435			
Mesaphorura macrochaeta	7		109		2	31	2	1	47
Metaphorura affinis	4		62	1		16	2		31
Neanura muscorum		1	16		3	47			
Paratullbergia callipygos	1		16		3		5	2	109
Parisotoma notabilis	613	275	13802	723	305	15978	306	131	6792
Pogonognathellus flavescens	5		78	3		47			
Protaphorura armata	48	268	4912	147	436	9061	13	115	1989
Protaphorura fimata							4	27	482
Protaphorura humata					1	16			
Protaphorura procampata				20		311	30		466
Sminthurinus aureus	90	70	2487	123	88	3279	80	104	2860
Sphaeridia pumilis	8	34	653	121	33	2394	38	30	1057
Stenaphorura denisi		3	47						
Stenaphorura quadrispina	6		93	9	6	233			
Supraphorura furcifera	8	31	606	15	1	249		20	311
Collembola juvenil	87	14	1570	61	23	1351	23	5	435
Individuenzahl	1582	1435	46879	2389	1646	62715	1231	768	31070
Individuenzahl ∑ F+H	3017			4035			1999		
Artenzahl	21	19	25	20	20	25	16	13	18
Artenzahl Goldhaferwiese gesamt:	31	Individuer	duenzahl Goldhaferwiese gesamt:						9051

Tab. Anhang 55: Rohdaten Collembola, Biotoptyp Halbtrockenrasen; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Collembola,	EB_ST31			EB_ST32			EB_ST33		777 606 636 637	
Biotoptyp Halbtrockenrasen (Tab. Anhang 55)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	
Brachystomella parvula	37	79	1803	3	15	280	2	48	777	
Dicyrtomina minuta		1	16							
Entomobrya lanuginosa	1	12	202	17	13	466	5	34	606	
Entomobrya marginata	1		16							
Folsomia manolachei	469	199	10367	32	26	901	14	27	636	
Folsomia quadrioculata		13	202	17	16	513	41		637	
Folsomia spinosa				8	2	156				
Friesea mirabilis		3	47							
Heteromurus nitidus		2	31							
Isotoma viridis group	103	179	4383	59	34	1446	527	292	12729	
Isotomiella minor	8	4	187	6	13	295	7	5	187	
Isotomodes productus	8		124	1		16	1		16	
Lepidocyrtus cyaneus		2	31	1		16				
Lepidocyrtus lanuginosus	2		31							
Lepidocyrtus lignorum	23	34	886	4	13	264	11	43	839	
Mesaphorura macrochaeta	3	1	62		1	16		1	16	
Metaphorura affinis	2	3	78	4		62	14		218	
Neanura muscorum		10	155					5	78	
Orchesella frontimaculata	2		31	1		16				
Parisotoma notabilis	287	257	8455	153	119	4228	179	234	6419	
Protaphorura armata	1	88	1383	7	5	187	30	84	1772	
Pseudosinella alba		8	124	1	25	404		7	109	
Pseudosinella petterseni	1		16				2		31	
Schoettella ununguiculata				1	5	93				
Sminthurinus aureus		25	389				7	41	746	
Sminthurus viridis				1		16				
Sphaeridia pumilis	7	71	1212		31	482		36	560	
Stenaphorura denisi					11	171		1	16	
Stenaphorura quadrispina	11		171	3		47				
Collembola juvenil	78	37	1789	59	7	1026	10	68	1214	
Individuenzahl	1044	1028	32191	378	336	11101	850	926	27606	
Individuenzahl ∑ F+H	2072			714			1776			
Artenzahl	16	18	24	17	14	20	12	13	17	
Artenzahl Halbtrockenrasen gesamt:	28	Individuen	zahl Halbtr	ockenrasen	gesamt:				4562	

Tab. Anhang 56: Rohdaten Diplopoda, Biotoptyp Borstgrasrasen; Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrsund Herbstprobenahme, Bodenfallen und Bodenkernstecher).

Diplopoda,	EB_ST11		EB_ST12		EB_ST13	
Biotoptyp Borstgrasrasen (Tab. Anhang 56)	Falle	Stecher	Falle	Stecher	Falle	Stecher
Allaiulus nitidus	4		10		16	
Glomeris marginata			110	2		
Julidae			2			
Julus scandinavius			17			
Melogona voigti				1		
Mycogona germanica			2			
Ommatoiulus sabulosus			5			
Polydesmus denticulatus			2			
Unciger foetidus			4		10	
Individuenzahl	4	0	152	3	26	0
Individuenzahl Artniveau	4	0	150	3	26	0
Artenzahl	1	0	7	2	2	0

Tab. Anhang 57: Rohdaten Diplopoda, Biotoptyp Goldhaferwiesen; Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrsund Herbstprobenahme, Bodenfallen und Bodenkernstecher).

Diplopoda,	EB_ST21		EB_ST22		EB_ST23	
Biotoptyp Goldhaferwiesen (Tab. Anhang 57)	Falle	Stecher	Falle	Stecher	Falle	Stecher
Allaiulus nitidus	15	1	3		3	
Cylindroiulus britannicus			3			
Enantiulus nanus	6	14			1	
Julidae	1	4		4	3	1
Julus scandinavius	23		4		4	
Leptoiulus proximus			1			
Megaphyllum projectum	21					
Ommatoiulus sabulosus			2		5	
Ophyiulus pilosus			1			
Polydesmus inconstans			1		1	
Unciger foetidus			4		20	1
Individuenzahl	66	19	19	4	37	2
Individuenzahl Artniveau	65	15	19	0	34	1
Artenzahl	4	2	8	0	6	1

Tab. Anhang 58: Rohdaten Diplopoda, Biotoptyp Halbtrockenrasen; Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrsund Herbstprobenahme, Bodenfallen und Bodenkernstecher).

Diplopoda,	EB_ST31		EB_ST32		EB_ST33		
Biotoptyp Halbtrockenrasen (Tab. Anhang 58)	Falle	Stecher	Falle	Stecher	Falle	Stecher	
Allaiulus nitidus	2		5				
Cylindroiulus caeruleocinctus	86		102		67		
Glomeris marginata			3		4		
Julidae			3	2			
Leptoiulus proximus			1				
Melogona voigti			5				

Diplopoda,	EB_ST31		EB_ST32		EB_ST33		
Biotoptyp Halbtrockenrasen (Tab. Anhang 58)	Falle	Stecher	Falle	Stecher	Falle	Stecher	
Ommatoiulus sabulosus					1		
Polydesmus angustus	6		10		1		
Polydesmus inconstans			3				
Propolydesmus testaceus	13		2		1		
Tachypodoiulus niger					7		
Individuenzahl	107	0	134	2	81	0	
Individuenzahl Artniveau	107	0	131	0	81	0	
Artenzahl	4	0	8	0	6	0	

Tab. Anhang 59: Rohdaten Chilopoda, Biotoptyp Borstgrasrasen; Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrs- und Herbstprobenahme, Bodenfallen und Bodenkernstecher).

Chilopoda,	EB_ST11		EB_ST12		EB_ST13	
Biotoptyp Borstgrasrasen (Tab. Anhang 52)	Falle	Stecher	Falle	Stecher	Falle	Stecher
Geophilus alpinus						1
Geophilus electricus					1	
Geophilus flavus				1		1
Lithobius calcaratus			4			
Lithobius crassipes				1		
Lithobius curtipes					1	
Lithobius forficatus			1			
Lithobius microps	1					
Lithobius mutabilis	2		31			
Lithobius nodulipes	1		1			
Lithobius		1	3	1		1
Stenotaenia linearis				1		2
Individuenzahl	4	1	40	4	2	5
Individuenzahl Artniveau	4	0	37	3	2	4
Artenzahl	3	1	4	3	2	3

Tab. Anhang 60: Rohdaten Chilopoda, Biotoptyp Goldhaferwiese; Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrsund Herbstprobenahme, Bodenfallen und Bodenkernstecher).

Chilopoda,	EB_ST21		EB_ST22		EB_ST23	
Biotoptyp Goldhaferwiese (Tab. Anhang 60)	Falle	Stecher	Falle	Stecher	Falle	Stecher
Geophilus alpinus						1
Geophilus electricus				2	1	2
Geophilus flavus		1		1		3
Geophilus ribauti		3				5
Lithobius crassipes		1	1			
Lithobius microps					1	
Lithobius mutabilis	13				4	
Lithobius nodulipes		2				
Lithobius		4	2	1	4	
Stenotaenia linearis				3		
Strigamia acuminata	1					
Individuenzahl	14	11	3	7	10	11
Individuenzahl Artniveau	14	7	1	6	6	11
Artenzahl	2	4	1	3	3	4

Tab. Anhang 61: Rohdaten Chilopoda, Biotoptyp Halbtrockenrasen; Anzahl der Individuen/Untersuchungsfläche (Summe der Frühjahrsund Herbstprobenahme, Bodenfallen und Bodenkernstecher).

Chilopoda, Biotoptyp Halbtrockenrasen	EB_ST31		EB_ST32		EB_ST33		
(Tab. Anhang 61)	Falle	Stecher	Falle	Stecher	Falle	Stecher	
Geophilus		1					
Geophilus electricus	3		1				
Lithobius calcaratus			2		1		
Lithobius crassipes			3				
Lithobius forficatus	2				3		
Lithobius				3			
Stenotaenia linearis	2	2		3		2	
Individuenzahl	7	3	6	6	4	2	
Individuenzahl Artniveau	7	2	6	3	4	2	
Artenzahl	3	1	3	1	2	1	

Tab. Anhang 62: Rohdaten Lumbricidae, Biotoptyp Borstgrasrasen; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen für Abundanz und Biomasse [g] pro Quadratmeter. AB = mittlere Abundanz [Ind./m²], BM = mittlere Biomasse (Frischgewicht) [g/m²].

Lumbricidae,	EB_ST11				EB_ST12				EB_ST13			
Biotoptyp Borstgrasrasen (Tab. Anhang 62)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato	26	24	20,0	2,1	3	18	8,4	0,9	28	17	18,0	3,8
Aporrectodea caliginosa	12	11	9,2	3,0	1	8	3,6	1,8	23	19	16,8	8,1
Aporrectodea rosea	8	18	10,4	2,9		1	0,4	0,1				
Dendrobaena attemsi	12	3	6,0	0,4	2	1	1,2	0,1				
Dendrobaena octaedra					2		0,8	0,1				
Dendrobaena sp.	3	1	1,6	0,05	4		1,6	0,1				
Dendrodrilus rubidus					1		0,4	0,1				

Lumbricidae,	EB_ST1	1			EB_ST1	2			EB_ST1	13		
Biotoptyp Borstgrasrasen (Tab. Anhang 62)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Lumbricus castaneus	4	2	2,4	0,3	3		1,2	0,2				
Lumbricus rubellus	3	1	1,6	0,9	2	3	2,0	1,0	8		3,2	2,0
Lumbricus terrestris									6	3	3,6	11,3
Lumbricus sp.	9	10	7,6	0,9	6	7	5,2	0,5	7	9	6,4	3,5
Octolasion cyaneum									1		0,4	0,8
Octolasion tyrtaeum	4	4	3,2	0,9		1	0,4	0,7				
Octolasion sp.									1		0,4	0,2
Undetermined	14	9	9,2	1,0	2	3	2,0	0,2	8	2	4,0	0,8
Individuenzahl	95	83			26	42			82	50		
Individuenzahl ∑ F+H	178		,		68				132			
Abundanz/Biomasse			71,2	12,4			27,2	5,8			52,8	30,5
Artenzahl	6	6	6		6	5	8		4	2	4	
Artenzahl Borstgrasrasen	gesamt:		10		Individu	ienzahl I	Borstgras	rasen ges	samt:		378	

Tab. Anhang 63: Rohdaten Lumbricidae, Biotoptyp Goldhaferwiese; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen für Abundanz und Biomasse [g] pro Quadratmeter. AB = mittlere Abundanz [Ind./m²], BM = mittlere Biomasse (Frischgewicht) [g/m²].

Lumbricidae,	EB_ST2	21			EB_ST2	22			EB_ST	23		
Biotoptyp Goldhaferwiese (Tab. Anhang 63)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato	31	47	31,2	3,6	88	72	64,0	6,1	33	81	45,6	5,7
Aporrectodea caliginosa	23	37	24,0	10,1	16	44	24,0	9,3	10	34	17,6	7,3
Aporrectodea rosea	1	5	2,4	0,4	22	6	11,2	1,4	3	3	2,4	0,7
Dendrobaena attemsi		1	0,4	0,02	5		2,0	0,2	1		0,4	0,03
Dendrobaena octaedra		1	0,4	0,02		1	0,4	0,02				
Dendrobaena sp.	1	2	1,2	0,03	7		2,8	0,2				
Lumbricus castaneus	2	4	2,4	0,4	1		0,4	0,04	3	11	5,6	0,8
Lumbricus rubellus	12	2	5,6	3,3	9	32	16,4	5,3	13	4	6,8	3,5
Lumbricus terrestris	2	2	1,6	4,0	2		0,8	1,2	1		0,4	1,5
Lumbricus sp.	4	19	9,2	1,8	13	19	12,8	2,3	7	34	16,4	2,2
Octolasion cyaneum	3		1,2	1,7					4	1	2,0	3,0
Octolasion tyrtaeum	21	15	14,4	7,7	20	29	19,6	8,6	3	15	7,2	3,2
Octolasion sp.	33	3	14,4	3,7	7	2	3,6	0,6	28	1	11,6	4,3
Undetermined	20	17	14,8	2,2	30	16	18,4	2,1	11	15	10,4	2,3
Individuenzahl	153	155			220	221			117	199		
Individuenzahl ∑ F+H	308				441				316			
Abundanz/Biomasse			123,2	39,0			176,4	37,4			126,4	34,5
Artenzahl	8	8	9		7	5	8		8	6	8	
Artenzahl Goldhaferwiese	gesamt:		9		Individ	uenzahl (Goldhafe	rwiese ge	esamt:		1065	

Tab. Anhang 64: Rohdaten Lumbricidae, Biotoptyp Halbtrockenrasen; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen für Abundanz und Biomasse [g] pro Quadratmeter. AB = mittlere Abundanz [Ind./m²], BM = mittlere Biomasse (Frischgewicht) [g/m²].

Lumbricidae, Biotoptyp	EB_ST3	EB_ST31			EB_ST32				EB_ST33			
Halbtrockenrasen (Tab. Anhang 64)	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM	Frühjahr	Herbst	AB	BM
Aporrectodea sp. sensu lato	10	10	8,0	0,8	2	7	3,6	0,3	2	6	3,2	0,2
Aporrectodea caliginosa		2	0,8	0,2								
Aporrectodea rosea	3	29	12,8	1,2					2	22	9,6	0,8
Dendrobaena sp.		2	0,8	0,1								
Lumbricus castaneus	1		0,4	0,1								
Lumbricus rubellus	1		0,4	0,7	1		0,4	0,4				
Lumbricus terrestris		1	0,4	0,7								
Lumbricus sp.		3	1,2	0,1	2	13	6,0	1,3		1	0,4	0,03
Octolasion cyaneum		5	2,0	2,6								
Octolasion tyrtaeum	11		4,4	4,1	9	29	15,2	17,3	2	16	7,2	7,7
Octolasion sp.	5	1	2,4	0,7	17	7	9,6	4,5	7	3	4,0	1,1
Undetermined	2	2	1,6	0,5	3	2	2,0	0,8		4	1,6	0,1
Individuenzahl	33	55			34	58			13	52		
Individuenzahl ∑ F+H	88				92				65			
Abundanz/Biomasse			35,2	11,8			36,8	24,6			26,0	9,9
Artenzahl	4	5	7		3	3	3		2	3	3	
Artenzahl Kalkmagerrasen gesamt: 8			Individuenzahl Kalkmagerrasen gesamt:					245				

Tab. Anhang 65: Rohdaten Enchytraeidae, Biotoptyp Borstgrasrasen; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae, Biotoptyp Borstgrasrasen	EB_ST11			EB_ST12			EB_ST13			
(Tab. Anhang 65)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	
Achaeta affinis	139	15	3126	79	13	1868	196	309	10252	
Achaeta bibulba							32	9	832	
Achaeta camerani				55	347	8161				
Achaeta danica					72	1462	3	22	508	
Achaeta parva		15	305	2	12	284		5	102	
Achaeta sp.							1		20	
Buchholzia appendiculata	12	1	264							
Cognettia chlorophila	261	193	9216	878	314	24198	981	639	32887	
Cognettia cognettii					6	122				
Cognettia varisetosa								30	609	
Enchytraeus buchholzi	10	11	426	6		122		39	792	
Enchytraeus bulbosus	80		1624							
Enchytraeus norvegicus	293	307	12180	135	41	3573	186	50	4791	
Enchytraeus sp. (GRAN)	29	4	670	79		1604		13	264	
Enchytronia baloghi	1	1	41							
Enchytronia parva	51	236	5826	713	164	17803	236	186	8567	
Enchytronia sp. (TENU)	2	64	1340	23	50	1482	29	16	914	
Fridericia benti		1	20							

Enchytraeidae,	EB_ST11			EB_ST12			EB_ST13		
Biotoptyp Borstgrasrasen (Tab. Anhang 65)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2
Fridericia bisetosa	18	6	487						
Fridericia bulboides	47	10	1157		3	61			
Fridericia connata	20	4	487	1		20			
Fridericia cylindrica							82	60	2883
Fridericia dura	17	1	365	41	1	853			
Fridericia ratzeli s.s.	11	4	305						
Henlea perpusilla	7	4	223						
Marionina clavata	1		20		1	20			
Mesenchytraeus pelicensis				2		41			
Oconnorella cambrensis	22	40	1259	477	66	11023	41	12	1076
Oconnorella tubifera	459	399	17418	380	63	8993	151	163	6374
Stercutus niveus		6	122						
Individuenzahl	1480	1322	56882	2871	1153	81689	1938	1553	70869
Individuenzahl ∑ F+H	2802			4024			3491		
Artenzahl	19	20	22	14	14	18	10	14	14
Artenzahl Borstgrasrasen gesamt:			0	Individuer	nzahl Borstg	grasrasen ge	samt:		10317

Tab. Anhang 66: Rohdaten Enchytraeidae, Biotoptyp Goldhaferwiese; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae, Biotoptyp Goldhaferwiese	EB_ST21			EB_ST22			EB_ST23			
(Tab. Anhang 66)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	
Achaeta affinis							7		142	
Achaeta bibulba							1	2	61	
Achaeta bohemica							4		81	
Achaeta camerani							65	312	7653	
Achaeta danica								41	832	
Achaeta parva		7	142							
Achaeta sp. (BUUS)		4	81	34	32	1340	18	36	1096	
Achaeta sp. (DZWI)	8		162							
Achaeta sp. (HEAL)	13	1	284							
Achaeta unibulba		2	41	9	6	305	2		41	
Buchholzia appendiculata	108	36	2923	42	23	1320	264	64	6659	
Cernosvitoviella sp.	12	5	345	1		20				
Cognettia chalupskyi					7	142				
Cognettia chlorophila	23	13	731	41	5	934	115	12	2578	
Cognettia varisetosa				25	4	589	14		284	
Enchytraeus buchholzi	404	157	11389	140	458	12140	308	300	12343	
Enchytraeus bulbosus	14		284		2	41		5	102	
Enchytraeus lacteus	2	4	122	1	2	61				
Enchytraeus norvegicus							13	21	690	
Enchytraeus sp. (FGRA)		16	325	31	16	954		39	792	
Enchytraeus sp. (GRAN)	80	35	2335	32	16	974	102	-1	2071	

Enchytraeidae,	EB_ST21			EB_ST22			EB_ST23		
Biotoptyp Goldhaferwiese (Tab. Anhang 66)	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2
Enchytronia baloghi	12	23	711	2	8	203		10	203
Enchytronia parva	92	72	3329	80	107	3796	184	121	6192
Enchytronia sp. (MINO)	54	22	1543	3		61			
Enchytronia sp. (OMNI)	1	9	203	10	20	609			
Enchytronia sp. (TENU)	7	27	690	18	20	771	9	20	589
Fridericia benti		10	203	6		122	69	18	1766
Fridericia bisetosa	51	17	1380	6	7	264	14	6	406
Fridericia bulboides							30	19	995
Fridericia connata	65	56	2456	8	16	487	35	12	954
Fridericia cylindrica		1	20	2	2	81	7	3	203
Fridericia deformis				5	4	183			
Fridericia dura	25	14	792	9	2	223	14	2	325
Fridericia galba	118	13	2659	21	26	954	1		20
Fridericia isseli	12	3	305						
Fridericia paroniana	6		122					14	284
Fridericia ratzeli s.s.	14	2	325		7	142	1		20
Fridericia schmelzi	11	1	244		11	223	4		81
Fridericia striata	15	1	325						
Fridericia ulrikae	45	81	2558	132	154	5806	3		61
Hemifridericia parva	11	7	365	12	4	325			
Henlea perpusilla				3	3	122			
Marionina clavata				3		61			
Marionina deminuta	41	10	1035	49	18	1360		2	41
Marionina mendax	5	14	386	123	139	5319			
Marionina sambugarae				4		81			
Mesenchytraeus armatus				2		41			
Mesenchytraeus glandulosus	11	1	244				3		61
Oconnorella cambrensis							1		20
Oconnorella tubifera	51	18	1401	106	65	3471	128	32	3248
Stercutus niveus		5	102		1	20		2	41
Individuenzahl	1311	687	40560	960	1185	43544	1416	1093	50934
Individuenzahl ∑ F+H	1998			2145			2509		
Artenzahl	29	33	36	31	30	36	27	23	34
Artenzahl Goldhaferwiese gesamt: 0				Individuen	zahl Goldha	aferwiese ge	esamt:		6652

Tab. Anhang 67: Rohdaten Enchytraeidae, Biotoptyp Halbtrockenrasen; Anzahl der Individuen der Frühjahrs- und der Herbstprobenahme sowie der Mittelwert beider Probenahmen pro Quadratmeter.

Enchytraeidae,	EB_ST31			EB_ST32			EB_ST33			
Biotoptyp Halbtrockenrasen (Tab. Anhang 67)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	
Achaeta bibulba	2		41							
Achaeta eiseni	3	3	122	28	45	1482	10	6	325	
Achaeta sp. (MINI)				4		81				

Enchytraeidae,	EB_ST31			EB_ST32	EB_ST32			EB_ST33		
Biotoptyp Halbtrockenrasen (Tab. Anhang 67)	Frühjahr	Herbst	MW/m^2	Frühjahr	Herbst	MW/m ²	Frühjahr	Herbst	MW/m^2	
Bryodrilus librus	18	30	974				53	51	2111	
Buchholzia appendiculata	405	115	10556	33	6	792	169	190	7288	
Buchholzia fallax					1	20				
Enchytraeus buchholzi	17	44	1238	4	4	162	5	1	122	
Enchytraeus bulbosus	64	8	1462	50	39	1807	56	11	1360	
Enchytraeus sp. (FGRA)		1	20					5	102	
Enchytraeus sp. (GRAN)	6	2	162		13	264				
Enchytronia parva	8	1	183							
Enchytronia sp. (MINO)	5		102	31	3	690				
Fridericia bisetosa	41	16	1157		3	61	25	53	1583	
Fridericia bulboides							4		81	
Fridericia christeri	6	9	305	19	15	690	57	99	3167	
Fridericia connata	30	36	1340							
Fridericia dura	7		142							
Fridericia lenta	88	76	3329	37	65	2071	192		3898	
Fridericia maculatiformis		3	61	118	81	4040	30	98	2598	
Fridericia nix	1	1	41							
Fridericia paroniana	35	6	832	66	12	1583	36		731	
Fridericia semisetosa	6		122							
Fridericia sp. (ALAT)	103	124	4608	26	30	1137	80	220	6090	
Fridericia sylvatica	84	40	2517	19	23	853	85	1	1746	
Henlea perpusilla	51	7	1177					12	244	
Henlea ventriculosa	68	35	2091							
Marionina communis	19	22	832	20		406	52	1	1076	
Individuenzahl	1067	579	33414	455	340	16139	854	748	32521	
Individuenzahl ∑ F+H	1646			795			1602			
Artenzahl	22	20	24	13	14	16	14	13	16	
Artenzahl Kalkmagerrasen gesamt:		0	Individuenzahl Kalkmagerrasen gesamt:					4043		

Short Instructions to authors

The scientific journal PECKIANA publishes congress contributions and outstanding theses in predominantly English. Guest editors are invited for editing congress contributions.

The author(s) transfer their copyrights of the manuscript to the publisher to allow, e. g., open access. A copyright transfer declaration is mailed to the authors with the confirmation of receipt of the manuscript. If such a declaration is not received, the authors should contact the publisher. The author(s) must arrange any further authorisation necessary for reproduction of figures etc. prior to submission of the manuscript. The cover letter must explicitly confirm that all named authors have agreed to publication of the work, and that the manuscript does not infringe any other person's copyright or property rights.

The print space of the journal is 165 x 231 mm or 81 mm width for one column. The basic font is Times New Roman.

- Figures and photographs: are to be submitted in high-resolution digital form (with a minimum resulcultion of 300 dpi). The prefered file formats are PSD (Photoshop) and TIFF. Please do not reduce the layers to one layer. Costs incurred by printing colour photographs or figures must be borne by the author(s).
- Diagrams and line illustrations: Should be supplied as high-resolution digital files. The print space of the journal, should be kept in mind in the preparation of tables and graphs. If you scan line drawings, select a resolution of 1200 dpi for the final figure size. Text in illustrations should be as short as possible in sans-serif type (Arial) and regular style.
- Heading: English title, short title, full name of the author(s), institution(s) (affiliation) and full address(es). In case of several authors, a corresponding author should be indicated.
- Abstract: Including a list of up to five keywords that do not appear in the title.
- Text: Sectioned (where applicable) into: 1. Introduction, 2. Materials and methods, 3. Results, 4. Discussion, 5. Acknowledgements (if desired), 6. References. Names of genera and species are set in italics. For the first mention of species names within the text, the name should be followed by the describing author(s). Taxonomic descriptions must accord with the applicable International Code of Zoological Nomenclature (ICZN) and the International Code of Nomenclature for algae, fungi, and plants. References within the text should be given as in the following examples: 'BROWN & WHITE (2005) have shown...', or, 'Some authors (BROWN & WHITE 2005, BLACK 2006) consider that...'. For two collaborating authors, the names are to be connected with an ampersand (&), more than two authors are to be cited with the first author's name followed by et al. No comma should be used to separate the year of publication from author names. Citations within brackets should be arranged chronologically, for example: (BROWN & WHITE 2005, WHITE 2006, BLACK et al. 2007).
- Reference list citations: References are to be listed alphabetically by author(s), and within these in chronological sequence. The journal style requires citations to be formatted as in the following examples: Surname(s) and initial(s); year of publication in parentheses followed by a colon; full title in the original language (or in official transliteration) followed by a full stop, space, en-dash, space, full journal title (not in abbreviated form), volume number in bold type followed by a colon, page numbers of the cited article followed by a full stop. For journal articles: VOIGTLÄNDER, K. & C. DÜKER (2001): Distribution and species grouping of millipedes (Myriapoda, Diplopoda) in dry biotopes in Saxony-Anhalt/Eastern Germany. European Journal of Soil Biology 37: 123—126. For book chapters: KUWAHARA, Y.(2004): Chemical ecology of astigmatid mites.—In: CARDÉ, R.T. & J. G. MILLAR(eds): Advances in Insect Chemical Ecology.— Cambridge University Press, Cambridge: 76–109. For books/monographs: BRAUN, U. (1995): A monograph of Cercosporella, Ramularia, and allied genera (phytopathogenic Hyphomycetes), Vol. 1. IHW-Verlag, Eching: 333 pp. For internet references: KISS, L. & O. SZENTIVÁNYI (2000): Infection of bean with cucumber powdery mildew, Podosphaera fusca. New Disease Reports Volume 2 [http://www.bspp.org.uk/ndr/].

All submitted manuscripts are subject to review by two specialist referees. Mainly based on their reports the editors decide whether a manuscript will be accepted for publication. When the review procedure is completed, the review documents and the editors' statement of (non-)acceptance will be sent to the corresponding author. If a manuscript requires major revision, final acceptance may only be decided after a revised version of the manuscript has been received and checked by the editors and/or the referees.

Authors of accepted manuscripts will receive a proof copy of their paper as a PDF. Proof corrections should be communicated as soon as possible, normally per e-mail, along with the release to print.

Authors will be supplied a PDF copy (300 dpi) for free use. The PDFs will also be freely accessible at www.senckenberg.de/peckiana. Hardcopy reprints are available for purchase.

Submission of manuscripts should preferably be sent by email to peckiana@senckenberg.de [up to 15 MB per message].

Alternatively, correspondence and media can be sent by normal mail:

Prof. Dr. Willi Xylander, Editor-in-Chief of PECKIANA Senckenberg Museum für Naturkunde Görlitz PF 30 01 54, 02806 Görlitz, Germany

PECKIANA

14 · Oktober 2021

Die Edaphobase-Länderstudien

Synökologische Untersuchungen von Bodenorganismen in einem Biotop- und Standortgradienten in Deutschland 2014–2018

Andreas Toschki, Ulrich Burkhardt, Henning Haase, Hubert Höfer, Stephan Jänsch, Johanna Oellers, Jörg Römbke, Martina Roß-Nickoll, Jörg-Alfred Salamon, Rüdiger M. Schmelz, Björn Scholz-Starke & David Russell

Ab	stract	1
2	Einleitung	2
3	Konzeption und Ziele der Länderstudien	3
4	Material und Methoden	12
5	Die Länderstudie im Nationalpark Eifel: "Bodenökologische Untersuchung von Fichtenforsten, Buchen- und Eichenwaldbeständen"	21
6	Die Länderstudie in Sachsen: "Bodenökologische Untersuchung von Kiefern- und Buchenwäldernsowie Sandäckern"	90
7	Die Länderstudie im Freistaat Bayern: "Bodenökologische Untersuchung von Acker- und Graslandstandorten"	159
8	Die Länderstudie in Sachsen-Anhalt: "Bodenökologische Untersuchung verschiedener extensiver FFH-Grünlandtypen (Borstgrasrasen, Goldhaferwiesen, basenreiche Halbtrockenrasen)"	216
9	Abschlussdiskussion	284
10	Zusammenfassung	288
11	Danksagung	288
12	Literatur	289
13	Anhang	1