Molecular Ecology



Prof. Dr. Markus Pfenninger
Professor, Head of the Molecular Laboratory, Head of Research Group 'Molecular Ecology'

Research interests

The focus of my research is the genomic basis of niche evolution, speciation and local adaptation with closely related species pairs and intraspecific variation in land and freshwater snails, non-biting midges and extremophile molly fishes. We take an integrative approach: field studies, ecological and evolutionary experiments, comparative genomic approaches and experimental evolution. The ultimate vision thereby is to relate ecological differences functionally to their genomic basis.

Former Projects:

D1: cross-taxon genomic basis of climate-relevant fitness traits

D3: development of taxonomic dna-chips and other high-troughput tests for the routine identification of monitoring samples

D3.1: benthos barcoding

A1.3: radiation of pulmonata during the cenozoic [ellobioidea] (2008-2011)

A1.7: model selection

B1.14: tropical marine ecosystems: diversity and dynamics of coral reef ecosystems and reef-associated fish assemblages

C5.2: evolutionary adaptation potential of key aquatic species of different climatic regions

Curriculum Vitae

Aktuelle Publikationen


Dr. Barbara Feldmeyer
Researcher, Member of Research Group 'Molecular Ecology'

Research interests
evolutionary genetics, evolutionary ecology, behavioural genetics  

I am interested in the adaptive potential of organisms to their environment. This may include abiotic factors, such as temperature, as well as biotic factors, such as the interplay within a social ant colony.

Niche evolution 
Closely related species, as well as different populations of one species, often occupy different niches and are thus adapted to different environmental properties. I’m interested in the adaptive potential of species to their environment, specifically to changing temperature and climate conditions. In this respect, a combinatory approach of studying both, proximate (phenotypic) as well as ultimate (genetic) traits is optimal. The combination of different methods (e.g. life-history trait determination, identification of selected genes) allows to draw conclusions on the proportion of phenotypic plasticity and evolutionary differentiation on the regulatory or structural level. As study organism I am working with the pond snail genus, Radix. Niche models have shown, that the distribution ranges between species (as well as populations) differ in temperature, as well as length of dry period.            

Behavioural genetics 
Social Hymenopterans feature a number of special traits, which clearly set them apart from all other animal groups. In ants, different worker castes and the queens develop from the same genetic background (polyphenism). In addition ant workers are further specialized on various tasks, from brood tending, over nest guarding to foraging. In some ant species behavioural caste differentiation is associated with morphological caste differentiation, however in other species monomorphic workers perform the different duties. I’m interested in the genetic mechanisms that lead to the development of the different castes as well as their differential behaviours. The genus Temnothorax is an ideal study system, as salvemakeing evolved several times independently, thus making it possible to investigate and compare the evolution of behavioural patterns in closely related species. In addition, the system allows to investigate co-evolutionary processes and local adaptation between closely related slavemaker and host species.  

External Links
List of publications at Google Scholar Profile
Barbara Feldbmeyers’ Researcher ID

Maide Nesibe Macit (PhD student)
Shadi Karimifard (PhD student)

Former Students
Marina Choppin (PhD student)
Austin Alleman (PhD student)
Juliane Hartke (PhD student)
Philip Kohlmeier (PhD student)
Matteo Negroni (PhD student)


Publication list

Dr. Axel Magdeburg
Wissenschaftlicher Mitarbeiter
Dr. Maria Esther Nieto-Blázquez
PostDoc, Member of Research Group 'Molecular Ecology'

I am an evolutionary biologist interested in molecular phylogenetics, genomics, systematics, biogeography and conservation. I use molecular tools in order to understand the evolutionary history of organisms, biodiversity origin, and molecular mechanisms at the population-species-environment interface. I have also experience working at Herbaria and I am passionate about natural collections.

My current projects aim to elucidate the demographic history of German wildcat (Felis silvestris silvestris) populations using whole-genome sequencing (WGS) and population genomics of European beech (Fagus sylvatica).

·         2014-2019 Ph.D. in Biology, Memorial University of Newfoundland, Canada. Thesis: ‘Historical biogeography of endemic plants in the Caribbean and Podocarpus as a case study’

·         2008-2009 MSc in Taxonomy and Biodiversity of Plants, Royal Botanic Garden Edinburgh & University of Edinburgh, Scotland. Thesis: ‘Phylogenetic and morphometric studies in Lathyrus L. Series Lutei (Fritsch), Papilionoideae and other yellow-flowered Lathyrus’

·         1999-2006 BSc (Hons) in Biology, University of Seville (US), Spain. Specialization in Botany and Ecology                                         

Nieto-Blázquez, M.E., Quiroga, M.P., Premoli, A.C. & Roncal, J. (2021) Podocarpus in Hispaniola: a stepping-stone colonization story. Diversity and Distributions, 00, 1– 13.

Nieto-Blázquez, M.E., Peña-Castillo, L. & Roncal, J. (2021) Historical biogeography of Caribbean Podocarpus does not support the progression rule. Journal of Biogeography 48, 690-702.

Roncal, J., Nieto-Blázquez, M.E., Cardona, A. & Bacon, C.D. (2020) Historical biogeography of Caribbean plants revises regional paleogeography. In: (eds.) Rull, V. and Carnaval, A. Neotropical Diversification. Springer Nature.

Pichardo-Marcano, F.J., Nieto-Blázquez, M.E., MacDonald, A.N., Galeano, G. & Roncal, J. (2019) Phylogeny, historical biogeography and diversification rates in an economically important group of Neotropical palms: Tribe Euterpeae. Molecular Phylogenetics and Evolution 133, 67-81. Editor’s choice paper.

Nieto-Blázquez, M.E., Antonelli, A. & Roncal, J. (2017) Historical Biogeography of endemic seed plant genera in the Caribbean: Did GAARlandia play a role? Ecology and Evolution 7(23), 10158-10174.

Lorenzo Rigano
PhD candidate

Research interests

In my PhD project, I am investigating the expected phenotypic and genomic variation in the non-biting midge Chironomus riparius, when exposed to a mixture of anthropogenic substances (e.g. tire abrasion from roads).
The assessment of the effects of anthropogenic inputs on the environment is currently limited to phenotypic traits and fitness, but before these effects manifest themselves, changes in genomic composition are expected (like allele frequency changes). The aim of my research is to exploit genomic methods to assess the effects of anthropogenic mixtures of substances.
However, population genomic analyses will be complemented by life-cycle experiments in order to gain a complete picture of the evolutionary consequences of stressor exposition over multiple generations.

Since 06/2022 PhD in “Evolutionary Ecotoxicology” in the Molecular Ecology Group at the Senckenberg Biodiversity & Climate Research Centre – Frankfurt am Main   04/2020 M.Sc. in Molecular Biotechnology and Bioinformatics, University of Milan 
Master´s thesis: “Ecotoxicological assessment of sludges and hydrochars using zebrafish Danio rerio embryos.”   04/2017 B.Sc. in Natural and Environmental Sciences, University of Parma
Bachelor´s thesis: “Comparative composition analysis between overlapping and non-overlapping genes of eukaryotic viruses.”