Die Abteilung Bodenzoologie widmet sich der Untersuchung von wirbellosen Bodentieren, ihrer Taxonomie und Systematik, Aut- und Gemeinschaftsökologie, Morphologie und Biogeographie. In sieben Sektionen werden die Vertreter der Mikrofauna (Fadenwürmer, Bärtierchen und Plattwürmer), der Mesofauna (Springschwänze, Hornmilben, Raubmilben und actinedide Milben) sowie der Makrofauna (Landasseln, Hundert- und Doppelfüßer) untersucht.
+++ NEWS +++
Wir freuen uns über
unsere neue Leiterin der Sektion Oligochaeta
unseren neuen Leiter der Sektion Bodenbiodiversitätsmodellierung
seit 2018
PostDoc (Wissenschaftliche Mitarbeiterin)
Senckenberg Museum für Naturkunde Görlitz
Abteilung Bodenzoologie, Sektion Mesofauna
Im MediAN Projekt
2015 – 2018
PostDoc (Wissenschaftliche Mitarbeiterin)
Georg-August-Universität Göttingen, Institut für Anthropologie und Zoologie, Abteilung Tierökologie
2009 – 2015
Doktorandin
Georg-August-Universität Göttingen, Institut für Anthropologie und Zoologie, Abteilung Tierökologie
2008 – 2008
Forschungspraktikant
Technische Universität Darmstadt, Institut für Zoologie
2007 – 2009
Studentische Hilfskraft
Technische Universität Darmstadt, Institut für Zoologie
Ausbildung
2010 – 2015
Georg-August-Universität Göttingen
Doktorandin im Studiengang Biodiversität und Ökologie
Abschluss: Promotion (Dr. rer. nat.)
Titel der Doktorarbeit: „Carbon flow in belowground food webs assessed by isotope tracers“
2003 – 2009
Technische Universität Darmstadt
Biologie-Studium
Hauptfächer: Ökologie, Zoologie, Tierphysiologie
Abschluss: Diplom (Dipl. biol.)
Titel der Diplomarbeit: „Variations in leaf litter food webs between biomes“
2024
Russell, D., Tebbe, C., Ashwood, F., Scheunemann, N. & Hohberg, K. (2024). Beeindruckendes Bodenleben. Natur und Landschaft, Schriften des BfN 99: 426-435, doi 10.19217/NuL2024-09-01.
Eisenhauer N, Ristok C, Guerra CA, Tebbe CC, Xylander WER, Babin D, Bartkowski B, Burkhard B, Filser J, Glante F, Hohberg K, Kleemann J, Kolb S, Lachmann C, Lehmitz R, Rillig MC, Römbke J, Rueß L, Scheu S, Scheunemann N, Steinhoff-Knopp B, Wellbrock N (2024) Bodenbiodiversität. – In Wirth, C.; Bruelheide, H.; Farwig, N.; Marx, J.; Settele; J.: Faktencheck Artenvielfalt – Assessment zum Erhalt der biologischen Vielfalt in Deutschland. München, oekom. DOI: https://doi.org/10.14512/9783987263361
Guerra, C., Eisenhauer, N., Tebbe, C., Xylander, W., Albert, C., … Scheunemann, N., … & Ristok, C. (2024). Foundations for a national assessment of soil biodiversity. J Sustain Agric Environ 3:e12116
Russell, D., Tebbe, C., Ashwood, F., Scheunemann, N. & Hohberg, K. (2024). Beeindruckendes Bodenleben. Natur und Landschaft 99, 426-435
Eisenhauer, N.; Ristok, C.; Guerra, C.A.; Tebbe, C.C.;- … Scheunemann, N.; … & Wellbrock, N. (2024). Bodenbiodiversität. – In Wirth, C.; Bruelheide, H.; Farwig, N.; Marx, J.; Settele; J. (2024): Faktencheck Artenvielfalt – Assessment zum Erhalt der biologischen Vielfalt in Deutschland. München, oekom.
Leibniz Research Network Biodiversity: Thonicke, K., Rahner, E., Arneth, A., Bonn, A., …, Scheunemann, N., … & Wesche, K. (2024). 10 Must Knows from Biodiversity Science 2024.
Potapov, A. M., Chen, T. W., Striuchkova, A. V., Alatalo, J. M., Alexandre, D., Arbea, J., …, Scheunemann, N., … & Scheu, S. (2024). Global fine-resolution data on springtail abundance and community structure. Scientific data, 11(1), 22.
2023
Scheunemann, N., & Russell, D. J. (). Hydrological regime and forest development have indirect effects on soil fauna feeding activity in Central European hardwood floodplain forests. Nature Conservation, 53, 257-278.
Potapov, A. M., Guerra, C. A., Van den Hoogen, J., Babenko, A., Bellini, B. C., Berg, M. P., … Scheunemann, N., … & Scheu, S. (2023). Globally invariant metabolism but density-diversity mismatch in springtails. Nature Communications, 14(1), 674.
2021
Doblas-Miranda E (2021) Soil Ecosystems Change With Time. Frontiers for Young Minds 9:543498. Translation into German.
2020
Potapov A (2020) Springtails—Worldwide Jumpers. Frontiers for Young Minds 8:545370. Translation into German.
Li, Z., Scheunemann, N., Potapov, A. M., Shi, L., Pausch, J., Scheu, S., & Pollierer, M. M. (2020). Incorporation of root-derived carbon into soil microarthropods varies between cropping systems. Biology and Fertility of Soils, 56, 839-851.
2019
Li, Z., Scheunemann, N., Potapov, A. M., Shi, L., Pausch, J., Scheu, S., Pollierer, M. (accepted). The role of root-derived carbon for Collembola nutrition depends on plant type, functional group and species identity.
2018
Pausch, J., Hünninghaus, M., Kramer, S., Scharroba, A., Scheunemann, N., Butenschoen, O., Marhan, S., Bonkowski, M., Kandeler, E., Scheu, S., Kuzyakov, Y., Ruess, L., (2018). Carbon budgets of top- and subsoil food webs in an arable system. Pedobiologia – Journal of Soil Ecology 69, 29-33
2016
Müller, K., Kramer, S., Haslwimmer, H., Marhan, S., Scheunemann, N., Butenschoen, O., Scheu, S., Kandeler, E. (2016). Carbon transfer from maize roots and litter into bacteria and fungi depends on soil depth and time. – Soil Biology & Biochemistry, 93: 79–89.
Pausch, J., Kramer, S., Scharroba, A., Scheunemann, N., Butenschoen, O., Kandeler, E., Marhan, S., Riederer, M., Scheu, S., Kuzyakov, Y., Ruess, L. (2016). Small but active – pool size does not matter for carbon incorporation in belowground food webs. – Functional Ecology, 30: 479–489.
Scheunemann, N., Pausch, J., Digel, C., Kramer, S., Scharroba, A., Kuzyakov, Y., Kandeler, E., Ruess, L., Butenschoen, O., Scheu, S. (2016). Incorporation of root C and fertilizer N into the food web of an arable field: Variations with functional group and energy channel. – Food Webs, 9: 39–45.
2015
Scheunemann, N., Digel, C., Scheu, S., & Butenschoen, O. (2015). Roots rather than shoot residues drive soil arthropod communities of arable fields. – Oecologia, 179(4): 1135–1145.
Scheunemann, N., Maraun, M., Scheu, S., & Butenschoen, O. (2015). The role of shoot residues vs. crop species for soil arthropod diversity and abundance of arable systems. – Soil Biology & Biochemistry, 81: 81–88.
2012
Kramer, S., Marhan, S., Ruess, L., Armbruster, W., Butenschoen, O., Haslwimmer, H., Kuzyakov, Y., Pausch, J., Scheunemann, N., Schoene, J., Schmalwasser, A., Totsche, K. U., Walker, F., Scheu, S., Kandeler, E. (2012). Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems. – Pedobiologia, 55(2): 111–119.
2010
Scheunemann, N., Scheu, S., & Butenschoen, O. (2010). Incorporation of decade old soil carbon into the soil animal food web of an arable system. – Applied Soil Ecology 46(1): 59–63.
Gabriel Salako,Andrey Zaitsev,BibianaBetancur-Corredor, David J. Russell (2024): Modelling and spatial prediction of earthworms ecological-categories distribution reveal their habitat and environmental preferences. Ecological Indicators, Vol. 169. pdf
D.J. Russell, E. Naudts, N.A. Soudzilovskaia, M.J.I. Briones, M. Çakır, E. Conti, J. Cortet, C. Fiera, D. Hackenberger Kutuzovic, M. Hedde, K. Hohberg, D. Indjic, P.H. Krogh, R. Lehmitz, S. Lesch, Z. Marjanovic, C. Mulder, L. Mumladze, M. Murvanidze, S. Rick, M. Roß-Nickoll, J. Schlaghamerský, O. Schmidt, O. Shelef, M. Suhadolc, M. Tsiafouli, A. Winding, A. Zaytsev, A. Potapov, (2024): Edaphobase 2.0: Advanced international data warehouse for collating and using soil biodiversity datasets, Applied Soil Ecology, Volume 204, 105710, ISSN 0929-1393, https://doi.org/10.1016/j.apsoil.2024.105710.
Andrey S. Zaitsev, Anastasia Yu. Gorbunova, Alexander I. Bastrakov, Maxim I. Degtyarev , Donghui Wud, Daniil I. Korobushkin, Ruslan A. Saifutdinov, Konstantin B. Gongalsky (2024): Taxon-specific ability of saprophagous soil macrofauna to reintegrat carbon from agricultural waste into soil. Pedobiologia – Journal of Soil Ecology, Vol. 104, 150958. https://doi.org/10.1016/j.pedobi.2024.150958
Neyret, M., Le Provost, G., Boesing, A.L. et al. (2022): A slow-fast trait continuum at the whole community level in relation to land-use intensification. Nat Commun 15, 1251. https://doi.org/10.1038/s41467-024-45113-5
2022
Hedde M, Blight O, Briones M JI , Bonfanti J, Brauman A, Brondani M, Zaitsev AS, Capowiez Y (2022): A common framework for developing robust soil fauna classifications. Geoderma 426, 116073. DOI: 10.1016/j.geoderma.2022.116073
Birkhofer K, Baulechner D, Diekotter T, Zaitsev A, Wolters V (2022) Fertilization Rapidly Alters the Feeding Activity of Grassland Soil Mesofauna Independent of Management History. Frontiers in Ecology and Evolution. 10, 864470. DOI: 10.3389/fevo.2022.864470. Journal impact factor: 4.498.
Korobushkin DI, Saifutdinov RA, Zuev AG, Zaitsev AS (2022) Incorporation of marine organic matter by terrestrial detrital food webs: abiotic vs. biotic vectors. Catena 211, 106010. DOI: 10.1016/j.catena.2021.106010. Journal impact factor: 6.367. SJR Q1
2021
Le Provost, G, Thiele, J, Westphal, C, Zaitsev, AS, Manning, P (2021) Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications 12, 3918. DOI: 10.1038/s41467-021-23931-1
John, K, Zaitsev, AS, Wolters, V (2021) Soil fauna groups respond differentially to changes in crop rotation cycles in rice production systems. Pedobiologia. 84, 150703. DOI: 10.1016/j.pedobi.2020.150703
Gongalsky, KB, Zaitsev, AS, Korobushkin, DI, Saifutdinov, RA, Butenko, KO, de Vries, FT, Ekschmitt, K, Degtyarev, MI, Gorbunova, AY, Kostina, NV, Rakhleeva, AA, Shakhab, SV, Yazrikova, TE, Wolters, V and Bardgett, RD (2021) Forest fire induces short-term shifts in soil food webs with consequences for carbon cycling. Ecology Letters, 24, 438-450. DOI: 10.1111/ele.13657
2020
Zaitsev AS, Ryabinin NA, Tarasov AI, Shakhab SV 2020. Potential anthropogenic influence on oribatid mite communities in ancient to modern settlements of the Russian Far East. International Journal of Acarology, 46, 322-326, DOI: 10.1080/01647954.2020.1801838
Gorbunova AYu, Korobushkin DI, Kostina NV, Degtyarev MI, Gongalsky KB, Zaitsev AS (2020) Level of soil moisture determines the ability of Eisenia fetida to re-incorporate carbon from decomposed rice straw into the soil. European Journal of Soil Biology. Vol. 99, 103209. DOI:10.1016/j.ejsobi.2020.103209
Saifutdinov RA, Sabirov RM, Zaitsev AS (2020) Springtail (Hexapoda: Collembola) functional group composition varies between different biotopes in Russian rice growing systems. European Journal of Soil Biology, Vol. 99, 103208. DOI: 10.1016/j.ejsobi.2020.103208
Goncharov AA, Gongalsky KB, Yazrikova TE, Kostina NV, Korobushkin DI, Makarov MI, Zaitsev AS (2020) Greenhouse gas-producing soil biological activity in burned and unburned forests along a transect in European Russia. Applied Soil Ecology. Vol. 148, Article 103491. DOI: 10.1016/j.apsoil.2019.103491
John K, Janz B, Kiese R, Wassmann R, Zaitsev AS, Wolters V. (2020) Earthworms offset straw-induced increase of greenhouse gas emission in upland rice production. Science of Total Environment. 710, 136352. DOI: 10.1016/j.scitotenv.2019.136352.
2019
John K, Degtyarev M, Gorbunova A, Korobushkin D, Knöss H, Wolters V, Zaitsev AS (2019) Enchytraeids simultaneously stimulate rice straw degradation and mitigate CO2 release in a paddy soil. Soil Biology & Biochemistry 131: 191-194. http://dx.doi.org/10.1016/j.soilbio.2019.01.014
Guo Y, Gao M, Liu J, Zaitsev AS, Wu D (2019) Disentangling the drivers of ground-dwelling macro-arthropod metacommunity structure at two different spatial scales. Soil Biology & Biochemistry 130: 55-62. http://dx.doi.org/10.1016/j.soilbio.2018.12.002
2018
Zaitsev AS, Gorbunova AYu, Korobushkin DI, Degtyarev MI, Zhadova AN, Kostina NV, Gongalsky KB (2018) The earthworm species Eisenia fetida modulates greenhouse gas release and carbon stabilization after rice straw amendment to a paddy soil. European Journal of Soil Biology 89: 39-44. http://dx.doi.org/10.1016/j.ejsobi.2018.10.003
Saifutdinov RA, Gongalsky KB, Zaitsev AS (2018) Evidence of a trait-specific response to burning in springtails (Hexapoda: Collembola) in the boreal forests of European Russia. Geoderma 332: 173-179. http://dx.doi.org/10.1016/j.geoderma.2017.07.021
2017
Gorbunova AYu, Korobushkin DI, Zaitsev AS, Gongalsky KB (2017) Forest fires increase variability of soil macrofauna communities along a macrogeographic gradient. European Journal of Soil Biology 80: 49-52. http://dx.doi.org/10.1016/j.ejsobi.2017.04.001
Birkhofer K, Gossner MM, Diekötter T, Drees C, Ferlian O, Maraun M, Scheu S, Weisser WW, Wolters V, Wurst S, Zaitsev AS, Smith HG (2017) Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. Journal of Animal Ecology 86: 511–520. http://dx.doi.org/10.1111/1365-2656.12641
Butenko KO, Gongalsky KB, Korobushkin DI, Ekschmitt K, Zaitsev AS (2017) Forest fires alter the trophic structure of soil nematode communities. Soil Biology & Biochemistry 109: 107-117 http://dx.doi.org/10.1016/j.soilbio.2017.02.006
Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A, … Zaitsev AS, … Purvis A (2017) The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecology & Evolution 7: 162-188. http://dx.doi.org/10.1002/ece3.2579.
Korobushkin DI, Gorbunova AYu, Zaitsev AS, Gongalsky KB (2017) Trait-specific response of soil macrofauna to forest burning along a macrogeographic gradient. Applied Soil Ecology 112: 97–100. http://dx.doi.org/10.1016/j.apsoil.2016.12.004
Holmstrup M, Damgaard C, Schmidt IK, Arndal MF, Beier C, Mikkelsen TN, Ambus P, Larsen KS, Pilegaard K, Michelsen A, Andresen LC, Haugwitz M, Bergmark L, Priemé A, Zaitsev AS, Georgieva S, Dam M, Vestergård M, Christensen S (2017) Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland. Scientific Reports 7: Article 41388. http://dx.doi.org/10.1038/srep41388
2016
Gongalsky KB, Zaitsev AS (2016) The Role of Spatial Heterogeneity of the Environment in Soil Fauna Recovery after Fires. Doklady Earth Sciences 471: 1265–1268. http://dx.doi.org/10.1134/S1028334X16120035.
Schmidt A, John K, Auge H, Brandl R, Horgan FG, Settele J, Zaitsev AS, Wolters V, Schadler M (2016) Compensatory mechanisms of litter decomposition under alternating moisture regimes in tropical rice fields. Applied Soil Ecology 107: 79-90. http://dx.doi.org/10.1016/j.apsoil.2016.05.014
Zaitsev AS, Gongalsky KB, Malmström A, Persson T, Bengtsson J (2016) Why are forest fires generally neglected in soil fauna research? A mini-review. Applied Soil Ecology 98: 261-271. http://dx.doi.org/10.1016/j.apsoil.2015.10.012
2015
John K, Jauker F, Marxsen J, Zaitsev AS, Wolters V (2015) Earthworm bioturbation stabilizes carbon in non-flooded tropical paddy soil. Soil Biology and Biochemistry. 91: 127-132 http://dx.doi.org/10.1016/j.soilbio.2015.08.033
Zaitsev AS, Gongalsky KB, Persson T, Bengtsson J (2014) Connectivity of litter islands remaining after a fire and unburnt forest determines the recovery of soil fauna. Applied Soil Ecology 83: 101-108. http://dx.doi.org/10.1016/j.apsoil.2014.01.007
Zaitsev AS, Chauvat M, Wolters V (2014). Spruce forest conversion to a mixed beech-coniferous stand modifies oribatid community structure. Applied Soil Ecology 76: 60-67. http://dx.doi.org/10.1016/j.apsoil.2013.12.009
Zaitsev AS, Gongalsky KB, Nakamori T, Kaneko N (2014) Ionizing radiation effects on soil biota: Application of lessons learned from Chernobyl accident for radioecological monitoring. Pedobiologia 57: 5-14. http://dx.doi.org/10.1016/j.pedobi.2013.09.005
2013
Zaitsev AS, van Straalen NM, Berg MP (2013) Landscape age explains large spatial scale trends in oribatid mite diversity. Landscape Ecology 28:285-296. http://dx.doi.org/10.1007/s10980-012-9834-0
2012
Gongalsky KB, Malmström A, Zaitsev AS, Shakhab SV, Bengtsson J, Persson T (2012) Do burned areas recover from inside? An experiment with soil fauna in a heterogeneous landscape. Applied Soil Ecology 59:73-86. http://dx.doi.org/10.1016/j.apsoil.2012.03.017
2011
Zaitsev AS, Gongalsky KB, Gorshkova IA, Krechetov PP, Koroleva TV (2011) Impact of rocket propellant (nonsymmetrical dimethylhydrazine) on soil fauna. Doklady Earth Sciences. 440: 1340-1342. http://dx.doi.org/0.1134/S1028334X11090248
Chauvat M, Zaytsev AS, Titsch D, Wolters V (2011) Changes in soil faunal assemblages during conversion from pure to mixed forest stands. Forest Ecology and Management 262: 317-324. http://dx.doi.org/10.1016/j.foreco.2011.03.037
2009
Chauvat M, Zaitsev AS, Gabriel E, Wolters V (2009) How do soil fauna and soil microbiota respond to beech forest growth? Current Zoology 55: 272-278. http://www.currentzoology.org/paperdetail.asp?id=11225
Siepel H, Zaitsev AS, Berg, M.P. 2009. Checklist of oribatid mites of the Netherlands (Acariformes, Oribatida). Nederlandse Faunistische Mededelingen 20: 83-111.
2008
Rjabinin NA., Zaitsev AS (2008) Viracochiella orientalis, a new species of oribatid mites (Acariformes, Oribatida) of the family Ceratozetidae from Sakhalin. Entomological Review 88: 874-877.
Salamon J-A, Zaitsev A, Gartner S, Wolters V (2008) Soil macrofaunal response to forest conversion from pure coniferous stands into semi-natural montane forests. Applied Soil Ecology 40: 491-498. http://dx.doi.org/10.1016/j.apsoil.2008.07.004
2006
Wolters V, Bengtsson J, Zaitsev AS (2006) Relationship among the species richness of different taxa. Ecology 87: 1886 – 1895. https://doi.org/10.1890/0012-9658(2006)87[1886:RATSRO]2.0.CO;2
Zaitsev AS, Wolters V (2006) Geographic determinants of oribatid mite communities structure and diversity across Europe: a longitudinal perspective. European Journal of Soil Biology 42:S358 – S361. http://dx.doi.org/10.1016/j.ejsobi.2006.09.006
Zaitsev AS, Wolters V, Waldhardt R, Dauber J (2006) Long-term succession of oribatid mites after conversion of croplands to grasslands. Applied Soil Ecology 34: 230-239. http://dx.doi.org/10.1016/j.apsoil.2006.01.005
Pokarzhevsky AD, Gongalsky KB, Zaitsev AS, Belyakova OI, Savin FA (2006) “Gaps” in the spatial distribution of earthworms in the meadow steppe. Doklady Academy of Sciences 408: 1-4. (in Russian).
2003
Zaitsev AS (2003) CD-ROM Review. Experimental and Applied Acarology 30: 317-318
Chauvat M, Zaitsev AS, Wolters V (2003) Successional changes of Collembola and soil microbiota during forest rotation. Oecologia 137: 269-276. http://dx.doi.org/10.1007/s00442-003-1310-8
Pokarzhevskii AD, van Straalen NM, Zaboev DP, Zaitsev AS (2003) Microbial links and element flows in nested detrital food-webs. Pedobiologia 47: 213-224. http://dx.doi.org/10.1078/0031-4056-00185
2002
Zaitsev AS , Chauvat M, Pflug A, Wolters V (2002) Oribatid mite diversity and community dynamics in a spruce chronosequence. Soil Biology & Biochemistry 34: 1919-1927. http://dx.doi.org/10.1016/S0038-0717(02)00208-0
2001
Zaitsev AS, Berg MP (2001) Oribatid mites in different forest types in the Netherlands (Acari: Oribatida). Nederlandse Faunistische Mededelingen 15: 79-101.
Zaitsev AS (2001) Geography of oribatid mite distribution in Russia. Vestnik MGU, serija 5, geographicheskaja 6: 34-37 (in Russian).
Van Straalen NM, Butovsky RO, Pokarzhevskii AD, Zaitsev AS, Verhoef SC (2001) Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia 45: 451-466. http://dx.doi.org/10.1078/0031-4056-00099
Zaitsev AS, van Straalen NM (2001) Species diversity and metal accumulation in oribatid mites (Acari, Oribatida) of forests affected by a metallurgical plant. Pedobiologia 45:466-475. http://dx.doi.org/10.1078/0031-4056-00100
2000
Pokarzhevskii AD, van Straalen NM, Filimonova ZhV., Zaitsev AS, Butovsky RO (2000) Trophical structure of the ecosystems and ecotoxicology of soil organisms. Russian Journal of Ecology 3:211-218. http://dx.doi.org/10.1007/BF02762820
Filimonova ZV, Pokarzhevskii AD, Zaitsev AS, Krivolutsky DA, Verhoef CA (2000) Ecological mechanisms of soil biota tolerance to metal contamination. Doklady of Academy of Sciences 370: 571-573.
1999
Zaitsev AS, Miklayeva IM, Rumiantsev VYu (1999) New computer training database of geobotanical descriptions. Vestnik Moskovskogo Universiteta. Ser. 5. Geography. 6: 45-48 (in Russian).
1997
Zaitsev AS (1997) The communities of the oribatid mites (Acari:Oribatida) of the Zakopane environs . Ochrona Przyrody. 54: 131-140.
1996
Zaitsev AS (1996) The analysis of habitat of model species Nothrus palustris C.L.Koch, 1839. Vestnik Moskovskogo Universiteta. Ser. 5.Geography. 6: 39-45. (in Russian).
Additional contributions:
Zaitsev A.S. 2015. Chapter II. Diversity of Soil Organisms. Section: „Acari“. Global Soil Biodiversity Atlas. Orgiazzi A., Singh B., Wall D.H., Barrios E., Kandeler E., Moreira F.M.S., De Deyn G., Chotte J.L., Six J., Zhang J., Hedlund K., Ramirez K.S., Briones M.J.I., Dita M., Miko L., Johnson N., Fierer N., Kaneko N., Bohlen P., Lavelle P., Eggleton P., Lemanceau P., Bardgett R., Jeffery S., Scheu S., Behan Pelletier V., Van der Putten W., Montanarella L., Jones A. (Eds.). European Commission, Publications Office of the European Union, Luxembourg. p. 49. LINK
In zahlreichen sektionsübergreifenden Forschungsprojekten werden die Bodentiergemeinschaften, ihre Beteiligung an Bodenfunktionen und –ökosystemleistungen sowie ihre Dynamik und ihre natürlichen und anthropogenen Treiber untersucht. Ein Ziel dabei ist das „Upscaling“ von Punktaufnahmen in die Fläche und auf die Landschaftsebene als Basis für Modellierungen, Prognosen und Bodenschutzaktivitäten.
Die Online-Datenbank Edaphobase verknüpft Daten und Metadaten zum Vorkommen von Bodentieren mit Habitatsparametern der Fundorte sowie mit zahlreichen weiteren Informationen. Sie verfügt über Auswertetools und eine nutzerfreundliche Datenein- und -ausgabemaske. Datenhaltung und -recherche sind für alle Nutzer*innen kostenfrei. In der Abteilung leitet ein Team die Entwicklung dieser zentralen Forschungsinfrastruktur von Senckenberg.
Seit 2008 gibt das Senckenberg Museum in Görlitz die internationale, peer-reviewed Fachzeitschrift SoilOrganisms heraus. Editoren sind Prof. Dr. Willi Xylander, Prof. Dr. Nico Eisenhauer und Dr. Anton Potapov unter Beteiligung der Wissenschaftler*innen der Abteilung Bodenzoologie. Die Zeitschrift veröffentlicht Artikel zur Systematik, Ökologie, Biologie und Biogeografie von Bodenorganismen. Die Beiträge sind Open Access online verfügbar (kostenfrei für Autor*innen und Nutzer*innen).
Mit einer Website und einer App (Android, iOS) erleichtert „BODENTIER hoch 4“ allen naturbegeisterten Jugendlichen und Erwachsenen das ERLEBEN, ERKENNEN, ERFASSEN und ERFORSCHEN von Bodentieren.
Die Bodenzoologie ist eine von drei Abteilungen innerhalb des Senckenberg Museums für Naturkunde Görlitz. Seit 2024 wird sie von Prof. Dr. Anton Potapovgeleitet.
Die Bodenzoologie wurde in den 60er Jahren durch Prof. Dr. Wolfram Dunger zum Forschungsschwerpunkt des Museums. Er entwickelte es zu einer internationalen Wissenschaftseinrichtung auf diesem Gebiet.
Nach der Fusion mit Senckenberg 2009 wurde die Zahl der wissenschaftlichen Sektionen auf sieben erweitert und die Abteilung Bodenzoologie als Struktureinheit etabliert.Prof. Dr. Willi Xylanderübernahm als Direktor des Senckenberg Museums für Naturkunde Görlitz auch die Abteilungsleitung der Bodenzoologie und hatte sie bis zum Eintritt in den Ruhestand Ende 2022 inne.